// Emacs style mode select -*- C++ -*- //----------------------------------------------------------------------------- // // $Id: am_map.c 71 2005-09-04 18:44:23Z fraggle $ // // Copyright(C) 1993-1996 Id Software, Inc. // Copyright(C) 2005 Simon Howard // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA // 02111-1307, USA. // // // $Log$ // Revision 1.5 2005/09/04 18:44:22 fraggle // shut up compiler warnings // // Revision 1.4 2005/08/04 18:42:15 fraggle // Silence compiler warnings // // Revision 1.3 2005/07/23 19:17:11 fraggle // Use ANSI-standard limit constants. Remove LINUX define. // // Revision 1.2 2005/07/23 16:44:55 fraggle // Update copyright to GNU GPL // // Revision 1.1.1.1 2005/07/23 16:20:44 fraggle // Initial import // // // DESCRIPTION: the automap code // //----------------------------------------------------------------------------- static const char rcsid[] = "$Id: am_map.c 71 2005-09-04 18:44:23Z fraggle $"; #include #include "z_zone.h" #include "doomdef.h" #include "st_stuff.h" #include "p_local.h" #include "w_wad.h" #include "m_cheat.h" #include "i_system.h" // Needs access to LFB. #include "v_video.h" // State. #include "doomstat.h" #include "r_state.h" // Data. #include "dstrings.h" #include "am_map.h" // For use if I do walls with outsides/insides #define REDS (256-5*16) #define REDRANGE 16 #define BLUES (256-4*16+8) #define BLUERANGE 8 #define GREENS (7*16) #define GREENRANGE 16 #define GRAYS (6*16) #define GRAYSRANGE 16 #define BROWNS (4*16) #define BROWNRANGE 16 #define YELLOWS (256-32+7) #define YELLOWRANGE 1 #define BLACK 0 #define WHITE (256-47) // Automap colors #define BACKGROUND BLACK #define YOURCOLORS WHITE #define YOURRANGE 0 #define WALLCOLORS REDS #define WALLRANGE REDRANGE #define TSWALLCOLORS GRAYS #define TSWALLRANGE GRAYSRANGE #define FDWALLCOLORS BROWNS #define FDWALLRANGE BROWNRANGE #define CDWALLCOLORS YELLOWS #define CDWALLRANGE YELLOWRANGE #define THINGCOLORS GREENS #define THINGRANGE GREENRANGE #define SECRETWALLCOLORS WALLCOLORS #define SECRETWALLRANGE WALLRANGE #define GRIDCOLORS (GRAYS + GRAYSRANGE/2) #define GRIDRANGE 0 #define XHAIRCOLORS GRAYS // drawing stuff #define FB 0 #define AM_PANDOWNKEY KEY_DOWNARROW #define AM_PANUPKEY KEY_UPARROW #define AM_PANRIGHTKEY KEY_RIGHTARROW #define AM_PANLEFTKEY KEY_LEFTARROW #define AM_ZOOMINKEY '=' #define AM_ZOOMOUTKEY '-' #define AM_STARTKEY KEY_TAB #define AM_ENDKEY KEY_TAB #define AM_GOBIGKEY '0' #define AM_FOLLOWKEY 'f' #define AM_GRIDKEY 'g' #define AM_MARKKEY 'm' #define AM_CLEARMARKKEY 'c' #define AM_NUMMARKPOINTS 10 // scale on entry #define INITSCALEMTOF (.2*FRACUNIT) // how much the automap moves window per tic in frame-buffer coordinates // moves 140 pixels in 1 second #define F_PANINC 4 // how much zoom-in per tic // goes to 2x in 1 second #define M_ZOOMIN ((int) (1.02*FRACUNIT)) // how much zoom-out per tic // pulls out to 0.5x in 1 second #define M_ZOOMOUT ((int) (FRACUNIT/1.02)) // translates between frame-buffer and map distances #define FTOM(x) FixedMul(((x)<<16),scale_ftom) #define