aboutsummaryrefslogtreecommitdiff
path: root/modules/libjoy/caanoo/te9_tf9_hybrid_driver.c
blob: 851f6796b0e6022cf5c4ffedfafac309aff269f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
//Cleaned up 3/26 CMH

#ifdef __cplusplus
extern "C" {
#endif
/*==================================================================================================
					INCLUDE FILES
==================================================================================================*/
#include "te9_tf9_hybrid_driver.h"
#include "i2c-dev.h"
/*==================================================================================================
					LOCAL VARIABLES
==================================================================================================*/
#ifdef KX_PLATFORM_LINUX
static int fd = 0;	//local file descriptor for the /dev/i2c interface
static int block = 0;	//flag for block read functionality (1=block, 0=no block)
#endif
static int device = 0;	//flag to indicate device KXTE9=0, KXTF9=1
#ifdef KX_PLATFORM_REX
	LOCAL rex_crit_sect_type tf9_crit_sect;
#else
	int tf9_crit_sect;
#endif
unsigned char gpio_int_type;
/*==================================================================================================
					COMMON FUNCTIONS
==================================================================================================*/
// TODO:
#ifdef KX_PLATFORM_REX
	extern sky_accel_mode_type                  sky_accel_current_mode;
	extern i2c_status_type accel_i2c_write(unsigned char dev_addr, unsigned char addr, unsigned char *data, unsigned char length);
	extern i2c_status_type accel_i2c_read(unsigned char dev_addr, unsigned char addr, unsigned char *data, unsigned char length);
	extern void accel_process_landscape(unsigned char tilt_pos_pre, unsigned char tilt_pos_cur);
	extern void accel_process_updown(unsigned char tilt_pos_pre, unsigned char tilt_pos_cur);
	extern void accel_process_tap(unsigned char tap_mode, unsigned char tap_direction);
 
#elif defined(KX_PLATFORM_FIRMWARE)
	void Wr24C080(U32 slvAddr,U32 addr,U8 data);
	void Rd24C080(U32 slvAddr,U32 addr,U8 *data);

	void _Wr24C080(U32 slvAddr,U32 addr,U8 data);
	void _Rd24C080(U32 slvAddr,U32 addr,U8 *data);
#endif


/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_read_bytes
DESCRIPTION:    	This function reads data from the Kionix accelerometer in bytes.
ARGUMENTS PASSED:	register address, data pointer, length in number of bytes
RETURN VALUE:		0 = pass; 1 = fail
PRE-CONDITIONS:		KIONIX_ACCEL_init() has been called
POST-CONDITIONS:	None
IMPORTANT NOTES:	Using the i2c_smbus functions requires the inclusion of the i2c-dev.h file 
			available in the lm-sensors package.
==================================================================================================*/
int KIONIX_ACCEL_read_bytes(int reg, char* data, int length)
{
	int status = 0;
	int ret = 0;
	int i;
	KIONIX_EnterCriticalSection(&tf9_crit_sect);
#ifdef KX_PLATFORM_LINUX
	if (block == 1){
		status = i2c_smbus_read_i2c_block_data(fd, reg, length, (__u8*)data);
		if(status < 0){		//status will be number of bytes read, negative if read failed
			//printf("Read failed on register 0x%02x\n", reg);
			KIONIX_LeaveCriticalSection(&tf9_crit_sect);
			return 1;
		}
	}
	else if (block == 0){
		for (i = 0; i < length; i++){
			ret = i2c_smbus_read_byte_data(fd, reg + i);
			if (ret < 0){	//status will be the data retrieved in the byte read
				//printf("Read failed on register 0x%02x\n", (reg + i));
				return 1;
			}
			else data[i] = (char)ret;
		}
	}
	else {
		KIONIX_LeaveCriticalSection(&tf9_crit_sect);
		return 1;
	}
#elif defined(KX_PLATFORM_WIN32) || defined(KX_PLATFORM_WINCE)

#elif defined(KX_PLATFORM_REX)
		status = accel_i2c_read(KIONIX_ACCEL_I2C_SLV_ADDR, reg, &data[0], length);

#elif defined(KX_PLATFORM_FIRMWARE)
	#ifdef USE_I2C_GPIO
	{
		unsigned char wb[2], rb[2];
		wb[0] = reg;
		i2c_read(KIONIX_ACCEL_I2C_SLV_ADDR, &wb[0], 1, &data[0], length);
	}
	#elif defined(USE_I2C_INT)
		for(i=0; i<length; i++)
			Rd24C080((U32)KIONIX_ACCEL_I2C_SLV_ADDR, (U32)reg+i, &data[i]);
	#elif defined(USE_I2C_POLL)
		for(i=0; i<length; i++)
			_Rd24C080((U32)KIONIX_ACCEL_I2C_SLV_ADDR, (U32)reg+i, &data[i]);
	#endif
#endif
	KIONIX_LeaveCriticalSection(&tf9_crit_sect);
	return 0;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_write_byte
DESCRIPTION:		This function writes a byte of data to the Kionix accelerometer.
ARGUMENTS PASSED:	register address, data variable
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	None
IMPORTANT NOTES:   	Using the i2c_smbus_write_byte_data function requires the inclusion of
			the i2c-dev.h file available in the lm-sensors package.
==================================================================================================*/
int KIONIX_ACCEL_write_byte(int reg, int data)
{
	int res=0;
	KIONIX_EnterCriticalSection(&tf9_crit_sect);

#ifdef KX_PLATFORM_LINUX
	res = i2c_smbus_write_byte_data(fd, reg, data);

#elif defined(KX_PLATFORM_WIN32) || defined(KX_PLATFORM_WINCE)

#elif defined(KX_PLATFORM_REX)
	res = accel_i2c_write(KIONIX_ACCEL_I2C_SLV_ADDR, reg, &data, 1);

#elif defined(KX_PLATFORM_FIRMWARE)
	#ifdef USE_I2C_GPIO
	{
		unsigned char wb[2], rb[2];
		wb[0] = reg; wb[1] = data;
		i2c_write(KIONIX_ACCEL_I2C_SLV_ADDR, wb, 2);
	}
	#elif defined(USE_I2C_INT)
		Wr24C080((U32)KIONIX_ACCEL_I2C_SLV_ADDR, (U32)reg, data);
	#elif defined(USE_I2C_POLL)
		_Wr24C080((U32)KIONIX_ACCEL_I2C_SLV_ADDR, (U32)reg, data);
	#endif
#endif
	if(res < 0){
		//printf("Write failed on register 0x%02x with data 0x%02x\n", reg, data);
		KIONIX_LeaveCriticalSection(&tf9_crit_sect);
		return 1;
	}
	KIONIX_LeaveCriticalSection(&tf9_crit_sect);
	return res;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_get_device_type
DESCRIPTION:		This function return the Kionix accelerometer device type
ARGUMENTS PASSED:	None
RETURN VALUE:   	-1 = fail; 0: TE9; 1: TF9; 2: SD9
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	None
IMPORTANT NOTES:   	
==================================================================================================*/
int KIONIX_ACCEL_get_device_type(void)
{
	return device;
}

/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_deinit
DESCRIPTION:    	This function de-initializes the Kionix accelerometer. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	None
POST-CONDITIONS:   	Acceleration data outputs are disabled
==================================================================================================*/
int KIONIX_ACCEL_deinit(void)
{
	int res=0;

	res = KIONIX_ACCEL_disable_outputs();
	KIONIX_ACCEL_disable_interrupt();
	res |= KIONIX_ACCEL_disable_all();
	res |= KIONIX_ACCEL_sleep();
	KIONIX_DeleteCriticalSection(&tf9_crit_sect);

	return res;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_init
DESCRIPTION:    	This function initializes the Kionix accelerometer. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	None
POST-CONDITIONS:   	Acceleration data outputs are enabled
==================================================================================================*/
int KIONIX_ACCEL_init(void)
{
	int ctlreg_1 = 0;
	int ctlreg_3 = 0;
	int status = 0;
	char who_am_i = 0;
	long funcs = 0;
#ifdef KX_PLATFORM_LINUX
	//open i2c adapter; included checks for adapters 1, 2, and 3, but could be 0-255
#if 0
	fd = open("/dev/i2c-2", O_RDWR);
	if (fd == -1){
		fd = open("/dev/i2c-1", O_RDWR);
		if (fd == -1){
			fd = open("/dev/i2c-3", O_RDWR);
			if (fd == -1){		
				printf("Error opening adapter\n");
				exit(1);
			}
		}
	}
#else
	fd = open("/dev/i2c-0", O_RDWR);
	if (fd == -1){
		printf("Error opening adapter\n");
		return 1;
	}
#endif
	//set slave address for i2c adapter
	if (ioctl(fd, I2C_SLAVE, KIONIX_ACCEL_I2C_SLV_ADDR) < 0){
		printf("Failed to set slave address\n");
		exit(1);
	} 
	printf("set slave address success...\n");

	//i2c block functionality check
	if (ioctl(fd, I2C_FUNCS, &funcs) < 0){
		printf("I2C adapter failed functionality check\n");
	}
	printf("check functionality... ok\n");

	if (! (funcs & I2C_FUNC_SMBUS_READ_I2C_BLOCK)){
		printf("I2C block read function not available; using byte reads\n");
		block = 0;
	}
	else {
	   	printf("I2C Block read function success... using block reads\n");
	   	block = 1;
	}
	fflush(stdout);
#endif // #if defined(KX_PLATFORM_LINUX)
	KxMSleep(50); //wait 50ms
	KIONIX_InitializeCriticalSection(&tf9_crit_sect);

	//determine what hardware is included by reading the WHO_AM_I register
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_WHO_AM_I, &who_am_i, 1) == 0){
		switch(who_am_i){
			//KXTF9 initialization
			case 0x01:
			case 0x4E:
				KxPrint("[%d] found Device ID to(0x%x) \n", __LINE__, who_am_i );
				KxPrint("Initializing device: KXTF9\n");
				device = 1;

				status |= KXTF9_set_G_range(2);
				status |= KXTF9_set_resolution(12);
				status |= KXTF9_set_odr_tap(400);
				status |= KXTF9_set_odr_tilt(12);
				status |= KIONIX_ACCEL_set_odr_motion(50);
				status |= KIONIX_ACCEL_int_activeh();
				status |= KIONIX_ACCEL_int_latch();
				status |= KIONIX_ACCEL_disable_all();

				break;

			//KXTE9 initialization
			case 0x00:
				KxPrint("[%d] found Device ID to(0x%x) \n", __LINE__, who_am_i );
				KxPrint("Initializing device: KXTE9\n" );
				device = 0;
				UNSET_REG_BIT(ctlreg_1, CTRL_REG1_PC1);	/* disable accelerometer outputs */
				SET_REG_BIT(ctlreg_1, CTRL_REG1_ODRA);	/* set ODR to 40 Hz */
				SET_REG_BIT(ctlreg_1, CTRL_REG1_ODRB);

				UNSET_REG_BIT(ctlreg_1, CTRL_REG1_TPE); /* disable the tilt position function */
				UNSET_REG_BIT(ctlreg_1, CTRL_REG1_WUFE);/* disable wake up function */
				UNSET_REG_BIT(ctlreg_1, CTRL_REG1_B2SE);/* disable back to sleep function */
				KIONIX_ACCEL_write_byte(0x3E, 0xCA);  	/* allow write access to threshold registers */
								 	/* this correction has been made in R1V6 ASIC */
				if (KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG1, ctlreg_1) == 0){
					SET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFA);	 
					SET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFB);	/* set ODR to 40 Hz for B2S and WUF engines*/
					SET_REG_BIT(ctlreg_3, CTRL_REG3_OB2SB); 
					SET_REG_BIT(ctlreg_3, CTRL_REG3_OB2SA); 
					if (KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG3, ctlreg_3) == 0){
						if (KIONIX_ACCEL_tilt_timer(20) == 0){
							if (KIONIX_ACCEL_wuf_timer(4) == 0){
								if (KXTE9_b2s_timer(3) == 0){
									if (KIONIX_ACCEL_wuf_thresh(16) == 0){
										status = 0;
									}
									else	status = 1;
								}
								else	status = 1;
							}
							else	status = 1;
						}
						else	status = 1;
					}
					else	status = 1;
				}
				else	status = 1;
				KIONIX_ACCEL_write_byte(0x3E, 0x00);	/* block write access to threshold registers */
				break;
			default:
				KxPrint("[%d] found Device ID to(0x%x) \n", __LINE__, who_am_i );
				status = 1;				
				break;
		}
	}
	else {
		KxPrint("-E- can't reading the WHO_AM_I register\n");
		status = 1;
	}

	return status;
#if 0

	int ctlreg_1 = 0;
	int ctlreg_3 = 0;
	int status = 0;
	char who_am_i = 0;
	long funcs = 0;
	//open i2c adapter; included checks for adapters 1, 2, and 3, but could be 0-255
	fd = open("/dev/i2c-2", O_RDWR);
	if (fd == -1){
		fd = open("/dev/i2c-1", O_RDWR);
		if (fd == -1){
			fd = open("/dev/i2c-3", O_RDWR);
			if (fd == -1){		
				printf("Error opening adapter\n");
				exit(1);
			}
		}
	}
	//set slave address for i2c adapter
	if (ioctl(fd, I2C_SLAVE, KIONIX_ACCEL_I2C_SLV_ADDR) < 0){
		printf("Failed to set slave address\n");
		exit(1);
	}
	//i2c block functionality check
	if (ioctl(fd, I2C_FUNCS, &funcs) < 0){
		printf("I2C adapter failed functionality check\n");
	}
	if (! (funcs & I2C_FUNC_SMBUS_READ_I2C_BLOCK)){
		printf("I2C block read function not available; using byte reads\n");
		block = 0;
	}
	else 	block = 1;

