/* * Copyright (C) 2013-2019 Free Software Foundation, Inc. * * This file is part of GNU lightning. * * GNU lightning is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU lightning is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public * License for more details. * * Authors: * Paulo Cesar Pereira de Andrade */ #if PROTO # define RND_CUR 0 # define RND_BIAS_NEAR 1 # define RND_NEAR 4 # define RND_ZERO 5 # define RND_POS_INF 6 # define RND_NEG_INF 7 /**************************************************************** * Floating Point Instructions * ****************************************************************/ /* CONVERT BFP TO HFP */ # define THDER(R1,R2) RRE_(0xB358,R1,R2) # define THDR(R1,R2) RRE_(0xB359,R1,R2) /* CONVERT HFP TO BFP */ # define TBEDR(R1,R2) RRE_(0xB350,R1,R2) # define TBDR(R1,R2) RRE_(0xB351,R1,R2) /* LOAD */ # define LER(R1,R2) RR_(0x38,R1,R2) # define LDR(R1,R2) RR_(0x28,R1,R2) # define LXR(R1,R2) RRE_(0xB365,R1,R2) # define LE(R1,D2,X2,B2) RX_(0x78,R1,X2,B2,D2) # define LD(R1,D2,X2,B2) RX_(0x68,R1,X2,B2,D2) # define LEY(R1,D2,X2,B2) RXY_(0xED,R1,X2,B2,D2,0x64) # define LDY(R1,D2,X2,B2) RXY_(0xED,R1,X2,B2,D2,0x65) /* LOAD ZERO */ # define LZER(R1) RRE_(0xB374,R1,0) # define LZDR(R1) RRE_(0xB375,R1,0) # define LZXR(R1) RRE_(0xB376,R1,0) /* STORE */ # define STE(R1,D2,X2,B2) RX_(0x70,R1,X2,B2,D2) # define STD(R1,D2,X2,B2) RX_(0x60,R1,X2,B2,D2) # define STEY(R1,D2,X2,B2) RXY_(0xED,R1,X2,B2,D2,0x66) # define STDY(R1,D2,X2,B2) RXY_(0xED,R1,X2,B2,D2,0x67) /**************************************************************** * Hexadecimal Floating Point Instructions * ****************************************************************/ /* ADD NORMALIZED */ # define AER(R1,R2) RR_(0x3A,R1,R2) # define ADR(R1,R2) RR_(0x2A,R1,R2) # define AXR(R1,R2) RR_(0x36,R1,R2) # define AE(R1,D2,X2,B2) RX_(0x7A,R1,X2,B2,D2) # define AD(R1,D2,X2,B2) RX_(0x6A,R1,X2,B2,D2) /* ADD UNNORMALIZED */ # define AUR(R1,R2) RR_(0x3E,R1,R2) # define AWR(R1,R2) RR_(0x2E,R1,R2) # define AU(R1,D2,X2,B2) RX_(0x7E,R1,X2,B2,D2) # define AW(R1,D2,X2,B2) RX_(0x6E,R1,X2,B2,D2) /* COMPARE */ # define CER(R1,R2) RR_(0x39,R1,R2) # define CDR(R1,R2) RR_(0x29,R1,R2) # define CXR(R1,R2) RRE_(0xB369,R1,R2) # define CE(R1,D2,X2,B2) RX_(0x79,R1,X2,B2,D2) # define CD(R1,D2,X2,B2) RX_(0x69,R1,X2,B2,D2) /* CONVERT FROM FIXED */ # define CEFR(R1,R2) RRE_(0xB3B4,R1,R2) # define CDFR(R1,R2) RRE_(0xB3B5,R1,R2) # define CXFR(R1,R2) RRE_(0xB3B6,R1,R2) # define CEGR(R1,R2) RRE_(0xB3C4,R1,R2) # define CDGR(R1,R2) RRE_(0xB3C5,R1,R2) # define CXGR(R1,R2) RRE_(0xB3C6,R1,R2) /* CONVERT TO FIXED */ # define CFER(R1,R2) RRE_(0xB3B8,R1,R2) # define CFDR(R1,R2) RRE_(0xB3B9,R1,R2) # define CFXR(R1,R2) RRE_(0xB3BA,R1,R2) # define CGER(R1,R2) RRE_(0xB3C8,R1,R2) # define CGDR(R1,R2) RRE_(0xB3C9,R1,R2) # define CGXR(R1,R2) RRE_(0xB3CA,R1,R2) /* DIVIDE */ # define DER(R1,R2) RR_(0x3D,R1,R2) # define DDR(R1,R2) RR_(0x2D,R1,R2) # define DXR(R1,R2) RRE_(0xB22D,R1,R2) # define DE(R1,D2,X2,B2) RX_(0x7D,R1,X2,B2,D2) # define DD(R1,D2,X2,B2) RX_(0x6D,R1,X2,B2,D2) /* HALVE */ # define HER(R1,R2) RR_(0x34,R1,R2) # define HDR(R1,R2) RR_(0x24,R1,R2) /* LOAD AND TEST */ # define LTER(R1,R2) RR_(0x32,R1,R2) # define LTDR(R1,R2) RR_(0x22,R1,R2) # define LTXR(R1,R2) RRE_(0xB362,R1,R2) /* LOAD COMPLEMENT */ # define LCER(R1,R2) RR_(0x33,R1,R2) # define LCDR(R1,R2) RR_(0x23,R1,R2) # define LCXR(R1,R2) RRE_(0xB363,R1,R2) /* LOAD FP INTEGER */ # define FIER(R1,R2) RRE_(0xB377,R1,R2) # define FIDR(R1,R2) RRE_(0xB37F,R1,R2) # define FIXR(R1,R2) RRE_(0xB367,R1,R2) /* LOAD LENGHTENED */ # define LDER(R1,R2) RRE_(0xB324,R1,R2) # define LXDR(R1,R2) RRE_(0xB325,R1,R2) # define LXER(R1,R2) RRE_(0xB326,R1,R2) # define LDE(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x24) # define LXD(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x25) # define LXE(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x26) /* LOAD NEGATIVE */ # define LNER(R1,R2) RR_(0x31,R1,R2) # define LNDR(R1,R2) RR_(0x21,R1,R2) # define LNXR(R1,R2) RRE_(0xB361,R1,R2) /* LOAD POSITIVE */ # define LPER(R1,R2) RR_(0x30,R1,R2) # define LPDR(R1,R2) RR_(0x20,R1,R2) # define LPXR(R1,R2) RRE_(0xB360,R1,R2) /* LOAD ROUNDED */ # define LEDR(R1,R2) RR_(0x35,R1,R2) # define LDXR(R1,R2) RR_(0x25,R1,R2) # define LRER(R1,R2) LEDR(R1,R2) # define LRDR(R1,R2) LDXR(R1,R2) # define LRXR(R1,R2) RRE_(0xB366,R1,R2) /* MULTIPLY */ # define MEER(R1,R2) RRE_(0xB337,R1,R2) # define MDR(R1,R2) RR_(0x2C,R1,R2) # define MXR(R1,R2) RR_(0x26,R1,R2) # define MDER(R1,R2) RR_(0x3C,R1,R2) # define MXDR(R1,R2) RR_(0x27,R1,R2) # define MER(R1,R2) MDER(R1,R2) # define MEE(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x37) # define MD(R1,D2,X2,B2) RX_(0x6C,R1,X2,B2,D2) # define MDE(R1,D2,X2,B2) RX_(0x7C,R1,X2,B2,D2) # define MXD(R1,D2,X2,B2) RX_(0x67,R1,X2,B2,D2) # define ME(R1,D2,X2,B2) MDE(R1,D2,X2,B2) /* MULTIPLY AND ADD */ # define MAER(R1,R3,R2) RRF_(0xB32E,R1,0,R3,R2) # define MADR(R1,R3,R2) RRF_(0xB33E,R1,0,R3,R2) # define MAE(R1,R3,D2,X2,B2) RXF_(0xED,R3,X2,B2,D2,R1,0x2E) # define MAD(R1,R3,D2,X2,B2) RXF_(0xED,R3,X2,B2,D2,R1,0x3E) /* MULTIPLY AND SUBTRACT */ # define MSER(R1,R3,R2) RRF_(0xB32F,R1,0,R3,R2) # define MSDR(R1,R3,R2) RRF_(0xB33F,R1,0,R3,R2) # define MSE(R1,R3,D2,X2,B2) RXF_(0xED,R3,X2,B2,D2,R1,0x2F) # define MSD(R1,R3,D2,X2,B2) RXF_(0xED,R3,X2,B2,D2,R1,0x3F) /* SQUARE ROOT */ # define SQER(R1,R2) RRE_(0xB245,R1,R2) # define SQDR(R1,R2) RRE_(0xB244,R1,R2) # define SQXR(R1,R2) RRE_(0xB336,R1,R2) # define SQE(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x34) # define SQD(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x35) /* SUBTRACT NORMALIZED */ # define