MTOF(x) (FixedMul((x),scale_mtof)>>16) // translates between frame-buffer and map coordinates #define CXMTOF(x) (f_x + MTOF((x)-m_x)) #define CYMTOF(y) (f_y + (f_h - MTOF((y)-m_y))) // the following is crap #define LINE_NEVERSEE ML_DONTDRAW typedef struct { int x, y; } fpoint_t; typedef struct { fpoint_t a, b; } fline_t; typedef struct { fixed_t x,y; } mpoint_t; typedef struct { mpoint_t a, b; } mline_t; typedef struct { fixed_t slp, islp; } islope_t; // // The vector graphics for the automap. // A line drawing of the player pointing right, // starting from the middle. // #define R ((8*PLAYERRADIUS)/7) mline_t player_arrow[] = { { { -R+R/8, 0 }, { R, 0 } }, // ----- { { R, 0 }, { R-R/2, R/4 } }, // -----> { { R, 0 }, { R-R/2, -R/4 } }, { { -R+R/8, 0 }, { -R-R/8, R/4 } }, // >----> { { -R+R/8, 0 }, { -R-R/8, -R/4 } }, { { -R+3*R/8, 0 }, { -R+R/8, R/4 } }, // >>---> { { -R+3*R/8, 0 }, { -R+R/8, -R/4 } } }; #undef R #define NUMPLYRLINES (sizeof(player_arrow)/sizeof(mline_t)) #define R ((8*PLAYERRADIUS)/7) mline_t cheat_player_arrow[] = { { { -R+R/8, 0 }, { R, 0 } }, // ----- { { R, 0 }, { R-R/2, R/6 } }, // -----> { { R, 0 }, { R-R/2, -R/6 } }, { { -R+R/8, 0 }, { -R-R/8, R/6 } }, // >-----> { { -R+R/8, 0 }, { -R-R/8, -R/6 } }, { { -R+3*R/8, 0 }, { -R+R/8, R/6 } }, // >>-----> { { -R+3*R/8, 0 }, { -R+R/8, -R/6 } }, { { -R/2, 0 }, { -R/2, -R/6 } }, // >>-d---> { { -R/2, -R/6 }, { -R/2+R/6, -R/6 } }, { { -R/2+R/6, -R/6 }, { -R/2+R/6, R/4 } }, { { -R/6, 0 }, { -R/6, -R/6 } }, // >>-dd--> { { -R/6, -R/6 }, { 0, -R/6 } }, { { 0, -R/6 }, { 0, R/4 } }, { { R/6, R/4 }, { R/6, -R/7 } }, // >>-ddt-> { { R/6, -R/7 }, { R/6+R/32, -R/7-R/32 } }, { { R/6+R/32, -R/7-R/32 }, { R/6+R/10, -R/7 } } }; #undef R #define NUMCHEATPLYRLINES (sizeof(cheat_player_arrow)/sizeof(mline_t)) #define R (FRACUNIT) mline_t triangle_guy[] = { { { -.867*R, -.5*R }, { .867*R, -.5*R } }, { { .867*R, -.5*R } , { 0, R } }, { { 0, R }, { -.867*R, -.5*R } } }; #undef R #define NUMTRIANGLEGUYLINES (sizeof(triangle_guy)/sizeof(mline_t)) #define R (FRACUNIT) mline_t thintriangle_guy[] = { { { -.5*R, -.7*R }, { R, 0 } }, { { R, 0 }, { -.5*R, .7*R } }, { { -.5*R, .7*R }, { -.5*R, -.7*R } } }; #undef R #define NUMTHINTRIANGLEGUYLINES (sizeof(thintriangle_guy)/sizeof(mline_t)) static int cheating = 0; static int grid = 0; static int leveljuststarted = 1; // kluge until AM_LevelInit() is called boolean automapactive = false; static int finit_width = SCREENWIDTH; static int finit_height = SCREENHEIGHT - 32; // location of window on screen static int f_x; static int f_y; // size of window on screen static int f_w; static int f_h; static int lightlev; // used for funky strobing effect static byte* fb; // pseudo-frame buffer static int amclock; static mpoint_t m_paninc; // how far the window pans each tic (map coords) static fixed_t mtof_zoommul; // how far the window zooms in each tic (map coords) static fixed_t ftom_zoommul; // how far the window zooms in each tic (fb coords) static fixed_t m_x, m_y; // LL x,y where the