	//determine what hardware is included by reading the WHO_AM_I register
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_WHO_AM_I, &who_am_i, 1) == 0){
		switch(who_am_i){
			//KXTF9 initialization
			case 0x4E:
				printf("Initializing device: KXTF9\n");
				device = 1;

				UNSET_REG_BIT(ctlreg_1, CTRL_REG1_PC1);	/* disable accelerometer outputs */
				UNSET_REG_BIT(ctlreg_1, CTRL_REG1_RES); /* place accelerometer in 8-bit mode */
				UNSET_REG_BIT(ctlreg_1, CTRL_REG1_DRDYE); /* disable the availability of new acceleration data */
										/* to be reflected on the interrupt pin*/
				//set the sensor to +/-2g range
				UNSET_REG_BIT(ctlreg_1, CTRL_REG1_GSEL1); /* bit for setting g range */
				UNSET_REG_BIT(ctlreg_1, CTRL_REG1_GSEL0); /* bit for setting g range */
					
				UNSET_REG_BIT(ctlreg_1, CTRL_REG1_TPE); /* disable the tilt position function */
				UNSET_REG_BIT(ctlreg_1, CTRL_REG1_WUFE); /* disable wake up function */

				if (KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG1, ctlreg_1) == 0){
					SET_REG_BIT(ctlreg_3, CTRL_REG3_OTDTA);	/* set ODR to 400 Hz for tap double tap function */
					SET_REG_BIT(ctlreg_3, CTRL_REG3_OTDTB); 
					SET_REG_BIT(ctlreg_3, CTRL_REG3_OTPA); /* set ODR to 12.5 Hz for tilt position function */
					UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OTPB); 
					UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFA); /* set ODR for general motion detection function */
					SET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFB); /* and high pass filtered outputs to 50 Hz */
					if (KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG3, ctlreg_3) == 0){
						//write Kionix recommended values for best performance
						if (KIONIX_ACCEL_tilt_timer(6) == 0){
							if (KIONIX_ACCEL_wuf_timer(4) == 0){
								
								status = 0;
							}
							else	status = 1;
						}
						else	status = 1;
					}
					else	status = 1;
				}
				else	status = 1;

				break;

			//KXTE9 initialization
			case 0x00:
				printf("Initializing device: KXTE9\n");
				device = 0;
				UNSET_REG_BIT(ctlreg_1, CTRL_REG1_PC1);	/* disable accelerometer outputs */
				SET_REG_BIT(ctlreg_1, CTRL_REG1_ODRA);	/* set ODR to 40 Hz */
				SET_REG_BIT(ctlreg_1, CTRL_REG1_ODRB);

				UNSET_REG_BIT(ctlreg_1, CTRL_REG1_TPE); /* disable the tilt position function */
				UNSET_REG_BIT(ctlreg_1, CTRL_REG1_WUFE);/* disable wake up function */
				UNSET_REG_BIT(ctlreg_1, CTRL_REG1_B2SE);/* disable back to sleep function */
				KIONIX_ACCEL_write_byte(0x3E, 0xCA);  	/* allow write access to threshold registers */
								 	/* this correction has been made in R1V6 ASIC */
				if (KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG1, ctlreg_1) == 0){
					SET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFA);	 
					SET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFB);	/* set ODR to 40 Hz for B2S and WUF engines*/
					SET_REG_BIT(ctlreg_3, CTRL_REG3_OB2SB); 
					SET_REG_BIT(ctlreg_3, CTRL_REG3_OB2SA); 
					if (KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG3, ctlreg_3) == 0){
						if (KIONIX_ACCEL_tilt_timer(20) == 0){
							if (KIONIX_ACCEL_wuf_timer(4) == 0){
								if (KXTE9_b2s_timer(3) == 0){
									if (KIONIX_ACCEL_wuf_thresh(16) == 0){
										status = 0;
									}
									else	status = 1;
								}
								else	status = 1;
							}
							else	status = 1;
						}
						else	status = 1;
					}
					else	status = 1;
				}
				else	status = 1;
				KIONIX_ACCEL_write_byte(0x3E, 0x00);	/* block write access to threshold registers */
				break;
			default:
				status = 1;				
				break;
		}
	}
	else status = 1;
	KIONIX_ACCEL_enable_outputs();		/* enable acceleration data output */
	return status;
#endif
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_isr
DESCRIPTION:    	This function is the interrupt service routine for the accelerometer. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	None
PRE-CONDITIONS:   	None
POST-CONDITIONS:   	None
IMPORTANT NOTES:	Called from interrupt context, so do NOT do any i2c operations!
==================================================================================================*/
void KIONIX_ACCEL_isr(void)
{
#ifdef KX_PLATFORM_REX
	#if 0
	extern SU_TASK_HANDLE accel_task_handle;
	// disable accelerometer interrupt first
	KIONIX_ACCEL_disable_interrupt();
	// Set event to handle interrupt
	suSetEventMask(accel_task_handle, ACCEL_EVENT_INTERRUPT, NULL);
	// enable accelerometer interrupt again
	KIONIX_ACCEL_enable_interrupt();
	#else
	// disable accelerometer interrupt first
	KIONIX_ACCEL_disable_interrupt();
	// Set event to handle interrupt
	rex_set_sigs( &accel_tcb, SKY_ACCEL_ISR_SIG ); /* Signal a queue event */
	// TODO : Interrupt enable in SKY_ACCEL_ISR_SIG signal routine after process interrupt.
	#endif
#endif
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_enable_interrupt
DESCRIPTION:    	This function enables the interrupt for the accelerometer. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	None
PRE-CONDITIONS:   	None
POST-CONDITIONS:   	None
IMPORTANT NOTES:	Called from interrupt context, so do NOT do any i2c operations!
==================================================================================================*/
void KIONIX_ACCEL_enable_interrupt(void)
{
	// set up interrupt for rising edge detection
#ifdef KX_PLATFORM_REX
	// set up interrupt for rising edge detection
//	gpio_int_set_detect((gpio_int_type)ACCEL_GPIO_INT, DETECT_EDGE);
//	gpio_int_set_handler(ACCEL_GPIO_INT, ACTIVE_HIGH, (gpio_int_handler_type)KIONIX_ACCEL_isr);
	gpio_int_set_detect(BIO_ACC_INT, DETECT_EDGE);
	gpio_int_set_handler((gpio_int_type)BIO_ACC_INT, ACTIVE_HIGH, KIONIX_ACCEL_isr);
#endif
	KIONIX_ACCEL_enable_int();
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_disable_interrupt
DESCRIPTION:    	This function disables the interrupt for the accelerometer. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	None
PRE-CONDITIONS:   	None
POST-CONDITIONS:   	None
IMPORTANT NOTES:	Called from interrupt context, so do NOT do any i2c operations!
==================================================================================================*/
void KIONIX_ACCEL_disable_interrupt(void)
{
	KX_INTLOCK();

	KIONIX_ACCEL_disable_int();

#ifdef KX_PLATFORM_REX
//	gpio_int_set_handler(ACCEL_GPIO_INT, ACTIVE_HIGH, (gpio_int_handler_type)NULL);
	gpio_int_set_handler((gpio_int_type)BIO_ACC_INT, ACTIVE_HIGH, NULL);
#endif