SER(R1,R2) RR_(0x3B,R1,R2) # define SDR(R1,R2) RR_(0x2B,R1,R2) # define SXR(R1,R2) RR_(0x37,R1,R2) # define SE(R1,D2,X2,B2) RX_(0x7B,R1,X2,B2,D2) # define SD(R1,D2,X2,B2) RX_(0x6B,R1,X2,B2,D2) /* SUBTRACT UNNORMALIZED */ # define SUR(R1,R2) RR_(0x3F,R1,R2) # define SWR(R1,R2) RR_(0x2F,R1,R2) # define SU(R1,D2,X2,B2) RX_(0x7F,R1,X2,B2,D2) # define SW(R1,D2,X2,B2) RX_(0x6F,R1,X2,B2,D2) /**************************************************************** * Binary Floating Point Instructions * ****************************************************************/ /* ADD */ # define AEBR(R1,R2) RRE_(0xB30A,R1,R2) # define ADBR(R1,R2) RRE_(0xB31A,R1,R2) # define AXBR(R1,R2) RRE_(0xB34A,R1,R2) # define AEB(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x0A) # define ADB(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x1A) /* COMPARE */ # define CEBR(R1,R2) RRE_(0xB309,R1,R2) # define CDBR(R1,R2) RRE_(0xB319,R1,R2) # define CXBR(R1,R2) RRE_(0xB349,R1,R2) # define CEB(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x09) # define CDB(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x19) /* COMPARE AND SIGNAL */ # define KEBR(R1,R2) RRE_(0xB308,R1,R2) # define KDBR(R1,R2) RRE_(0xB318,R1,R2) # define KXBR(R1,R2) RRE_(0xB348,R1,R2) # define KEB(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x08) # define KDB(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x18) /* CONVERT FROM FIXED */ # define CEFBR(R1,R2) RRE_(0xB394,R1,R2) # define CDFBR(R1,R2) RRE_(0xB395,R1,R2) # define CXFBR(R1,R2) RRE_(0xB396,R1,R2) # define CEGBR(R1,R2) RRE_(0xB3A4,R1,R2) # define CDGBR(R1,R2) RRE_(0xB3A5,R1,R2) # define CXGBR(R1,R2) RRE_(0xB3A6,R1,R2) /* CONVERT TO FIXED */ # define CFEBR(R1,M3,R2) RRF_(0xB398,M3,0,R1,R2) # define CFDBR(R1,M3,R2) RRF_(0xB399,M3,0,R1,R2) # define CFXBR(R1,M3,R2) RRF_(0xB39A,M3,0,R1,R2) # define CGEBR(R1,M3,R2) RRF_(0xB3A8,M3,0,R1,R2) # define CGDBR(R1,M3,R2) RRF_(0xB3A9,M3,0,R1,R2) # define CGXBR(R1,M3,R2) RRF_(0xB3AA,M3,0,R1,R2) /* DIVIDE */ # define DEBR(R1,R2) RRE_(0xB30D,R1,R2) # define DDBR(R1,R2) RRE_(0xB31D,R1,R2) # define DXBR(R1,R2) RRE_(0xB34D,R1,R2) # define DEB(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x0D) # define DDB(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x1D) /* DIVIDE TO INTEGER */ # define DIEBR(R1,R3,R2,M4) RRF_(0xB353,R3,M4,R1,R2) # define DIDBR(R1,R3,R2,M4) RRF_(0xB35B,R3,M4,R1,R2) /* EXTRACT FPC */ # define EFPC(R1) RRE_(0xB38C,R1,0) /* LOAD AND TEST */ # define LTEBR(R1,R2) RRE_(0xB302,R1,R2) # define LTDBR(R1,R2) RRE_(0xB312,R1,R2) # define LTXBR(R1,R2) RRE_(0xB342,R1,R2) /* LOAD COMPLEMENT */ # define LCEBR(R1,R2) RRE_(0xB303,R1,R2) # define LCDBR(R1,R2) RRE_(0xB313,R1,R2) # define LCXBR(R1,R2) RRE_(0xB343,R1,R2) /* LOAD FP INTEGER */ # define FIEBR(R1,M3,R2) RRF_(0xB357,M3,0,R1,R2) # define FIDBR(R1,M3,R2) RRF_(0xB35F,M3,0,R1,R2) # define