window is on the map (map coords) static fixed_t m_x2, m_y2; // UR x,y where the window is on the map (map coords) // // width/height of window on map (map coords) // static fixed_t m_w; static fixed_t m_h; // based on level size static fixed_t min_x; static fixed_t min_y; static fixed_t max_x; static fixed_t max_y; static fixed_t max_w; // max_x-min_x, static fixed_t max_h; // max_y-min_y // based on player size static fixed_t min_w; static fixed_t min_h; static fixed_t min_scale_mtof; // used to tell when to stop zooming out static fixed_t max_scale_mtof; // used to tell when to stop zooming in // old stuff for recovery later static fixed_t old_m_w, old_m_h; static fixed_t old_m_x, old_m_y; // old location used by the Follower routine static mpoint_t f_oldloc; // used by MTOF to scale from map-to-frame-buffer coords static fixed_t scale_mtof = INITSCALEMTOF; // used by FTOM to scale from frame-buffer-to-map coords (=1/scale_mtof) static fixed_t scale_ftom; static player_t *plr; // the player represented by an arrow static patch_t *marknums[10]; // numbers used for marking by the automap static mpoint_t markpoints[AM_NUMMARKPOINTS]; // where the points are static int markpointnum = 0; // next point to be assigned static int followplayer = 1; // specifies whether to follow the player around static unsigned char cheat_amap_seq[] = { 0xb2, 0x26, 0x26, 0x2e, 0xff }; static cheatseq_t cheat_amap = { cheat_amap_seq, 0 }; static boolean stopped = true; extern boolean viewactive; //extern byte screens[][SCREENWIDTH*SCREENHEIGHT]; void V_MarkRect ( int x, int y, int width, int height ); // Calculates the slope and slope according to the x-axis of a line // segment in map coordinates (with the upright y-axis n' all) so // that it can be used with the brain-dead drawing stuff. void AM_getIslope ( mline_t* ml, islope_t* is ) { int dx, dy; dy = ml->a.y - ml->b.y; dx = ml->b.x - ml->a.x; if (!dy) is->islp = (dx<0?-INT_MAX:INT_MAX); else is->islp = FixedDiv(dx, dy); if (!dx) is->slp = (dy<0?-INT_MAX:INT_MAX); else is->slp = FixedDiv(dy, dx); } // // // void AM_activateNewScale(void) { m_x += m_w/2; m_y += m_h/2; m_w = FTOM(f_w); m_h = FTOM(f_h); m_x -= m_w/2; m_y -= m_h/2; m_x2 = m_x + m_w; m_y2 = m_y + m_h; } // // // void AM_saveScaleAndLoc(void) { old_m_x = m_x; old_m_y = m_y; old_m_w = m_w; old_m_h = m_h; } // // // void AM_restoreScaleAndLoc(void) { m_w = old_m_w; m_h = old_m_h; if (!followplayer) { m_x = old_m_x; m_y = old_m_y; } else { m_x = plr->mo->x - m_w/2; m_y = plr->mo->y - m_h/2; } m_x2 = m_x + m_w; m_y2 = m_y + m_h; // Change the scaling multipliers scale_mtof = FixedDiv(f_w< max_x) max_x = vertexes[i].x; if (vertexes[i].y < min_y) min_y = vertexes[i].y; else if (vertexes[i].y > max_y) max_y = vertexes[i].y; } max_w = max_x - min_x; max_h = max_y - min_y; min_w = 2*PLAYERRADIUS; // const? never changed? min_h = 2*PLAYERRADIUS; a = FixedDiv(f_w< max_x) m_x = max_x - m_w/2; else if (m_x + m_w/2 < min_x) m_x = min_x - m_w/2; if (m_y + m_h/2 > max_y) m_y = max_y - m_h/2; else if (m_y + m_h/2 < min_y) m_y = min_y - m_h/2; m_x2 = m_x + m_w; m_y2 = m_y + m_h; } // // // void AM_initVariables(void) { int pnum; static event_t st_notify = { ev_keyup, AM_MSGENTERED }; automapactive = true; fb = screens[0]; f_oldloc.x = INT_MAX; amclock = 0; lightlev = 0; m_paninc.x = m_paninc.y = 0; ftom_zoommul = FRACUNIT; mtof_zoommul = FRACUNIT; m_w = FTOM(f_w); m_h = FTOM(f_h); // find player to center on initially if (!playeringame[pnum = consoleplayer]) for (pnum=0;pnummo->x - m_w/2; m_y = plr->mo->y - m_h/2; AM_changeWindowLoc(); // for saving & restoring old_m_x = m_x; old_m_y = m_y; old_m_w = m_w; old_m_h = m_h; // inform the status bar of the change ST_Responder(&st_notify); } // // // void AM_loadPics(void) { int i; char namebuf[9]; for (i=0;i<10;i++) { sprintf(namebuf, "AMMNUM%d", i); marknums[i] = W_CacheLumpName(namebuf, PU_STATIC); } } void AM_unloadPics(void) { int i; for (i=0;i<10;i++) Z_ChangeTag(marknums[i], PU_CACHE); } void AM_clearMarks(void) { int i; for (i=0;i max_scale_mtof) scale_mtof = min_scale_mtof; scale_ftom = FixedDiv(FRACUNIT, scale_mtof); } // // // void AM_Stop (void) { static event_t st_notify = { 0, ev_keyup, AM_MSGEXITED }; AM_unloadPics(); automapactive = false; ST_Responder(&st_notify); stopped = true; } // // // void AM_Start (void) { static int lastlevel = -1, lastepisode = -1; if (!stopped) AM_Stop(); stopped = false; if (lastlevel != gamemap || lastepisode != gameepisode) { AM_LevelInit(); lastlevel = gamemap; lastepisode = gameepisode; } AM_initVariables(); AM_loadPics(); } // // set the window scale to the maximum size // void AM_minOutWindowScale(void) { scale_mtof = min_scale_mtof; scale_ftom = FixedDiv(FRACUNIT, scale_mtof); AM_activateNewScale(); } // // set the window scale to the minimum size // void AM_maxOutWindowScale(void) { scale_mtof = max_scale_mtof; scale_ftom = FixedDiv(FRACUNIT, scale_mtof); AM_activateNewScale(); } // // Handle events (user inputs) in automap mode // boolean AM_Responder ( event_t* ev ) { int rc; static int cheatstate=0; static int bigstate=0; static char buffer[20]; rc = false; if (!automapactive) { if (ev->type == ev_keydown && ev->data1 == AM_STARTKEY) { AM_Start (); viewactive = false; rc = true; } } else if (ev->type == ev_keydown) { rc = true; switch(ev->data1) { case AM_PANRIGHTKEY: // pan right if (!followplayer) m_paninc.x = FTOM(F_PANINC); else rc = false; break; case AM_PANLEFTKEY: // pan left if (!followplayer) m_paninc.x = -FTOM(F_PANINC); else rc = false; break; case AM_PANUPKEY: // pan up if (!followplayer) m_paninc.y = FTOM(F_PANINC); else rc = false; break; case AM_PANDOWNKEY: // pan down if (!followplayer) m_paninc.y = -FTOM(F_PANINC); else rc = false; break; case AM_ZOOMOUTKEY: // zoom out mtof_zoommul = M_ZOOMOUT; ftom_zoommul = M_ZOOMIN; break; case AM_ZOOMINKEY: // zoom in mtof_zoommul = M_ZOOMIN; ftom_zoommul = M_ZOOMOUT; break; case AM_ENDKEY: bigstate = 0; viewactive = true; AM_Stop (); break; case AM_GOBIGKEY: bigstate = !bigstate; if (bigstate) { AM_saveScaleAndLoc(); AM_minOutWindowScale(); } else