	KX_INTFREE();
}

/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_enable_outputs
DESCRIPTION:    	This function enables accelerometer outputs. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Accelerometer outputs enabled
==================================================================================================*/
int KIONIX_ACCEL_enable_outputs(void)
{
	char ctlreg_1 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &ctlreg_1, 1) == 0){
		SET_REG_BIT(ctlreg_1, CTRL_REG1_PC1); /* sets PC1 bit to be in power up state */
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG1, ctlreg_1);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_disable_outputs
DESCRIPTION:    	This function disables accelerometer outputs. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Accelerometer outputs disabled
==================================================================================================*/
int KIONIX_ACCEL_disable_outputs(void)
{
	char ctlreg_1 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &ctlreg_1, 1) == 0){
		UNSET_REG_BIT(ctlreg_1, CTRL_REG1_PC1); /* sets PC1 bit to be in power up state */
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG1, ctlreg_1);
	}
	else status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_enable_tilt_function
DESCRIPTION:    	This function enables the tilt position function. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Tilt position function is enabled
==================================================================================================*/
int KIONIX_ACCEL_enable_tilt_function(void)
{
	char ctlreg_1 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &ctlreg_1, 1) == 0){
		SET_REG_BIT(ctlreg_1, CTRL_REG1_TPE); /* sets TPE bit to enable tilt position function*/
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG1, ctlreg_1);
	}
	else status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_disable_tilt_function
DESCRIPTION:    	This function disables the tilt position function. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Tilt position function is disabled
==================================================================================================*/
int KIONIX_ACCEL_disable_tilt_function(void)
{
	char ctlreg_1 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &ctlreg_1, 1) == 0){
		UNSET_REG_BIT(ctlreg_1, CTRL_REG1_TPE); /* unset TPE bit to disable tilt position function */
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG1, ctlreg_1);
	}
	else status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_enable_wake_up_function
DESCRIPTION:    	This function enables the wake up function. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Wake up function is enabled
==================================================================================================*/
int KIONIX_ACCEL_enable_wake_up_function(void)
{
	char ctlreg_1 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &ctlreg_1, 1) == 0){
		SET_REG_BIT(ctlreg_1, CTRL_REG1_WUFE); /* set WUFE bit to enable the wake up function */
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG1, ctlreg_1);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_disable_wake_up_function
DESCRIPTION:    	This function disables the wake up function. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Wake up function is disabled
==================================================================================================*/
int KIONIX_ACCEL_disable_wake_up_function(void)
{
	char ctlreg_1 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &ctlreg_1, 1) == 0){
		UNSET_REG_BIT(ctlreg_1, CTRL_REG1_WUFE); /* unset the WUFE bit to disable the wake up function */
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG1, ctlreg_1);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_enable_all
DESCRIPTION:    	This function enables all engines. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	All engines enabled
==================================================================================================*/
int KIONIX_ACCEL_enable_all(void)
{
	char ctlreg_1 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &ctlreg_1, 1) == 0){
		SET_REG_BIT(ctlreg_1, CTRL_REG1_PC1); /* set PC1 to enable the accelerometer outputs */
		SET_REG_BIT(ctlreg_1, CTRL_REG1_TPE); /* set TPE bit to enable the tilt function */
		SET_REG_BIT(ctlreg_1, CTRL_REG1_WUFE); /* set WUFE to enable the wake up function */
		if (device == 0){	//KXTE9
			SET_REG_BIT(ctlreg_1, CTRL_REG1_B2SE); /* set B2SE to enable back to sleep function on KXTE9 */
		}
		else if (device == 1){	//KXTF9
			SET_REG_BIT(ctlreg_1, CTRL_REG1_TDTE); /* set TDTE to enable tap function on KXTF9 */
		}		
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG1, ctlreg_1);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_disable_all
DESCRIPTION:    	This function disables all engines. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	All engines disabled
==================================================================================================*/
int KIONIX_ACCEL_disable_all(void)
{
	char ctlreg_1 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &ctlreg_1, 1) == 0){
		UNSET_REG_BIT(ctlreg_1, CTRL_REG1_PC1); /* unset the PC1 bit to disable the accelerometer outputs */
		UNSET_REG_BIT(ctlreg_1, CTRL_REG1_TPE); /* unset the TPE bit to disable the tilt function */
		UNSET_REG_BIT(ctlreg_1, CTRL_REG1_WUFE); /* unset WUFE to disable wake up function */
		if (device == 0){	//KXTE9
			UNSET_REG_BIT(ctlreg_1, CTRL_REG1_B2SE); /* set B2SE to enable back to sleep function on KXTE9 */
		}
		else if (device == 1){	//KXTF9
			UNSET_REG_BIT(ctlreg_1, CTRL_REG1_TDTE); /* set TDTE to enable tap function on KXTF9 */
		}
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG1, ctlreg_1);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_sleep
DESCRIPTION:    	This function places the accelerometer into a standby state while retaining 
			current register values. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Device is in sleep mode
==================================================================================================*/
int KIONIX_ACCEL_sleep(void)
{
	char ctlreg_1 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &ctlreg_1, 1) == 0 ){
		UNSET_REG_BIT(ctlreg_1, CTRL_REG1_PC1); /* unset the PC1 bit to disable the accelerometer */
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG1, ctlreg_1);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_read_interrupt_status
DESCRIPTION:    	This function reads the physical pin interrupt status. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = interrupt active; 1 = interrupt inactive
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	None
==================================================================================================*/
int KIONIX_ACCEL_read_interrupt_status(void)
{
	int interrupt_status; 
	char status_reg;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_STATUS_REG, &status_reg, 1) == 0){
		if ((status_reg & 0x10) == 0x00){
			interrupt_status = 1;
		}
		else	interrupt_status = 0;
	}
	else	interrupt_status = 1;
	return interrupt_status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_read_interrupt_source
DESCRIPTION:    	This function reads the Interrupt Source 2 register. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = interrupt active; 1 = interrupt inactive
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	interrupt_source contains the byte read from Interrupt Source Register 2
==================================================================================================*/
int KIONIX_ACCEL_read_interrupt_source(char* interrupt_source)
{
	int interrupt_status;
	if (device == 0){	//KXTE9
		if (KIONIX_ACCEL_read_bytes(KXTE9_I2C_INT_SRC_REG2, interrupt_source, 1) == 0){
			if (interrupt_source != 0x00){
				interrupt_status = 0;
			}
			else	interrupt_status = 1;
		}
	}
	else if (device == 1){	//KXTF9
		if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_SRC_REG2, interrupt_source, 1) == 0){
			if (interrupt_source != 0x00){
				interrupt_status = 0;
			}
			else	interrupt_status = 1;
		}
	}
	else	interrupt_status = 1;
	return interrupt_status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_read_previous_position
DESCRIPTION:    	This function reads the previous tilt position register. 
ARGUMENTS PASSED:   	previous_position pointer
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	previous_position is assigned
==================================================================================================*/
int KIONIX_ACCEL_read_previous_position(char* previous_position)
{
	int status;
	status = KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_TILT_POS_PRE, previous_position, 1);
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_read_current_position
DESCRIPTION:    	This function reads the current tilt position register. 
ARGUMENTS PASSED:   	current_position pointer
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	current_position is assigned
==================================================================================================*/
int KIONIX_ACCEL_read_current_position(char* current_position)
{
	int status;
	status = KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_TILT_POS_CUR, current_position, 1);
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_reset
DESCRIPTION:    	This function issues a software reset to the Kionix accelerometer. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Accelerometer is reset (will have to re-initialize)
==================================================================================================*/
int KIONIX_ACCEL_reset(void)
{
	char ctrl_reg3 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG3, &ctrl_reg3, 1) == 0){
		SET_REG_BIT(ctrl_reg3, CTRL_REG3_SRST);
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG3, ctrl_reg3);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_tilt_timer
DESCRIPTION:    	This function sets the number of tilt debounce samples. 
ARGUMENTS PASSED:   	tilt_timer; 0-255
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Tile debounce set according to tilt_timer
==================================================================================================*/
int KIONIX_ACCEL_tilt_timer(int tilt_timer)
{
	int status;
	if (KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_TILT_TIMER, tilt_timer) == 0){
		status = 0;
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_wuf_timer
DESCRIPTION:    	This function sets the number of wake-up debounce samples. 
ARGUMENTS PASSED:   	wuf_timer; 0-255
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Wake-up-function debounce set according to wuf_timer
==================================================================================================*/
int KIONIX_ACCEL_wuf_timer(int wuf_timer)
{
	int status;
	if (KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_WUF_TIMER, wuf_timer) == 0){
		status = 0;
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_wuf_thresh
DESCRIPTION:    	This function defines the threshold for general motion detection. 
ARGUMENTS PASSED:   	wuf_thresh; 0-255
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Wake up function threshold set according to wuf_thresh
IMPORTANT NOTES:   	Default: 0.5g (0x20h)
==================================================================================================*/
int KIONIX_ACCEL_wuf_thresh(int wuf_thresh)
{
	int status;
	if (KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_WUF_THRESH, wuf_thresh) == 0){
		status = 0;
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_position_mask_z
DESCRIPTION:    	This function masks Z-axis from the activity engine. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Z-axis masked
==================================================================================================*/
int KIONIX_ACCEL_motion_mask_z(void)
{
	char int_ctrl_reg2 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_INT_CTRL_REG2, &int_ctrl_reg2, 1) == 0){
		SET_REG_BIT(int_ctrl_reg2, INT_CTRL_REG2_ZBW);
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_INT_CTRL_REG2, int_ctrl_reg2);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_position_unmask_z
DESCRIPTION:    	This function unmasks Z-axis from the activity engine. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Z-axis unmasked
==================================================================================================*/
int KIONIX_ACCEL_motion_unmask_z(void)
{
	char int_ctrl_reg2 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_INT_CTRL_REG2, &int_ctrl_reg2, 1) == 0){
		UNSET_REG_BIT(int_ctrl_reg2, INT_CTRL_REG2_ZBW);
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_INT_CTRL_REG2, int_ctrl_reg2);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_position_mask_y
DESCRIPTION:    	This function masks Y-axis from the activity engine. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Y-axis masked
==================================================================================================*/
int KIONIX_ACCEL_motion_mask_y(void)
{
	char int_ctrl_reg2 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_INT_CTRL_REG2, &int_ctrl_reg2, 1) == 0){
		SET_REG_BIT(int_ctrl_reg2, INT_CTRL_REG2_YBW);
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_INT_CTRL_REG2, int_ctrl_reg2);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_position_unmask_y
DESCRIPTION:    	This function unmasks Y-axis from the activity engine. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Y-axis unmasked
==================================================================================================*/
int KIONIX_ACCEL_motion_unmask_y(void)
{
	char int_ctrl_reg2 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_INT_CTRL_REG2, &int_ctrl_reg2, 1) == 0){
		UNSET_REG_BIT(int_ctrl_reg2, INT_CTRL_REG2_YBW);
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_INT_CTRL_REG2, int_ctrl_reg2);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_position_mask_x
DESCRIPTION:    	This function masks X-axis from the activity engine. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	X-axis masked
==================================================================================================*/
int KIONIX_ACCEL_motion_mask_x(void)
{
	char int_ctrl_reg2 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_INT_CTRL_REG2, &int_ctrl_reg2, 1) == 0){
		SET_REG_BIT(int_ctrl_reg2, INT_CTRL_REG2_XBW);
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_INT_CTRL_REG2, int_ctrl_reg2);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_position_unmask_x
DESCRIPTION:    	This function unmasks X-axis from the activity engine. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	X-axis unmasked
==================================================================================================*/
int KIONIX_ACCEL_motion_unmask_x(void)
{
	char int_ctrl_reg2 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_INT_CTRL_REG2, &int_ctrl_reg2, 1) == 0){
		UNSET_REG_BIT(int_ctrl_reg2, INT_CTRL_REG2_XBW);
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_INT_CTRL_REG2, int_ctrl_reg2);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_position_mask_fu
DESCRIPTION:    	This function masks face-up state in the screen rotation function. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Face up state masked
==================================================================================================*/
int KIONIX_ACCEL_position_mask_fu(void)
{
	char ctrl_reg2 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG2, &ctrl_reg2, 1) == 0){
		SET_REG_BIT(ctrl_reg2, CTRL_REG2_FUM);
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG2, ctrl_reg2);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_position_mask_fd
DESCRIPTION:    	This function masks face-down state in the screen rotation function. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Face down state masked
==================================================================================================*/
int KIONIX_ACCEL_position_mask_fd(void)
{
	char ctrl_reg2 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG2, &ctrl_reg2, 1) == 0){
		SET_REG_BIT(ctrl_reg2, CTRL_REG2_FDM);
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG2, ctrl_reg2);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_position_mask_up
DESCRIPTION:    	This function masks up state in the screen rotation function. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Up state masked
==================================================================================================*/
int KIONIX_ACCEL_position_mask_up(void)
{
	char ctrl_reg2 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG2, &ctrl_reg2, 1) == 0){
		SET_REG_BIT(ctrl_reg2, CTRL_REG2_UPM);
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG2, ctrl_reg2);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_position_mask_do
DESCRIPTION:    	This function masks down state in the screen rotation function. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Down state masked
==================================================================================================*/
int KIONIX_ACCEL_position_mask_do(void)
{
	char ctrl_reg2 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG2, &ctrl_reg2, 1) == 0){
		SET_REG_BIT(ctrl_reg2, CTRL_REG2_DOM);
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG2, ctrl_reg2);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_position_mask_ri
DESCRIPTION:    	This function masks right state in the screen rotation function.
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Right state masked
==================================================================================================*/
int KIONIX_ACCEL_position_mask_ri(void)
{
	char ctrl_reg2 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG2, &ctrl_reg2, 1) == 0){
		SET_REG_BIT(ctrl_reg2, CTRL_REG2_RIM);
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG2, ctrl_reg2);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_position_mask_le
DESCRIPTION:    	This function masks left state in the screen rotation function. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Left state masked
==================================================================================================*/
int KIONIX_ACCEL_position_mask_le(void)
{
	char ctrl_reg2 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG2, &ctrl_reg2, 1) == 0){
		SET_REG_BIT(ctrl_reg2, CTRL_REG2_LEM);
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG2, ctrl_reg2);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_position_unmask_fu
DESCRIPTION:    	This function unmasks face-up state in the screen rotation function. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Face up state unmasked
==================================================================================================*/
int KIONIX_ACCEL_position_unmask_fu(void)
{
	char ctrl_reg2 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG2, &ctrl_reg2, 1) == 0){
		UNSET_REG_BIT(ctrl_reg2, CTRL_REG2_FUM);
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG2, ctrl_reg2);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_position_unmask_fd
DESCRIPTION:    	This function unmasks face-down state in the screen rotation function. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Face down state unmasked
==================================================================================================*/
int KIONIX_ACCEL_position_unmask_fd(void)
{
	char ctrl_reg2 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG2, &ctrl_reg2, 1) == 0){
		UNSET_REG_BIT(ctrl_reg2, CTRL_REG2_FDM);
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG2, ctrl_reg2);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_position_unmask_up
DESCRIPTION:    	This function unmasks up state in the screen rotation function. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Up state unmasked
==================================================================================================*/
int KIONIX_ACCEL_position_unmask_up(void)
{
	char ctrl_reg2 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG2, &ctrl_reg2, 1) == 0){
		UNSET_REG_BIT(ctrl_reg2, CTRL_REG2_UPM);
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG2, ctrl_reg2);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_position_unmask_do
DESCRIPTION:    	This function unmasks down state in the screen rotation function. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Down state unmasked
==================================================================================================*/
int KIONIX_ACCEL_position_unmask_do(void)
{
	char ctrl_reg2 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG2, &ctrl_reg2, 1) == 0){
		UNSET_REG_BIT(ctrl_reg2, CTRL_REG2_DOM);
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG2, ctrl_reg2);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_position_unmask_ri
DESCRIPTION:    	This function unmasks right state in the screen rotation function. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Right state unmasked
==================================================================================================*/
int KIONIX_ACCEL_position_unmask_ri(void)
{
	char ctrl_reg2 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG2, &ctrl_reg2, 1) == 0){
		UNSET_REG_BIT(ctrl_reg2, CTRL_REG2_RIM);
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG2, ctrl_reg2);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_position_unmask_le
DESCRIPTION:    	This function unmasks left state in the screen rotation function. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Left state unmasked
==================================================================================================*/
int KIONIX_ACCEL_position_unmask_le(void)
{
	char ctrl_reg2 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG2, &ctrl_reg2, 1) == 0){
		UNSET_REG_BIT(ctrl_reg2, CTRL_REG2_LEM);
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG2, ctrl_reg2);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_set_odr_motion
DESCRIPTION:    	This function sets the ODR frequency.
ARGUMENTS PASSED:   	frequency variable; 1, 3, 10, or 40 for KXTE9; 25, 50, 100, or 200 for KXTF9
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	ODR is set according to frequency
==================================================================================================*/
int KIONIX_ACCEL_set_odr_motion(int frequency)
{
	char ctlreg_1 = 0;
	char ctlreg_3 = 0;	
	if (device == 0){	//KXTE9
		if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &ctlreg_1, 1) != 0){
			return 1;
		} 
		if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG3, &ctlreg_3, 1) != 0){
			return 1;
		}
		switch (frequency){
		case 1:		/* set all ODR's to 1Hz */
			UNSET_REG_BIT(ctlreg_1, CTRL_REG1_ODRA);
			UNSET_REG_BIT(ctlreg_1, CTRL_REG1_ODRB);
			UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFA);
			UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFB);
			UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OB2SA);
			UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OB2SB);
			break;
		case 3:		/* set all ODR's to 3Hz */
			UNSET_REG_BIT(ctlreg_1, CTRL_REG1_ODRA);
			SET_REG_BIT(ctlreg_1, CTRL_REG1_ODRB);
			UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFA);
			SET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFB);
			UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OB2SA);
			SET_REG_BIT(ctlreg_3, CTRL_REG3_OB2SB);
			break;
		case 10:	/* set all ODR's to 10Hz */
			SET_REG_BIT(ctlreg_1, CTRL_REG1_ODRA);
			UNSET_REG_BIT(ctlreg_1, CTRL_REG1_ODRB);
			SET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFA);
			UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFB);
			SET_REG_BIT(ctlreg_3, CTRL_REG3_OB2SA);
			UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OB2SB);
			break;
		case 40:	/* set all ODR's to 40Hz */
			SET_REG_BIT(ctlreg_1, CTRL_REG1_ODRA);
			SET_REG_BIT(ctlreg_1, CTRL_REG1_ODRB);
			SET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFA);
			SET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFB);
			SET_REG_BIT(ctlreg_3, CTRL_REG3_OB2SA);
			SET_REG_BIT(ctlreg_3, CTRL_REG3_OB2SB);
			break;
		default:
			return 1;
		}
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG1, ctlreg_1);
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG3, ctlreg_3);
	}	
	else if (device == 1){	//KXTF9
		if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG3, &ctlreg_3, 1) != 0){
			return 1;
		}
		switch (frequency){
		case 25:	/* set ODR to 25Hz */
			UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFA);
			UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFB);
			break;
		case 50:	/* set ODR t0 50 Hz */
			UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFA);
			SET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFB);
			break;
		case 100:	/* set ODR to 100 Hz */
			SET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFA);
			UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFB);
			break;
		case 200:	/* set ODR to 200 Hz */
			SET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFA);
			SET_REG_BIT(ctlreg_3, CTRL_REG3_OWUFB);
			break;
		default:
			return 1;
		}
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG3, ctlreg_3);
	}
	return 0;
}