AM_restoreScaleAndLoc(); break; case AM_FOLLOWKEY: followplayer = !followplayer; f_oldloc.x = INT_MAX; plr->message = followplayer ? AMSTR_FOLLOWON : AMSTR_FOLLOWOFF; break; case AM_GRIDKEY: grid = !grid; plr->message = grid ? AMSTR_GRIDON : AMSTR_GRIDOFF; break; case AM_MARKKEY: sprintf(buffer, "%s %d", AMSTR_MARKEDSPOT, markpointnum); plr->message = buffer; AM_addMark(); break; case AM_CLEARMARKKEY: AM_clearMarks(); plr->message = AMSTR_MARKSCLEARED; break; default: cheatstate=0; rc = false; } if (!deathmatch && cht_CheckCheat(&cheat_amap, ev->data1)) { rc = false; cheating = (cheating+1) % 3; } } else if (ev->type == ev_keyup) { rc = false; switch (ev->data1) { case AM_PANRIGHTKEY: if (!followplayer) m_paninc.x = 0; break; case AM_PANLEFTKEY: if (!followplayer) m_paninc.x = 0; break; case AM_PANUPKEY: if (!followplayer) m_paninc.y = 0; break; case AM_PANDOWNKEY: if (!followplayer) m_paninc.y = 0; break; case AM_ZOOMOUTKEY: case AM_ZOOMINKEY: mtof_zoommul = FRACUNIT; ftom_zoommul = FRACUNIT; break; } } return rc; } // // Zooming // void AM_changeWindowScale(void) { // Change the scaling multipliers scale_mtof = FixedMul(scale_mtof, mtof_zoommul); scale_ftom = FixedDiv(FRACUNIT, scale_mtof); if (scale_mtof < min_scale_mtof) AM_minOutWindowScale(); else if (scale_mtof > max_scale_mtof) AM_maxOutWindowScale(); else AM_activateNewScale(); } // // // void AM_doFollowPlayer(void) { if (f_oldloc.x != plr->mo->x || f_oldloc.y != plr->mo->y) { m_x = FTOM(MTOF(plr->mo->x)) - m_w/2; m_y = FTOM(MTOF(plr->mo->y)) - m_h/2; m_x2 = m_x + m_w; m_y2 = m_y + m_h; f_oldloc.x = plr->mo->x; f_oldloc.y = plr->mo->y; // m_x = FTOM(MTOF(plr->mo->x - m_w/2)); // m_y = FTOM(MTOF(plr->mo->y - m_h/2)); // m_x = plr->mo->x - m_w/2; // m_y = plr->mo->y - m_h/2; } } // // // void AM_updateLightLev(void) { static int nexttic = 0; //static int litelevels[] = { 0, 3, 5, 6, 6, 7, 7, 7 }; static int litelevels[] = { 0, 4, 7, 10, 12, 14, 15, 15 }; static int litelevelscnt = 0; // Change light level if (amclock>nexttic) { lightlev = litelevels[litelevelscnt++]; if (litelevelscnt == sizeof(litelevels)/sizeof(int)) litelevelscnt = 0; nexttic = amclock + 6 - (amclock % 6); } } // // Updates on Game Tick // void AM_Ticker (void) { if (!automapactive) return; amclock++; if (followplayer) AM_doFollowPlayer(); // Change the zoom if necessary if (ftom_zoommul != FRACUNIT) AM_changeWindowScale(); // Change x,y location if (m_paninc.x || m_paninc.y) AM_changeWindowLoc(); // Update light level // AM_updateLightLev(); } // // Clear automap frame buffer. // void AM_clearFB(int color) { memset(fb, color, f_w*f_h); } // // Automap clipping of lines. // // Based on Cohen-Sutherland clipping algorithm but with a slightly // faster reject and precalculated slopes. If the speed is needed, // use a hash algorithm to handle the common cases. // boolean AM_clipMline ( mline_t* ml, fline_t* fl ) { enum { LEFT =1, RIGHT =2, BOTTOM =4, TOP =8 }; register int outcode1 = 0; register int outcode2 = 0; register int outside; fpoint_t