void KIONIX_ACCEL_process_directional_tap(char tap_mode, char tap_direction)
{
	switch(tap_direction)
	{
	case INT_CTRL_REG3_TFUM : // Z+
		KxPrint("Z+, (%d)  Back \n", tap_mode);
		break;
	case INT_CTRL_REG3_TFDM : // Z-
		KxPrint("Z-, (%d)  Front \n", tap_mode);
		break;
	case INT_CTRL_REG3_TUPM : // Y+
		KxPrint("Y+, (%d)  Down \n", tap_mode);
		break;
	case INT_CTRL_REG3_TDOM : // Y-
		KxPrint("Y-, (%d)  Up \n", tap_mode);
		break;
	case INT_CTRL_REG3_TRIM : // X+
		KxPrint("X+, (%d)  Left \n", tap_mode);
		break;
	case INT_CTRL_REG3_TLEM : // X-
		KxPrint("X-, (%d)  Right \n", tap_mode);
		break;
	}
	return;
}

void KIONIX_ACCEL_process_screen_rotation(char tilt_pos_pre, char tilt_pos_cur)
{
	if(tilt_pos_pre == tilt_pos_cur) {
		KxPrint("Tilt State is prev(0x%02x) == curr(0x%02x) \n", tilt_pos_pre, tilt_pos_cur);
		return;
	}

	switch(tilt_pos_cur)
	{
	case CTRL_REG2_RIM :  // X+
		KxPrint("X+,  Landscape LEFT \n");
		break;
	case CTRL_REG2_LEM :  // X-
		KxPrint("X-,  Landscape RIGHT \n");
		break;
	case CTRL_REG2_UPM : // Y+
		KxPrint("Y+,  Potrait UP \n");
		break;
	case CTRL_REG2_DOM : // Y-
		KxPrint("Y-,  Potrait DOWN \n");
		break;
	case CTRL_REG2_FUM : // Z+
		KxPrint("Z+,  Face UP \n");
		break;
	case CTRL_REG2_FDM : // Z-
		KxPrint("Z-,  Face DOWN \n");
		break;
	}

	return;
}

void KIONIX_ACCEL_process_motion_detection(char int_src_reg1, char int_src_reg2)
{
	switch(device)
	{
	case 0 : //KXTE9
		if(int_src_reg1 & 0x4) KxPrint("0x%02x, activity state has changed to Inactive \n", int_src_reg2); // B2SS
		if(int_src_reg1 & 0x2) KxPrint("0x%02x, activity state has changed to Active \n", int_src_reg2); // WUFS
		break;
	case 1 : // KXTF9
		KxPrint("TODO: TF9 motion detection process \n");
		break;
	case 2 : // KXSD9
		break;
	}

	return;
}

/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_service_interrupt
DESCRIPTION:    	This function clears the interrupt request status. 
ARGUMENTS PASSED:   	source_of_interrupt pointer
RETURN VALUE:   	0 = interrupt was pending; 1 = interrupt was not pending
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	source_of_interrupt is assigned
			Interrupt pending bit (MOTI in REGA) will be cleared
IMPORTANT NOTES:	Do not call this from interrupt context since it accesses i2c.
==================================================================================================*/
//int KIONIX_ACCEL_service_interrupt(int* source_of_interrupt)
int KIONIX_ACCEL_service_interrupt(void)
{
	char status_reg=0, int_rel=0, value=0;
	char int_src_reg1, int_src_reg2;
	char tilt_pos_cur, tilt_pos_pre;
	int res=0;

	KX_INTLOCK( );

	// disable accelerometer interrupt first
	KIONIX_ACCEL_disable_interrupt();

	KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_STATUS_REG, &status_reg, 1);
	KxPrint("-W- status_reg (0x%02x) \n", status_reg);
	if( !(status_reg & BIT(4))  ) {
		KxPrint("-W- no interrupt event (0x%02x) \n", status_reg);
		goto RELEASE_INT;
	}

	switch(device)
	{
	case 0: // KXTE9
		KIONIX_ACCEL_read_bytes(KXTE9_I2C_INT_SRC_REG1, &int_src_reg1, 1);
		KIONIX_ACCEL_read_bytes(KXTE9_I2C_INT_SRC_REG2, &int_src_reg2, 1);
		if( (int_src_reg1 & 0x4) || (int_src_reg1 & 0x2) ) { // B2SS or WUFS
			KIONIX_ACCEL_process_motion_detection(int_src_reg1, int_src_reg2);
		}
		if(int_src_reg1 & 0x1) { // TPS
			KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_TILT_POS_CUR, &tilt_pos_cur, 1);
			KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_TILT_POS_PRE, &tilt_pos_pre, 1);
	// TODO:
			KIONIX_ACCEL_process_screen_rotation(tilt_pos_pre, tilt_pos_cur);
		}
		break;
	case 1: // KXTF9
		KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_SRC_REG1, &int_src_reg1, 1);
		KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_SRC_REG2, &int_src_reg2, 1);
		if(int_src_reg2 & (0x3<<2) ) { // Direction tap
			unsigned char tap_mode ;
			tap_mode = ((int_src_reg2&(0x3<<2))>>2);
			KIONIX_ACCEL_process_directional_tap(tap_mode, int_src_reg1); // tap_mode(single/dobule), tap_direction
		}
		if(int_src_reg2 & BIT(0) ) { // TPS
			KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_TILT_POS_CUR, &tilt_pos_cur, 1);
			KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_TILT_POS_PRE, &tilt_pos_pre, 1);
			KIONIX_ACCEL_process_screen_rotation(tilt_pos_pre, tilt_pos_cur);
		}
		if(int_src_reg2 & BIT(1)) { // WUFS
			KIONIX_ACCEL_process_motion_detection(int_src_reg1, int_src_reg2);
		}
		break;
	case 2: // KXSD9
		break;
	}


RELEASE_INT:
	KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_INT_REL, &int_rel, 1);
	// enable accelerometer interrupt again
	KIONIX_ACCEL_enable_interrupt();

	KX_INTFREE( );

#if 0
	int return_status = 1;
	char dummy = 0;
	if (device == 0){	//KXTE9	
		// read the interrupt source register
		if (KIONIX_ACCEL_read_bytes(KXTE9_I2C_INT_SRC_REG2, (char *)source_of_interrupt, 1) == 0){
			// clear the interrupt source information along with interrupt pin
			if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_INT_REL, &dummy, 1) == 0){
				return_status = 0;
			}
			else	return_status = 1;
		}
		else	return_status = 1;
	}
	else if (device == 1){	//KXTF9
		// read the interrupt source register
		if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_SRC_REG2, (char *)source_of_interrupt, 1) == 0){
			// clear the interrupt source information along with interrupt pin
			if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_INT_REL, &dummy, 1) == 0){
				return_status = 0;
			}
			else	return_status = 1;
		}
		else	return_status = 1;
	}
	else return_status = 1;
	return return_status;
#endif // end of #if 0
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_read_LPF_cnt
DESCRIPTION:    	This function reads the number of counts on the X, Y, and Z axes.
ARGUMENTS PASSED:   	x, y, and z pointers
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	x, y, and z are assigned
==================================================================================================*/
int KIONIX_ACCEL_read_LPF_cnt(int* x, int* y, int* z)
{
	int status, x_sign, y_sign, z_sign;
	char Res, x_char;
	char ret[3] = {0, 0, 0};
	char xyz[6] = {0, 0, 0, 0, 0, 0};
	if (device == 0){	//KXTE9	
		status = KIONIX_ACCEL_read_bytes(KXTE9_I2C_XOUT, ret, 3);
		if(status == 0){
			*x = (int)(ret[0]) >> 2;
			*y = (int)(ret[1]) >> 2;
			*z = (int)(ret[2]) >> 2;
		}
		else status = 1;	
	}
	else if (device == 1){	//KXTF9
		if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &Res, 1) == 0){
			Res = Res & 0x40;
			switch(Res){
				case 0x00:	//low-resolution state
					if ((status = KIONIX_ACCEL_read_bytes(KXTF9_I2C_XOUT_L, xyz, 6)) == 0){
						*x = ((int)xyz[1]);
						x_sign = *x >> 7;	//1 = negative; 0 = positive
						if (x_sign == 1){
							*x = ((~(*x) + 0x01) & 0x0FF);
							*x = -(*x);
						}
						*y = ((int)xyz[3]);
						y_sign = *y >> 7;	//1 = negative; 0 = positive
						if (y_sign == 1){
							*y = ((~(*y) + 0x01) & 0x0FF);	//2's complement
							*y = -(*y);
						}
						*z = ((int)xyz[5]);
						z_sign = *z >> 7;	//1 = negative; 0 = positive
						if (z_sign == 1){
							*z = ((~(*z) + 0x01) & 0x0FF);	//2's complement
							*z = -(*z);						
						}
					}
					break;
				case 0x40:	//high-resolution state
					if ((status = KIONIX_ACCEL_read_bytes(KXTF9_I2C_XOUT_L, xyz, 6)) == 0){
						*x = ((int)xyz[0]) >> 4;
						*x = *x + (((int)xyz[1]) << 4);
						x_sign = *x >> 11; 	//1 = negative; 0 = positive
						if (x_sign == 1){
							*x = ((~(*x) + 0x01) & 0x0FFF);	//2's complement
							*x = -(*x);
						}
						*y = ((int)xyz[2]) >> 4;
						*y = *y + (((int)xyz[3]) << 4);
						y_sign = *y >> 11; 	//1 = negative; 0 = positive
						if (y_sign == 1){
							*y = ((~(*y) + 0x01) & 0x0FFF);	//2's complement
							*y = -(*y);
						}
						*z = ((int)xyz[4]) >> 4;
						*z = *z + (((int)xyz[5]) << 4);
						z_sign = *z >> 11; 	//1 = negative; 0 = positive
						if (z_sign == 1){
							*z = ((~(*z) + 0x01) & 0x0FFF);	//2's complement
							*z = -(*z);
						}
					}
					break;
			}		
		}
	}
	else status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_read_LPF_g
DESCRIPTION:    	This function reads the G(gravity force) values on the X, Y, and Z axes.
			The units used are milli-g's, or 1/1000*G. 
ARGUMENTS PASSED:   	gx, gy, and gz pointers
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	gx, gy, and gz are assigned
==================================================================================================*/
int KIONIX_ACCEL_read_LPF_g(int* gx, int* gy, int* gz)
{
	int status, sensitivity;
	int x = 0;
	int y = 0;
	int z = 0;
	int x_sign, y_sign, z_sign;
	char xyz[6] = {0, 0, 0, 0, 0, 0};
	char Res = 0;
	char G_range = 0;
	int range = 0;
	if (device == 0){	//KXTE9	
		sensitivity = BIT_SENSITIVITY_2_G;		
		if ((status = KIONIX_ACCEL_read_LPF_cnt(&x, &y, &z)) == 0){
			/* calculate milli-G's */
			*gx = 1000 * (x - ZERO_G_OFFSET) / sensitivity; 
			*gy = 1000 * (y - ZERO_G_OFFSET) / sensitivity; 
			*gz = 1000 * (z - ZERO_G_OFFSET) / sensitivity;
		}
		else	status = 1;
	}
	else if (device == 1){	//KXTF9
		//determine if in the low resolution or high resolution state
		if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &Res, 1) == 0){
			if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &G_range, 1) == 0){
				G_range = G_range & 0x18;
				G_range = G_range >> 3;
				switch(G_range){
					case 0:
						range = 2;
						break;
					case 1:
						range = 4;
						break;
					case 2:
						range = 8;
						break;
					default:
						break;
				}
				Res = Res & 0x40;
				switch(Res){
					case 0x00:	//low-resolution state
						if ((status = KIONIX_ACCEL_read_bytes(KXTF9_I2C_XOUT_L, xyz, 6)) == 0){
							x = ((int)xyz[1]);
							x_sign = x >> 7;	//1 = negative; 0 = positive
							if (x_sign == 1){
								x = ((~(x) + 0x01) & 0x0FF);
								x = -(x);
							}
							y = ((int)xyz[3]);
							y_sign = y >> 7;	//1 = negative; 0 = positive
							if (y_sign == 1){
								y = ((~(y) + 0x01) & 0x0FF);	//2's complement
								y = -(y);
							}
							z = ((int)xyz[5]);
							z_sign = z >> 7;	//1 = negative; 0 = positive
							if (z_sign == 1){
								z = ((~(z) + 0x01) & 0x0FF);	//2's complement
								z = -(z);						
							}
							sensitivity = (256)/(2*range);
							/* calculate milli-G's */
							*gx = 1000 * (x) / sensitivity; 
							*gy = 1000 * (y) / sensitivity; 
							*gz = 1000 * (z) / sensitivity;
						}
						break;
					case 0x40:	//high-resolution state
						if ((status = KIONIX_ACCEL_read_bytes(KXTF9_I2C_XOUT_L, xyz, 6)) == 0){
							x = ((int)xyz[0]) >> 4;
							x = x + (((int)xyz[1]) << 4);
							x_sign = x >> 11; 	//1 = negative; 0 = positive
							if (x_sign == 1){
								x = ((~(x) + 0x01) & 0x0FFF);	//2's complement
								x = -(x);
							}
							y = ((int)xyz[2]) >> 4;
							y = y + (((int)xyz[3]) << 4);
							y_sign = y >> 11;	//1 = negative; 0 = positive
							if (y_sign == 1){
								y = ((~(y) + 0x01) & 0x0FFF);	//2's complement
								y = -(y);
							}
							z = ((int)xyz[4]) >> 4;
							z = z + (((int)xyz[5]) << 4);
							z_sign = z >> 11;	//1 = negative; 0 = positive
							if (z_sign == 1){
								z = ((~(z) + 0x01) & 0x0FFF);	//2's complement
								z = -(z);
							}
							sensitivity = (4096)/(2*range);
							/* calculate milli-G's */
							*gx = 1000 * (x) / sensitivity; 
							*gy = 1000 * (y) / sensitivity; 
							*gz = 1000 * (z) / sensitivity;
						}
						break;
					default:
						break;
				}
			}
			else	status = 1;
			}
		else	status = 1;
		}
	else status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_read_current_odr_motion
DESCRIPTION:    	This function reads the current ODR of the general motion function. 
ARGUMENTS PASSED:   	ODR_rate_motion pointer
RETURN VALUE:   	0 = ODR set correctly; 1 = ODR invalid
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	ODR_rate_motion is assigned
==================================================================================================*/
int KIONIX_ACCEL_read_current_odr_motion(double* ODR_rate_motion)
{
	int status;
	char status_reg, ctrl_reg;
	if (device == 0){	//KXTE9	
		if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_STATUS_REG, &status_reg, 1) == 0){
			status_reg &= 0x0C;
			status_reg >>= 2;
			switch (status_reg){
			case 0:
				*ODR_rate_motion = 1;
				status = 0;
				break;
			case 1:
				*ODR_rate_motion = 3;
				status = 0;
				break;
			case 2:
				*ODR_rate_motion = 10;
				status = 0;
				break;
			case 3:
				*ODR_rate_motion = 40;
				status = 0;
				break;
			default:
				status = 1;
				break;
			}
		}
		else	status = 1;
	}
	else if (device == 1){	//KXTF9
		if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG3, &ctrl_reg, 1) == 0){
			ctrl_reg &= 0x03;
			ctrl_reg >>= 2;
			switch (ctrl_reg){
			case 0:
				*ODR_rate_motion = 25;
				status = 0;
				break;
			case 1:
				*ODR_rate_motion = 50;
				status = 0;
				break;
			case 2:
				*ODR_rate_motion = 100;
				status = 0;
				break;
			case 3:
				*ODR_rate_motion = 200;
				status = 0;
				break;
			default:
				status = 1;
				break;
			}
		}
		else	status = 1;
	}
	else status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_read_position_status
DESCRIPTION:    	This function reads INT_SRC_REG to determine if there was a change in tilt. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = tilt occurred; 1 = no tilt occurred
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	None
==================================================================================================*/
int KIONIX_ACCEL_read_position_status(void)
{
	int position_status; 
	char src_reg1, src_reg2;
	if (device == 0){	//KXTE9
		if (KIONIX_ACCEL_read_bytes(KXTE9_I2C_INT_SRC_REG1, &src_reg1, 1) == 0){
			if((src_reg1 & 0x01) == 1){
				position_status = 0;
			}
			else	position_status = 1;
		}
		else	position_status = 1;
	}
	else if (device == 1){	//KXTF9
		if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_SRC_REG2, &src_reg2, 1) == 0){
			if((src_reg2 & 0x01) == 1){
				position_status = 0;
			}
			else	position_status = 1;
		}
		else	position_status = 1;
	}
	else position_status = 1;
	return position_status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_read_wuf_status
DESCRIPTION:    	This function reads INT_SRC_REG1 to determine if wake up occurred. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = wake up occurred; 1 = no wake up occurred
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	None
==================================================================================================*/
int KIONIX_ACCEL_read_wuf_status(void)
{
	int wuf_status; 
	char src_reg1, src_reg2;
	if (device == 0){	//KXTE9	
		if (KIONIX_ACCEL_read_bytes(KXTE9_I2C_INT_SRC_REG1, &src_reg1, 1) == 0){
			if((src_reg1 & 0x02) == 0x02){
				wuf_status = 0;
			}
			else	wuf_status = 1;
		}
		else	wuf_status = 1;
	}
	else if (device == 1){	//KXTF9	
		if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_SRC_REG2, &src_reg2, 1) == 0){
			if((src_reg2 & 0x02) == 0x02){
				wuf_status = 0;
			}
			else	wuf_status = 1;
		}
		else	wuf_status = 1;
	}
	else wuf_status = 1;
	return wuf_status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_enable_int
DESCRIPTION:    	This function enables the physical interrupt. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Physical interrupt enabled
==================================================================================================*/
int KIONIX_ACCEL_enable_int(void)
{
	char int_ctrl_reg1 = 0;
	int status = 0;
	if (device == 0){	//KXTE9
		if (KIONIX_ACCEL_read_bytes(KXTE9_I2C_INT_CTRL_REG1, &int_ctrl_reg1, 1) == 0){
			SET_REG_BIT(int_ctrl_reg1, KXTE9_INT_CTRL_REG1_IEN);
			KIONIX_ACCEL_write_byte(KXTE9_I2C_INT_CTRL_REG1, int_ctrl_reg1);
		}
		else	status = 1;
	}
	else if (device == 1){	//KXTF9
		if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_CTRL_REG1, &int_ctrl_reg1, 1) == 0){
			SET_REG_BIT(int_ctrl_reg1, KXTF9_INT_CTRL_REG1_IEN);
			KIONIX_ACCEL_write_byte(KXTF9_I2C_INT_CTRL_REG1, int_ctrl_reg1);
		}
		else	status = 1;
	}
	else status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_disable_int
DESCRIPTION:    	This function disables the physical interrupt. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Physical interrupt disabled
==================================================================================================*/
int KIONIX_ACCEL_disable_int(void)
{
	char int_ctrl_reg1 = 0;
	int status = 0;
	if (device == 0){	//KXTE9	
		if (KIONIX_ACCEL_read_bytes(KXTE9_I2C_INT_CTRL_REG1, &int_ctrl_reg1, 1) == 0){
			UNSET_REG_BIT(int_ctrl_reg1, KXTE9_INT_CTRL_REG1_IEN);
			KIONIX_ACCEL_write_byte(KXTE9_I2C_INT_CTRL_REG1, int_ctrl_reg1);
		}
		else	status = 1;
	}
	else if (device == 1){	//KXTF9
		if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_CTRL_REG1, &int_ctrl_reg1, 1) == 0){
			UNSET_REG_BIT(int_ctrl_reg1, KXTF9_INT_CTRL_REG1_IEN);
			KIONIX_ACCEL_write_byte(KXTF9_I2C_INT_CTRL_REG1, int_ctrl_reg1);
		}
		else	status = 1;
	}
	else status = 1;	
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_int_activeh
DESCRIPTION:    	This function sets the polarity of physical interrupt pin to active high. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Physical interrupt set to active high
==================================================================================================*/
int KIONIX_ACCEL_int_activeh(void)
{
	char int_ctrl_reg1 = 0;
	int status = 0;
	if (device == 0){	//KXTE9	
		if (KIONIX_ACCEL_read_bytes(KXTE9_I2C_INT_CTRL_REG1, &int_ctrl_reg1, 1) == 0){
			SET_REG_BIT(int_ctrl_reg1, KXTE9_INT_CTRL_REG1_IEA);
			KIONIX_ACCEL_write_byte(KXTE9_I2C_INT_CTRL_REG1, int_ctrl_reg1);
		}
		else	status = 1;
	}
	else if (device == 1){	//KXTF9
		if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_CTRL_REG1, &int_ctrl_reg1, 1) == 0){
			SET_REG_BIT(int_ctrl_reg1, KXTF9_INT_CTRL_REG1_IEA);
			KIONIX_ACCEL_write_byte(KXTF9_I2C_INT_CTRL_REG1, int_ctrl_reg1);
		}
		else	status = 1;
	}
	else status = 1;	
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_int_activel
DESCRIPTION:    	This function sets the polarity of physical interrupt pin to active low. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Physical interrupt set to active low
==================================================================================================*/
int KIONIX_ACCEL_int_activel(void)
{
	char int_ctrl_reg1 = 0;
	int status = 0;
	if (device == 0){	//KXTE9	
		if (KIONIX_ACCEL_read_bytes(KXTE9_I2C_INT_CTRL_REG1, &int_ctrl_reg1, 1) == 0){
			UNSET_REG_BIT(int_ctrl_reg1, KXTE9_INT_CTRL_REG1_IEA);
			KIONIX_ACCEL_write_byte(KXTE9_I2C_INT_CTRL_REG1, int_ctrl_reg1);
		}
		else	status = 1;
	}
	else if (device == 1){	//KXTF9
		if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_CTRL_REG1, &int_ctrl_reg1, 1) == 0){
			UNSET_REG_BIT(int_ctrl_reg1, KXTF9_INT_CTRL_REG1_IEA);
			KIONIX_ACCEL_write_byte(KXTF9_I2C_INT_CTRL_REG1, int_ctrl_reg1);
		}
		else	status = 1;
	}
	else status = 1;	
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_int_latch
DESCRIPTION:    	This function sets the physical interrupt to a latch state. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Physical interrupt set to latched response
==================================================================================================*/
int KIONIX_ACCEL_int_latch(void)
{
	char int_ctrl_reg1 = 0;
	int status = 0;
	if (device == 0){	//KXTE9	
		if (KIONIX_ACCEL_read_bytes(KXTE9_I2C_INT_CTRL_REG1, &int_ctrl_reg1, 1) == 0){
			UNSET_REG_BIT(int_ctrl_reg1, KXTE9_INT_CTRL_REG1_IEL);
			KIONIX_ACCEL_write_byte(KXTE9_I2C_INT_CTRL_REG1, int_ctrl_reg1);
		}
		else	status = 1;
	}
	else if (device == 1){	//KXTF9
		if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_CTRL_REG1, &int_ctrl_reg1, 1) == 0){
			UNSET_REG_BIT(int_ctrl_reg1, KXTF9_INT_CTRL_REG1_IEL);
			KIONIX_ACCEL_write_byte(KXTF9_I2C_INT_CTRL_REG1, int_ctrl_reg1);
		}
		else	status = 1;
	}
	else status = 1;	