tmp; int dx; int dy; #define DOOUTCODE(oc, mx, my) \ (oc) = 0; \ if ((my) < 0) (oc) |= TOP; \ else if ((my) >= f_h) (oc) |= BOTTOM; \ if ((mx) < 0) (oc) |= LEFT; \ else if ((mx) >= f_w) (oc) |= RIGHT; // do trivial rejects and outcodes if (ml->a.y > m_y2) outcode1 = TOP; else if (ml->a.y < m_y) outcode1 = BOTTOM; if (ml->b.y > m_y2) outcode2 = TOP; else if (ml->b.y < m_y) outcode2 = BOTTOM; if (outcode1 & outcode2) return false; // trivially outside if (ml->a.x < m_x) outcode1 |= LEFT; else if (ml->a.x > m_x2) outcode1 |= RIGHT; if (ml->b.x < m_x) outcode2 |= LEFT; else if (ml->b.x > m_x2) outcode2 |= RIGHT; if (outcode1 & outcode2) return false; // trivially outside // transform to frame-buffer coordinates. fl->a.x = CXMTOF(ml->a.x); fl->a.y = CYMTOF(ml->a.y); fl->b.x = CXMTOF(ml->b.x); fl->b.y = CYMTOF(ml->b.y); DOOUTCODE(outcode1, fl->a.x, fl->a.y); DOOUTCODE(outcode2, fl->b.x, fl->b.y); if (outcode1 & outcode2) return false; while (outcode1 | outcode2) { // may be partially inside box // find an outside point if (outcode1) outside = outcode1; else outside = outcode2; // clip to each side if (outside & TOP) { dy = fl->a.y - fl->b.y; dx = fl->b.x - fl->a.x; tmp.x = fl->a.x + (dx*(fl->a.y))/dy; tmp.y = 0; } else if (outside & BOTTOM) { dy = fl->a.y - fl->b.y; dx = fl->b.x - fl->a.x; tmp.x = fl->a.x + (dx*(fl->a.y-f_h))/dy; tmp.y = f_h-1; } else if (outside & RIGHT) { dy = fl->b.y - fl->a.y; dx = fl->b.x - fl->a.x; tmp.y = fl->a.y + (dy*(f_w-1 - fl->a.x))/dx; tmp.x = f_w-1; } else if (outside & LEFT) { dy = fl->b.y - fl->a.y; dx = fl->b.x - fl->a.x; tmp.y = fl->a.y + (dy*(-fl->a.x))/dx; tmp.x = 0; } else { tmp.x = 0; tmp.y = 0; } if (outside == outcode1) { fl->a = tmp; DOOUTCODE(outcode1, fl->a.x, fl->a.y); } else { fl->b = tmp; DOOUTCODE(outcode2, fl->b.x, fl->b.y); } if (outcode1 & outcode2) return false; // trivially outside } return true; } #undef DOOUTCODE // // Classic Bresenham w/ whatever optimizations needed for speed // void AM_drawFline ( fline_t* fl, int color ) { register int x; register int y; register int dx; register int dy; register int sx; register int sy; register int ax; register int ay; register int d; static int fuck = 0; // For debugging only if ( fl->a.x < 0 || fl->a.x >= f_w || fl->a.y < 0 || fl->a.y >= f_h || fl->b.x < 0 || fl->b.x >= f_w || fl->b.y < 0 || fl->b.y >= f_h) { fprintf(stderr, "fuck %d \r", fuck++); return; } #define PUTDOT(xx,yy,cc) fb[(yy)*f_w+(xx)]=(cc) dx = fl->b.x - fl->a.x; ax = 2 * (dx<0 ? -dx : dx); sx = dx<0 ? -1 : 1; dy = fl->b.y - fl->a.y; ay = 2 * (dy<0 ? -dy : dy); sy = dy<0 ? -1 : 1; x = fl->a.x; y = fl->a.y; if (ax > ay) { d = ay - ax/2; while (1) { PUTDOT(x,y,color); if (x == fl->b.x) return; if (d>=0) { y += sy; d -= ax; } x += sx; d += ay; } } else { d = ax - ay/2; while (1) { PUTDOT(x, y, color); if (y == fl->b.y) return; if (d >= 0) { x += sx; d -= ay; } y += sy; d += ax; } } } // // Clip lines, draw visible part sof lines. // void AM_drawMline ( mline_t* ml, int color ) { static fline_t fl; if (AM_clipMline(ml, &fl)) AM_drawFline(&fl, color); // draws it on frame buffer using fb coords } // // Draws flat (floor/ceiling tile) aligned grid lines. // void AM_drawGrid(int color) { fixed_t x, y; fixed_t start, end; mline_t ml; // Figure out start of vertical gridlines start = m_x; if ((start-bmaporgx)%(MAPBLOCKUNITS<x; l.a.y = lines[i].v1->y; l.b.x = lines[i].v2->x; l.b.y = lines[i].v2->y; if (cheating || (lines[i].flags & ML_MAPPED)) { if ((lines[i].flags & LINE_NEVERSEE) && !cheating) continue; if (!lines[i].backsector) { AM_drawMline(&l, WALLCOLORS+lightlev); } else { if (lines[i].special == 39) { // teleporters AM_drawMline(&l, WALLCOLORS+WALLRANGE/2); } else if (lines[i].flags & ML_SECRET) // secret door { if (cheating) AM_drawMline(&l, SECRETWALLCOLORS + lightlev); else AM_drawMline(&l, WALLCOLORS+lightlev); } else if (lines[i].backsector->floorheight != lines[i].frontsector->floorheight) { AM_drawMline(&l, FDWALLCOLORS + lightlev); // floor level change } else if (lines[i].backsector->ceilingheight != lines[i].frontsector->ceilingheight) { AM_drawMline(&l, CDWALLCOLORS+lightlev); // ceiling level change } else if (cheating) { AM_drawMline(&l, TSWALLCOLORS+lightlev); } } } else if (plr->powers[pw_allmap]) { if (!(lines[i].flags & LINE_NEVERSEE)) AM_drawMline(&l, GRAYS+3); } } } // // Rotation in 2D. // Used to rotate player arrow line character. // void AM_rotate ( fixed_t* x, fixed_t* y, angle_t a ) { fixed_t tmpx; tmpx = FixedMul(*x,finecosine[a>>ANGLETOFINESHIFT]) - FixedMul(*y,finesine[a>>ANGLETOFINESHIFT]); *y = FixedMul(*x,finesine[a>>ANGLETOFINESHIFT]) + FixedMul(*y,finecosine[a>>ANGLETOFINESHIFT]); *x = tmpx; } void AM_drawLineCharacter ( mline_t* lineguy, int lineguylines, fixed_t scale, angle_t angle, int color, fixed_t x, fixed_t y ) { int i; mline_t l; for (i=0;imo->angle, WHITE, plr->mo->x, plr->mo->y); else AM_drawLineCharacter (player_arrow, NUMPLYRLINES, 0, plr->mo->angle, WHITE, plr->mo->x, plr->mo->y); return; } for (i=0;ipowers[pw_invisibility]) color = 246; // *close* to black else color = their_colors[their_color]; AM_drawLineCharacter (player_arrow, NUMPLYRLINES, 0, p->mo->angle, color, p->mo->x, p->mo->y); } } void AM_drawThings ( int colors, int colorrange) { int i; mobj_t* t; for (i=0;iangle, colors+lightlev, t->x, t->y); t = t->snext; } } } void AM_drawMarks(void) { int i, fx, fy, w, h; for (i=0;iwidth); // h = SHORT(marknums[i]->height); w = 5; // because something's wrong with the wad, i guess h = 6; // because something's wrong with the wad, i guess fx = CXMTOF(markpoints[i].x); fy = CYMTOF(markpoints[i].y); if (fx >= f_x && fx <= f_w - w && fy >= f_y && fy <= f_h - h) V_DrawPatch(fx, fy, FB, marknums[i]); } } } void AM_drawCrosshair(int color) { fb[(f_w*(f_h+1))/2] = color; // single point for now } void AM_Drawer (void) { if (!automapactive) return; AM_clearFB(BACKGROUND); if (grid) AM_drawGrid(GRIDCOLORS); AM_drawWalls(); AM_drawPlayers(); if (cheating==2) AM_drawThings(THINGCOLORS, THINGRANGE); AM_drawCrosshair(XHAIRCOLORS); AM_drawMarks(); V_MarkRect(f_x, f_y, f_w, f_h); }