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_int_pulse
DESCRIPTION:    	This function sets the physical interrupt to a pulse state. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Physical interrupt set to pulse response
==================================================================================================*/
int KIONIX_ACCEL_int_pulse(void)
{
	char int_ctrl_reg1 = 0;
	int status = 0;
	if (device == 0){	//KXTE9	
		if (KIONIX_ACCEL_read_bytes(KXTE9_I2C_INT_CTRL_REG1, &int_ctrl_reg1, 1) == 0){
			SET_REG_BIT(int_ctrl_reg1, KXTE9_INT_CTRL_REG1_IEL);
			KIONIX_ACCEL_write_byte(KXTE9_I2C_INT_CTRL_REG1, int_ctrl_reg1);
		}
		else	status = 1;
	}
	else if (device == 1){	//KXTF9
		if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_CTRL_REG1, &int_ctrl_reg1, 1) == 0){
			SET_REG_BIT(int_ctrl_reg1, KXTF9_INT_CTRL_REG1_IEL);
			KIONIX_ACCEL_write_byte(KXTF9_I2C_INT_CTRL_REG1, int_ctrl_reg1);
		}
		else	status = 1;
	}
	else status = 1;	
	return status;
}
/*==================================================================================================
					KXTE9-SPECIFIC FUNCTIONS
==================================================================================================*/
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_enable_back_to_sleep
DESCRIPTION:    	This function enables the back to sleep function. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Back to sleep is enabled
==================================================================================================*/
int KIONIX_ACCEL_enable_back_to_sleep(void)
{
	char ctlreg_1 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &ctlreg_1, 1) == 0){
		SET_REG_BIT(ctlreg_1, CTRL_REG1_B2SE); /* set the B2SE bit to enable back to sleep function */
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG1, ctlreg_1);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KIONIX_ACCEL_disable_back_to_sleep
DESCRIPTION:    	This function disables the back to sleep function. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Back to sleep is disabled
==================================================================================================*/
int KIONIX_ACCEL_disable_back_to_sleep(void)
{
	char ctlreg_1 = 0;
	int status = 0;
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &ctlreg_1, 1) == 0){
		UNSET_REG_BIT(ctlreg_1, CTRL_REG1_B2SE); /* unset the B2SE bit to disable back to sleep function */
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG1, ctlreg_1);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTE9_read_b2s_status
DESCRIPTION:    	This function reads INT_SRC_REG1 to determine if back to sleep occurred. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = back to sleep occurred; 1 = back to sleep did not occur
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	None
==================================================================================================*/
int KXTE9_read_b2s_status(void)
{
	int wuf_status; 
	char src_reg1;
	if (device == 1){	//KXTF9
		return 1;
	}	
	if (KIONIX_ACCEL_read_bytes(KXTE9_I2C_INT_SRC_REG1, &src_reg1, 1) == 0){
		if((src_reg1 & 0x04) == 0x04){
			wuf_status = 0;
		}
		else	wuf_status = 1;
	}
	else	wuf_status = 1;
	return wuf_status;
}
/*==================================================================================================
FUNCTION: 		KXTE9_b2s_timer
DESCRIPTION:    	This function sets the number of back-to-sleep debounce samples. 
ARGUMENTS PASSED:   	b2s_timer; 0-255
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Back-to-sleep debounce set according to b2s_timer
==================================================================================================*/
int KXTE9_b2s_timer(int b2s_timer)
{
	int status;
	if (device == 1){	//KXTF9
		return 1;
	}
	if (KIONIX_ACCEL_write_byte(KXTE9_I2C_B2S_TIMER, b2s_timer) == 0){
		status = 0;
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTE9_b2s_thresh
DESCRIPTION:    	This function defines the threshold for back-to-sleep detection.
ARGUMENTS PASSED:   	b2s_thresh ; 0-255
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Back-to-sleep function threshold set according to b2s_thresh
IMPORTANT NOTES:   	Default: 1.5g (0x60h)
==================================================================================================*/
int KXTE9_b2s_thresh(int b2s_thresh)
{
	int status;
	if (device == 1){	//KXTF9
		return 1;
	}
	if (KIONIX_ACCEL_write_byte(KXTE9_I2C_B2S_THRESH, b2s_thresh) == 0){
		status = 0;
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
					KXTF9-SPECIFIC FUNCTIONS
==================================================================================================*/
/*==================================================================================================
FUNCTION: 		KXTF9_enable_tap_detection
DESCRIPTION:    	This function enables the tap detection function. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Tap detection is enabled
==================================================================================================*/
int KXTF9_enable_tap_detection(void)
{
	char ctlreg_1 = 0;
	int status = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &ctlreg_1, 1) == 0){
		SET_REG_BIT(ctlreg_1, CTRL_REG1_TDTE); /* set TDTE bit to enable tap function */
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG1, ctlreg_1);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_disable_tap_detection
DESCRIPTION:    	This function disables the tap detection function. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Tap detection is disabled
==================================================================================================*/
int KXTF9_disable_tap_detection(void)
{
	char ctlreg_1 = 0;
	int status = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &ctlreg_1, 1) == 0){
		UNSET_REG_BIT(ctlreg_1, CTRL_REG1_TDTE); /* unset the TDTE bit to disable tap function */
		KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG1, ctlreg_1);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_read_single_tap_status
DESCRIPTION:    	This function reads INT_SRC_REG2 to determine whether a single tap event
			occurred. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = single tap occurred; 1 = single tap did not occur
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	None
==================================================================================================*/
int KXTF9_read_single_tap_status(void)
{
	int single_tap; 
	char src_reg2;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_SRC_REG2, &src_reg2, 1) == 0){
		if((src_reg2 & 0x0C) == 0x04){
			single_tap = 0;
		}
		else	single_tap = 1;
	}
	else	single_tap = 1;
	return single_tap;
}
/*==================================================================================================
FUNCTION: 		KXTF9_read_double_tap_status
DESCRIPTION:    	This function reads INT_SRC_REG2 to determine whether a double tap event
			occurred.
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = double tap occurred; 1 = double tap did not occur
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	None
==================================================================================================*/
int KXTF9_read_double_tap_status(void)
{
	int double_tap; 
	char src_reg2;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_SRC_REG2, &src_reg2, 1) == 0){
		if((src_reg2 & 0x0C) == 0x08){
			double_tap = 0;
		}
		else	double_tap = 1;
	}
	else	double_tap = 1;
	return double_tap;
}
/*==================================================================================================
FUNCTION: 		KXTF9_set_odr_tilt
DESCRIPTION:    	This function sets the ODR frequency for the tilt position function. 
ARGUMENTS PASSED:   	frequency variable; 1, 6, 12, or 50
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	ODR is set for tilt function according to frequency
==================================================================================================*/
int KXTF9_set_odr_tilt(int frequency)
{
	char ctlreg_3 = 0;
	if (device == 0){	//KXTE9
		// CTRL_REG1's initial output data rate ???
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG3, &ctlreg_3, 1) != 0){
		return 1;
	}
	switch (frequency){
	case 1:		/* set all ODR's to 1.6Hz */
		UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OTPA);
		UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OTPB);
		break;
	case 6:		/* set all ODR's to 6.3Hz */
		UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OTPA);
		SET_REG_BIT(ctlreg_3, CTRL_REG3_OTPB);
		break;
	case 12:	/* set all ODR's to 12.5Hz */
		SET_REG_BIT(ctlreg_3, CTRL_REG3_OTPA);
		UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OTPB);
		break;
	case 50:	/* set all ODR's to 50Hz */
		SET_REG_BIT(ctlreg_3, CTRL_REG3_OTPA);
		SET_REG_BIT(ctlreg_3, CTRL_REG3_OTPB);
		break;
	default:
		return 1;
	}
	KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG3, ctlreg_3);
	return 0;
}
/*==================================================================================================
FUNCTION: 		KXTF9_set_G_range
DESCRIPTION:    	This function sets the accelerometer G range. 
ARGUMENTS PASSED:   	range variable; 2, 4, or 8
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	G range is set according to range
==================================================================================================*/
int KXTF9_set_G_range(int range)
{
	char ctlreg_1 = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &ctlreg_1, 1) != 0){
		return 1;
	}
	switch (range){
	case 2:		/* set G-range to 2g */
		UNSET_REG_BIT(ctlreg_1, CTRL_REG1_GSEL1);
		UNSET_REG_BIT(ctlreg_1, CTRL_REG1_GSEL0);
		break;
	case 4:		/* set G-range to 4g */
		UNSET_REG_BIT(ctlreg_1, CTRL_REG1_GSEL1);
		SET_REG_BIT(ctlreg_1, CTRL_REG1_GSEL0);
		break;
	case 8:		/* set G-range to 8g */
		SET_REG_BIT(ctlreg_1, CTRL_REG1_GSEL1);
		UNSET_REG_BIT(ctlreg_1, CTRL_REG1_GSEL0);
		break;
	default:
		return 1;
	}
	KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG1, ctlreg_1);
	return 0;
}
/*==================================================================================================
FUNCTION: 		KXTF9_read_HPF_cnt
DESCRIPTION:    	This function reads the high pass filtered number of counts on the X, Y, 
			and Z axes. 
ARGUMENTS PASSED:   	x, y, and z pointers
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	x, y, and z are assigned
==================================================================================================*/
int KXTF9_read_HPF_cnt(int* x, int* y, int* z)
{
	int status, x_sign, y_sign, z_sign;
	char Res = 0;	
	char xyz[6] = {0, 0, 0, 0, 0, 0};
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &Res, 1) == 0){
			Res = Res & 0x40;
			switch(Res){
				case 0x00:	//low-resolution state
					if ((status = KIONIX_ACCEL_read_bytes(KXTF9_I2C_XOUT_HPF_L, xyz, 6)) == 0){
						*x = ((int)xyz[1]);
						x_sign = *x >> 7;	//1 = negative; 0 = positive
						if (x_sign == 1){
							*x = ((~(*x) + 0x01) & 0x0FF);
							*x = -(*x);
						}
						*y = ((int)xyz[3]);
						y_sign = *y >> 7;	//1 = negative; 0 = positive
						if (y_sign == 1){
							*y = ((~(*y) + 0x01) & 0x0FF);	//2's complement
							*y = -(*y);
						}
						*z = ((int)xyz[5]);
						z_sign = *z >> 7;	//1 = negative; 0 = positive
						if (z_sign == 1){
							*z = ((~(*z) + 0x01) & 0x0FF);	//2's complement
							*z = -(*z);						
						}
					}
					break;
				case 0x40:	//high-resolution state
					if ((status = KIONIX_ACCEL_read_bytes(KXTF9_I2C_XOUT_HPF_L, xyz, 6)) == 0){
						*x = ((int)xyz[0]) >> 4;
						*x = *x + (((int)xyz[1]) << 4);
						x_sign = *x >> 11; 	//1 = negative; 0 = positive
						if (x_sign == 1){
							*x = ((~(*x) + 0x01) & 0x0FFF);	//2's complement
							*x = -(*x);
						}
						*y = ((int)xyz[2]) >> 4;
						*y = *y + (((int)xyz[3]) << 4);
						y_sign = *y >> 11; 	//1 = negative; 0 = positive
						if (y_sign == 1){
							*y = ((~(*y) + 0x01) & 0x0FFF);	//2's complement
							*y = -(*y);
						}
						*z = ((int)xyz[4]) >> 4;
						*z = *z + (((int)xyz[5]) << 4);
						z_sign = *z >> 11; 	//1 = negative; 0 = positive
						if (z_sign == 1){
							*z = ((~(*z) + 0x01) & 0x0FFF);	//2's complement
							*z = -(*z);
						}
					}
					break;
			}		
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_read_HPF_g
DESCRIPTION:    	This function reads the G(gravity force) values on the X, Y, and Z axes.
			The units used are milli-g's, or 1/1000*G. 
ARGUMENTS PASSED:   	gx, gy, and gz pointers
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	gx, gy, and gz are assigned
==================================================================================================*/
int KXTF9_read_HPF_g(int* gx, int* gy, int* gz)
{
	int status;
	int x,y,z;
	int x_sign, y_sign, z_sign;
	int sensitivity;
	char xyz[6] = {0, 0, 0, 0, 0, 0};
	char Res = 0;
	char G_range = 0;
	int range = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	//determine if in the low resolution or high resolution state
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &Res, 1) == 0){
		if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &G_range, 1) == 0){
			G_range = G_range & 0x18;
			G_range = G_range >> 3;
			switch(G_range){
				case 0:
					range = 2;
					break;
				case 1:
					range = 4;
					break;
				case 2:
					range = 8;
					break;
				default:
					break;
			}
			Res = Res & 0x40; 
			switch(Res){
				case 0x00:	//low-resolution state
					if ((status = KIONIX_ACCEL_read_bytes(KXTF9_I2C_XOUT_HPF_L, xyz, 6)) == 0){
						x = ((int)xyz[1]);
						x_sign = x >> 7;	//1 = negative; 0 = positive
						if (x_sign == 1){
							x = ((~(x) + 0x01) & 0x0FF);
							x = -(x);
						}
						y = ((int)xyz[3]);
						y_sign = y >> 7;	//1 = negative; 0 = positive
						if (y_sign == 1){
							y = ((~(y) + 0x01) & 0x0FF);	//2's complement
							y = -(y);
						}
						z = ((int)xyz[5]);
						z_sign = z >> 7;	//1 = negative; 0 = positive
						if (z_sign == 1){
							z = ((~(z) + 0x01) & 0x0FF);	//2's complement
							z = -(z);						
						}						
						sensitivity = (256)/(2*range);
						/* calculate milli-G's */
						*gx = 1000 * (x) / sensitivity; 
						*gy = 1000 * (y) / sensitivity; 
						*gz = 1000 * (z) / sensitivity;
					}
					break;
				case 0x40:	//high-resolution state
					if ((status = KIONIX_ACCEL_read_bytes(KXTF9_I2C_XOUT_HPF_L, xyz, 6)) == 0){
						x = ((int)xyz[0]) >> 4;
						x = x + (((int)xyz[1]) << 4);
						x_sign = x >> 11; 	//1 = negative; 0 = positive
						if (x_sign == 1){
							x = ((~(x) + 0x01) & 0x0FFF);	//2's complement
							x = -(x);
						}
						y = ((int)xyz[2]) >> 4;
						y = y + (((int)xyz[3]) << 4);
						y_sign = y >> 11; 	//1 = negative; 0 = positive
						if (y_sign == 1){
							y = ((~(y) + 0x01) & 0x0FFF);	//2's complement
							y = -(y);
						}
						z = ((int)xyz[4]) >> 4;
						z = z + (((int)xyz[5]) << 4);
						z_sign = z >> 11; 	//1 = negative; 0 = positive
						if (z_sign == 1){
							z = ((~(z) + 0x01) & 0x0FFF);	//2's complement
							z = -(z);
						}
						sensitivity = (4096)/(2*range);
						/* calculate milli-G's */
						*gx = 1000 * (x) / sensitivity; 
						*gy = 1000 * (y) / sensitivity; 
						*gz = 1000 * (z) / sensitivity;
					}
					break;
				default:
					break;
			}
		}
		else	status = 1;
	}
	else status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_read_current_odr_tilt
DESCRIPTION:    	This function reads the current ODR of the tilt function. 
ARGUMENTS PASSED:   	ODR_rate_tilt pointer
RETURN VALUE:   	0 = ODR set correctly; 1 = ODR invalid
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	ODR_rate_tilt is assigned
==================================================================================================*/
int KXTF9_read_current_odr_tilt(double* ODR_rate_tilt)
{
	int status;
	char ctrl_reg;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG3, &ctrl_reg, 1) == 0){
		ctrl_reg &= 0x60;
		ctrl_reg >>= 5;
		switch (ctrl_reg){
		case 0:
			*ODR_rate_tilt = 1.6;
			status = 0;
			break;
		case 1:
			*ODR_rate_tilt = 6.3;
			status = 0;
			break;
		case 2:
			*ODR_rate_tilt = 12.5;
			status = 0;
			break;
		case 3:
			*ODR_rate_tilt = 50;
			status = 0;
			break;
		default:
			status = 1;
			break;
		}
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_read_current_odr_tap
DESCRIPTION:    	This function reads the current ODR of the tap double tap function. 
ARGUMENTS PASSED:   	ODR_rate_tap pointer
RETURN VALUE:   	0 = ODR set correctly; 1 = ODR invalid
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	ODR_rate_tap is assigned
==================================================================================================*/
int KXTF9_read_current_odr_tap(double* ODR_rate_tap)
{
	int status;
	char ctrl_reg;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG3, &ctrl_reg, 1) == 0){
		ctrl_reg &= 0x0C;
		ctrl_reg >>= 2;
		switch (ctrl_reg){
		case 0:
			*ODR_rate_tap = 50;
			status = 0;
			break;
		case 1:
			*ODR_rate_tap = 100;
			status = 0;
			break;
		case 2:
			*ODR_rate_tap = 200;
			status = 0;
			break;
		case 3:
			*ODR_rate_tap = 400;
			status = 0;
			break;
		default:
			status = 1;
			break;
		}
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_read_tap_direction
DESCRIPTION:    	This function reads INT_SRC_REG1 to determine which axis and in which direction
			a tap or double tap event occurred. 
ARGUMENTS PASSED:   	int_src_reg1 pointer
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	int_src_reg1 is assigned
==================================================================================================*/
int KXTF9_read_tap_direction(char* int_src_reg1)
{
	int status;
	if (device == 0){	//KXTE9
		return 1;
	}
	status = KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_SRC_REG1, int_src_reg1, 1);
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_int_alt_disable
DESCRIPTION:    	This function disables the alternate unlatched response for the physical 
			interrupt pin. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Alternate unlatched response for physical interrupt disabled
==================================================================================================*/
int KXTF9_int_alt_disable(void)
{
	char int_ctrl_reg1 = 0;
	int status = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_CTRL_REG1, &int_ctrl_reg1, 1) == 0){
		UNSET_REG_BIT(int_ctrl_reg1, KXTF9_INT_CTRL_REG1_ULMB);
		KIONIX_ACCEL_write_byte(KXTF9_I2C_INT_CTRL_REG1, int_ctrl_reg1);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_int_alt_enable
DESCRIPTION:    	This function enables the alternate unlatched response for the physical 
			interrupt pin. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Alternate unlatched response for physical interrupt enabled
==================================================================================================*/
int KXTF9_int_alt_enable(void)
{
	char int_ctrl_reg1 = 0;
	int status = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_CTRL_REG1, &int_ctrl_reg1, 1) == 0){
		SET_REG_BIT(int_ctrl_reg1, KXTF9_INT_CTRL_REG1_ULMB);
		KIONIX_ACCEL_write_byte(KXTF9_I2C_INT_CTRL_REG1, int_ctrl_reg1);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tdt_timer
DESCRIPTION:    	This function defines the minimum separation between the first and second
			taps in a double tap event. 
ARGUMENTS PASSED:   	tdt_timer; 0-255
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Double tap minimum separation set according to tdt_timer
IMPORTANT NOTES:   	Default: 0.3s (0x78h)
==================================================================================================*/
int KXTF9_tdt_timer(int tdt_timer)
{
	int status;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_write_byte(KXTF9_I2C_TDT_TIMER, tdt_timer) == 0){
		status = 0;
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tdt_h_thresh
DESCRIPTION:    	This function defines the upper limit for the jerk threshold. 
ARGUMENTS PASSED:   	tdt_h_thresh; 0-255
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Upper tap threshold set according to tdt_h_thresh
IMPORTANT NOTES:   	Default: 14j (0xB6h)
==================================================================================================*/
int KXTF9_tdt_h_thresh(int tdt_h_thresh)
{
	int status;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_write_byte(KXTF9_I2C_TDT_H_THRESH, tdt_h_thresh) == 0){
		status = 0;
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tdt_l_thresh
DESCRIPTION:    	This function defines the lower limit for the jerk threshold. 
ARGUMENTS PASSED:   	tdt_l_thresh; 0-255
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Lower tap threshold set according to tdt_l_thresh
IMPORTANT NOTES:   	Default: 1j (0x1Ah)
==================================================================================================*/
int KXTF9_tdt_l_thresh(int tdt_l_thresh)
{
	int status;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_write_byte(KXTF9_I2C_TDT_L_THRESH, tdt_l_thresh) == 0){
		status = 0;
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tdt_tap_timer
DESCRIPTION:    	This function defines the minimum and maximum pulse width for the tap event. 
ARGUMENTS PASSED:   	tdt_tap_timer; 0-255
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Tap timer set according to tdt_tap_timer
IMPORTANT NOTES:   	Default: 0.005s lower limit, 0.05s upper limit (0xA2h)
==================================================================================================*/
int KXTF9_tdt_tap_timer(int tdt_tap_timer)
{
	int status;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_write_byte(KXTF9_I2C_TDT_TAP_TIMER, tdt_tap_timer) == 0){
		status = 0;
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tdt_total_timer
DESCRIPTION:    	This function defines the amount of time that two taps in a double tap event 
			can be avove the PI threshold. 
ARGUMENTS PASSED:   	tdt_total_timer; 0-255
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Total timer set according to tdt_total_timer
IMPORTANT NOTES:   	Default: 0.09s (0x24h)
==================================================================================================*/
int KXTF9_tdt_total_timer(int tdt_total_timer)
{
	int status;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_write_byte(KXTF9_I2C_TDT_TOTAL_TIMER, tdt_total_timer) == 0){
		status = 0;
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tdt_latency_timer
DESCRIPTION:    	This function defines the total amount of time that the tap algorithm will 
			count samples that are above the PI threshold. 
ARGUMENTS PASSED:   	tdt_latency_timer; 0-255
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Latency timer set according to tdt_latency_timer
IMPORTANT NOTES:   	Default: 0.1s (0x28h)
==================================================================================================*/
int KXTF9_tdt_latency_timer(int tdt_latency_timer)
{
	int status;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_write_byte(KXTF9_I2C_TDT_LATENCY_TIMER, tdt_latency_timer) == 0){
		status = 0;
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tdt_window_timer
DESCRIPTION:    	This function defines the time window for the entire tap event, 
			single or double, to occur. 
ARGUMENTS PASSED:   	tdt_window_timer; 0-255
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Window timer set according to tdt_window_timer
IMPORTANT NOTES:   	Default: 0.4s (0xA0h)
==================================================================================================*/
int KXTF9_tdt_window_timer(int tdt_window_timer)
{
	int status;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_write_byte(KXTF9_I2C_TDT_WINDOW_TIMER, tdt_window_timer) == 0){
		status = 0;
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tap_mask_TFU
DESCRIPTION:    	This function masks Z+ (face up) tap. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Z+ tap masked
==================================================================================================*/
int KXTF9_tap_mask_TFU(void)
{
	char ctrl_reg3 = 0;
	int status = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_CTRL_REG3, &ctrl_reg3, 1) == 0){
		SET_REG_BIT(ctrl_reg3, INT_CTRL_REG3_TFUM);
		KIONIX_ACCEL_write_byte(KXTF9_I2C_INT_CTRL_REG3, ctrl_reg3);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tap_unmask_TFU
DESCRIPTION:    	This function unmasks Z+ (face up) tap. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Z+ tap unmasked
==================================================================================================*/
int KXTF9_tap_unmask_TFU(void)
{
	char ctrl_reg3 = 0;
	int status = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_CTRL_REG3, &ctrl_reg3, 1) == 0){
		UNSET_REG_BIT(ctrl_reg3, INT_CTRL_REG3_TFUM);
		KIONIX_ACCEL_write_byte(KXTF9_I2C_INT_CTRL_REG3, ctrl_reg3);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tap_mask_TFD
DESCRIPTION:    	This function masks Z- (face down) tap. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Z- tap masked
==================================================================================================*/
int KXTF9_tap_mask_TFD(void)
{
	char ctrl_reg3 = 0;
	int status = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_CTRL_REG3, &ctrl_reg3, 1) == 0){
		SET_REG_BIT(ctrl_reg3, INT_CTRL_REG3_TFDM);
		KIONIX_ACCEL_write_byte(KXTF9_I2C_INT_CTRL_REG3, ctrl_reg3);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tap_unmask_TFD
DESCRIPTION:    	This function unmasks Z- (face down) tap. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Z- tap unmasked
==================================================================================================*/
int KXTF9_tap_unmask_TFD(void)
{
	char ctrl_reg3 = 0;
	int status = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_CTRL_REG3, &ctrl_reg3, 1) == 0){
		UNSET_REG_BIT(ctrl_reg3, INT_CTRL_REG3_TFDM);
		KIONIX_ACCEL_write_byte(KXTF9_I2C_INT_CTRL_REG3, ctrl_reg3);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tap_mask_TUP
DESCRIPTION:    	This function masks Y+ (up) tap. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Y+ tap masked
==================================================================================================*/
int KXTF9_tap_mask_TUP(void)
{
	char ctrl_reg3 = 0;
	int status = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_CTRL_REG3, &ctrl_reg3, 1) == 0){
		SET_REG_BIT(ctrl_reg3, INT_CTRL_REG3_TUPM);
		KIONIX_ACCEL_write_byte(KXTF9_I2C_INT_CTRL_REG3, ctrl_reg3);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tap_unmask_TUP
DESCRIPTION:    	This function unmasks Y+ (up) tap. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Y+ tap unmasked
==================================================================================================*/
int KXTF9_tap_unmask_TUP(void)
{
	char ctrl_reg3 = 0;
	int status = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_CTRL_REG3, &ctrl_reg3, 1) == 0){
		UNSET_REG_BIT(ctrl_reg3, INT_CTRL_REG3_TUPM);
		KIONIX_ACCEL_write_byte(KXTF9_I2C_INT_CTRL_REG3, ctrl_reg3);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tap_mask_TDO
DESCRIPTION:    	This function masks Y- (down) tap. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Y- tap masked
==================================================================================================*/
int KXTF9_tap_mask_TDO(void)
{
	char ctrl_reg3 = 0;
	int status = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_CTRL_REG3, &ctrl_reg3, 1) == 0){
		SET_REG_BIT(ctrl_reg3, INT_CTRL_REG3_TDOM);
		KIONIX_ACCEL_write_byte(KXTF9_I2C_INT_CTRL_REG3, ctrl_reg3);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tap_unmask_TDO
DESCRIPTION:    	This function unmasks Y- (down) tap. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Y- tap unmasked
==================================================================================================*/
int KXTF9_tap_unmask_TDO(void)
{
	char ctrl_reg3 = 0;
	int status = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_CTRL_REG3, &ctrl_reg3, 1) == 0){
		UNSET_REG_BIT(ctrl_reg3, INT_CTRL_REG3_TDOM);
		KIONIX_ACCEL_write_byte(KXTF9_I2C_INT_CTRL_REG3, ctrl_reg3);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tap_mask_TRI
DESCRIPTION:    	This function masks X+ (right) tap. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	X+ tap masked
==================================================================================================*/
int KXTF9_tap_mask_TRI(void)
{
	char ctrl_reg3 = 0;
	int status = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_CTRL_REG3, &ctrl_reg3, 1) == 0){
		SET_REG_BIT(ctrl_reg3, INT_CTRL_REG3_TRIM);
		KIONIX_ACCEL_write_byte(KXTF9_I2C_INT_CTRL_REG3, ctrl_reg3);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tap_unmask_TRI
DESCRIPTION:    	This function unmasks X+ (right) tap. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	X+ tap unmasked
==================================================================================================*/
int KXTF9_tap_unmask_TRI(void)
{
	char ctrl_reg3 = 0;
	int status = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_CTRL_REG3, &ctrl_reg3, 1) == 0){
		UNSET_REG_BIT(ctrl_reg3, INT_CTRL_REG3_TRIM);
		KIONIX_ACCEL_write_byte(KXTF9_I2C_INT_CTRL_REG3, ctrl_reg3);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tap_mask_TLE
DESCRIPTION:    	This function masks X- (left) tap. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	X- tap masked
==================================================================================================*/
int KXTF9_tap_mask_TLE(void)
{
	char ctrl_reg3 = 0;
	int status = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_CTRL_REG3, &ctrl_reg3, 1) == 0){
		SET_REG_BIT(ctrl_reg3, INT_CTRL_REG3_TLEM);
		KIONIX_ACCEL_write_byte(KXTF9_I2C_INT_CTRL_REG3, ctrl_reg3);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tap_unmask_TLE
DESCRIPTION:    	This function unmasks X- (left) tap. 
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	X- tap unmasked
==================================================================================================*/
int KXTF9_tap_unmask_TLE(void)
{
	char ctrl_reg3 = 0;
	int status = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_INT_CTRL_REG3, &ctrl_reg3, 1) == 0){
		UNSET_REG_BIT(ctrl_reg3, INT_CTRL_REG3_TLEM);
		KIONIX_ACCEL_write_byte(KXTF9_I2C_INT_CTRL_REG3, ctrl_reg3);
	}
	else	status = 1;
	return status;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tap_mask_all_direction
DESCRIPTION:    	
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	All direction tap masked
==================================================================================================*/
int KXTF9_tap_mask_all_direction(void)
{
	int res=0;

	res |= KXTF9_tap_mask_TFU(); // Z+
	res |= KXTF9_tap_mask_TFD(); // Z-
	res |= KXTF9_tap_mask_TUP(); // Y+
	res |= KXTF9_tap_mask_TDO(); // Y-
	res |= KXTF9_tap_mask_TRI(); // X+
	res |= KXTF9_tap_mask_TLE(); // X-

	return res;
}
/*==================================================================================================
FUNCTION: 		KXTF9_tap_unmask_all_direction
DESCRIPTION:    	
ARGUMENTS PASSED:   	None
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	All direction tap unmasked
==================================================================================================*/
int KXTF9_tap_unmask_all_direction(void)
{
	int res=0;

	res |= KXTF9_tap_unmask_TFU();  // Z+
	res |= KXTF9_tap_unmask_TFD(); // Z-
	res |= KXTF9_tap_unmask_TUP(); // Y+
	res |= KXTF9_tap_unmask_TDO(); // Y-
	res |= KXTF9_tap_unmask_TRI(); // X+
	res |= KXTF9_tap_unmask_TLE(); // X-

	return res;
}
/*==================================================================================================
FUNCTION: 		KXTF9_set_odr_tap
DESCRIPTION:    	This function sets the ODR frequency for the Direction Tap function. 
ARGUMENTS PASSED:   	frequency variable; 50, 100, 200 or 400
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	ODR is set for Direction Tap function according to frequency
==================================================================================================*/
int KXTF9_set_odr_tap(int frequency)
{
	char ctlreg_3 = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG3, &ctlreg_3, 1) != 0){
		return 1;
	}
	switch (frequency){
	case 50:		/* set all ODR's to 50Hz */
		UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OTDTA);
		UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OTDTB);
		break;
	case 100:		/* set all ODR's to 100Hz */
		UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OTDTA);
		SET_REG_BIT(ctlreg_3, CTRL_REG3_OTDTB);
		break;
	case 200:	/* set all ODR's to 200Hz */
		SET_REG_BIT(ctlreg_3, CTRL_REG3_OTDTA);
		UNSET_REG_BIT(ctlreg_3, CTRL_REG3_OTDTB);
		break;
	case 400:	/* set all ODR's to 400Hz */
		SET_REG_BIT(ctlreg_3, CTRL_REG3_OTDTA);
		SET_REG_BIT(ctlreg_3, CTRL_REG3_OTDTB);
		break;
	default:
		return 1;
	}
	KIONIX_ACCEL_write_byte(KIONIX_ACCEL_I2C_CTRL_REG3, ctlreg_3);
	return 0;
}

/*==================================================================================================
FUNCTION: 		KXTF9_set_hpf_odr
DESCRIPTION:    	This function sets the high pass filter roll off frequency for the accelerometer outputs. 
ARGUMENTS PASSED:   	frequency, where roll_off_frequency = ODR/alpha; alpha = (50, 100, 200, 400)
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	High pass filter roll off is set according to frequency
==================================================================================================*/
int KXTF9_set_hpf_odr(int frequency)
{
	char data_ctrl_reg = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_DATA_CTRL_REG, &data_ctrl_reg, 1) != 0){
		return 1;
	}
	switch (frequency){
	case 50:	/* set tap ODR to 50Hz */
		UNSET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_HPFROA);
		UNSET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_HPFROB);
		break;
	case 100:	/* set tap ODR to 100 Hz */
		UNSET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_HPFROA);
		SET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_HPFROB);
		break;
	case 200:	/* set tap ODR to 200 Hz */
		SET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_HPFROA);
		UNSET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_HPFROB);
		break;
	case 400:	/* set tap ODR to 400 Hz */
		SET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_HPFROA);
		SET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_HPFROB);
		break;
	default:
		return 1;
	}
	KIONIX_ACCEL_write_byte(KXTF9_I2C_DATA_CTRL_REG, data_ctrl_reg);
	return 0;
}
/*==================================================================================================
FUNCTION: 		KXTF9_set_lpf_odr
DESCRIPTION:    	This function sets the low pass filter roll off for the accelerometer outputs. 
ARGUMENTS PASSED:   	roll off frequency (6, 12, 25, 50, 100, 200, 400)
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Low pass filter roll off is set according to frequency
==================================================================================================*/
int KXTF9_set_lpf_odr(int frequency)
{
	char data_ctrl_reg = 0;
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KXTF9_I2C_DATA_CTRL_REG, &data_ctrl_reg, 1) != 0){
		return 1;
	}
	switch (frequency){
	case 6:		/* set LPF rolloff to 6.25Hz */
		UNSET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAA);
		UNSET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAB);
		UNSET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAC);
		break;
	case 12:	/* set LPF rolloff to 12.5Hz */
		UNSET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAA);
		UNSET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAB);
		SET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAC);
		break;
	case 25:	/* set LPF rolloff to 25Hz */
		UNSET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAA);
		SET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAB);
		UNSET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAC);
		break;
	case 50:	/* set LPF rolloff to 50Hz */
		UNSET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAA);
		SET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAB);
		SET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAC);
		break;
	case 100:	/* set LPF rolloff to 100Hz */
		SET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAA);
		UNSET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAB);
		UNSET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAC);
		break;
	case 200:	/* set LPF rolloff to 200 Hz */
		SET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAA);
		UNSET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAB);
		SET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAC);
		break;
	case 400:	/* set LPF rolloff to 400 Hz */
		SET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAA);
		SET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAB);
		UNSET_REG_BIT(data_ctrl_reg, DATA_CTRL_REG_OSAC);
		break;
	default:
		return 1;
	}
	KIONIX_ACCEL_write_byte(KXTF9_I2C_DATA_CTRL_REG, data_ctrl_reg);
	return 0;
}
/*==================================================================================================
FUNCTION: 		KXTF9_set_resolution
DESCRIPTION:    	This function sets the resolution of the accelerometer outputs. 
ARGUMENTS PASSED:   	resolution (8-bit or 12-bit)
RETURN VALUE:   	0 = pass; 1 = fail
PRE-CONDITIONS:   	KIONIX_ACCEL_init() has been called
POST-CONDITIONS:   	Accelerometer resolution is set according to resolution
==================================================================================================*/
int KXTF9_set_resolution(int resolution)
{
	char ctrl_reg1 = 0;	
	if (device == 0){	//KXTE9
		return 1;
	}
	if (KIONIX_ACCEL_read_bytes(KIONIX_ACCEL_I2C_CTRL_REG1, &ctrl_reg1, 1) != 0){
		return 1;
	}
	switch (resolution){
	case 8:		/* set resolution to 8 bits */
		UNSET_REG_BIT(ctrl_reg1, CTRL_REG1_RES);		
		break;
	case 12:	/* set resolution to 12 bits */
		SET_REG_BIT(ctrl_reg1, CTRL_REG1_RES);
		break;
	default:
		return 1;
	}
	return 0;
}



//*************************************************************
//	KIONIX_SHAKE_Init
//		- initializes the shake detection engine
//	params
//		- shake_data* data = engine data
//	return
//		- none
//*************************************************************
void KIONIX_SHAKE_Init(shake_data* data)
{
    // init thresholds (convert ms to counts)
    data->maxDuration = CONFIG_DURATION / (1000 / CONFIG_RATE);
    data->maxDelay    = CONFIG_DELAY / (1000 / CONFIG_RATE);
    data->maxTimeout  = CONFIG_TIMEOUT / (1000 / CONFIG_RATE);

    // init timers
    data->cntDuration = 0;
    data->cntDelay    = 0;
    data->cntTimeout  = 0;

    // init counters
    data->cntShake    = 0;
    data->cntInvalid  = 0;
}


//*************************************************************
//	KIONIX_SHAKE_Update
//		- updates the shake detection engine
//      - maintains current shake count
//      - NOTE: must be called at a fixed interval
//	params
//		- shake_data* data = engine data
//      - long val = (x^2 + y^2 + z^2) / 1000
//	return
//		- long = current shake count
//*************************************************************
long KIONIX_SHAKE_Update(shake_data* data, long val)
{
    // possible shake...
    if (val > CONFIG_THRESHOLD)
    {
        // if the delay timer has started & 
        // not yet expired -> flag invalid
        if (data->cntDelay > 0)
            data->cntInvalid = 1;

        // inc duration
        data->cntDuration += 1;                
        
        // reset delay & timeout
        data->cntDelay   = data->maxDelay;
        data->cntTimeout = data->maxTimeout;
        
        return 0;
    }

    // shake detected...
    if ((data->cntDuration >= 2) && 
        (data->cntDuration <= data->maxDuration))
    {
        // add valid shakes to the count
        if (data->cntInvalid == 0)
            data->cntShake += 1;
    }    

    // flag valid & reset duration
    data->cntInvalid  = 0;    
    data->cntDuration = 0;

    // dec delay & timeout (if necessary)
    data->cntDelay   -= (data->cntDelay > 0 ? 1 : 0);
    data->cntTimeout -= (data->cntTimeout > 0 ? 1 : 0);
    
    // reset shake count after timeout
    if (data->cntTimeout <= 0)
    {
        data->cntShake   = 0;
        data->cntDelay   = 0;
        data->cntTimeout = 0;
    }

    return data->cntShake;
}


#ifdef __cplusplus
}
#endif