FIXBR(R1,M3,R2) RRF_(0xB347,M3,0,R1,R2) /* LOAD FPC */ # define LFPC(D2,B2) S_(0xB29D,B2,D2) /* LOAD LENGTHENED */ # define LDEBR(R1,R2) RRE_(0xB304,R1,R2) # define LXDBR(R1,R2) RRE_(0xB305,R1,R2) # define LXEBR(R1,R2) RRE_(0xB306,R1,R2) # define LDEB(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x04) # define LXDB(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x05) # define LXEB(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x06) /* LOAD NEGATIVE */ # define LNEBR(R1,R2) RRE_(0xB301,R1,R2) # define LNDBR(R1,R2) RRE_(0xB311,R1,R2) # define LNXBR(R1,R2) RRE_(0xB341,R1,R2) /* LOAD POSITIVE */ # define LPEBR(R1,R2) RRE_(0xB300,R1,R2) # define LPDBR(R1,R2) RRE_(0xB310,R1,R2) # define LPXBR(R1,R2) RRE_(0xB340,R1,R2) /* LOAD ROUNDED */ # define LEDBR(R1,R2) RRE_(0xB344,R1,R2) # define LDXBR(R1,R2) RRE_(0xB345,R1,R2) # define LEXBR(R1,R2) RRE_(0xB346,R1,R2) /* MULTIPLY */ # define MEEBR(R1,R2) RRE_(0xB317,R1,R2) # define MDBR(R1,R2) RRE_(0xB31C,R1,R2) # define MXBR(R1,R2) RRE_(0xB34C,R1,R2) # define MDEBR(R1,R2) RRE_(0xB30C,R1,R2) # define MXDBR(R1,R2) RRE_(0xB307,R1,R2) # define MEEB(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x17) # define MDB(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x1C) # define MDEB(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x0C) # define MXDB(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x07) /* MULTIPLY AND ADD */ # define MAEBR(R1,R3,R2) RRF_(0xB30E,R1,0,R3,R2) # define MADBR(R1,R3,R2) RRF_(0xB31E,R1,0,R3,R2) # define MAEB(R1,R3,D2,X2,B2) RXF_(0xED,R3,X2,B2,D2,R1,0x0E) # define MADB(R1,R3,D2,X2,B2) RXF_(0xED,R3,X2,B2,D2,R1,0x1E) /* MULTIPLY AND SUBTRACT */ # define MSEBR(R1,R3,R2) RRF_(0xB30F,R1,0,R3,R2) # define MSDBR(R1,R3,R2) RRF_(0xB31F,R1,0,R3,R2) # define MSEB(R1,R3,D2,X2,B2) RXF_(0xED,R3,X2,B2,D2,R1,0x0F) # define MSDB(R1,R3,D2,X2,B2) RXF_(0xED,R3,X2,B2,D2,R1,0x1F) /* SET FPC */ # define SFPC(R1) RRE_(0xB384,R1,0) /* SET ROUNDING MODE */ # define SRNM(D2,B2) S_(0xB299,B2,D2) /* SQUARE ROOT */ # define SQEBR(R1,R2) RRE_(0xB314,R1,R2) # define SQDBR(R1,R2) RRE_(0xB315,R1,R2) # define SQXBR(R1,R2) RRE_(0xB316,R1,R2) /* STORE FPC */ # define STFPC(D2,B2) S_(0xB29C,B2,D2) /* SUBTRACT */ # define SEBR(R1,R2) RRE_(0xB30B,R1,R2) # define SDBR(R1,R2) RRE_(0xB31B,R1,R2) # define SXBR(R1,R2) RRE_(0xB34B,R1,R2) # define SEB(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x0B) # define SDB(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x1B) /* TEST DATA CLASS */ # define TCEB(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x10) # define TCDB(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x11) # define TCXB(R1,D2,X2,B2) RXE_(0xED,R1,X2,B2,D2,0x12) # define fp(code,r0,r1,i0) _fp(_jit,jit_code_##code##i_f,r0,r1,i0) static void _fp(jit_state_t*,jit_code_t, jit_int32_t,jit_int32_t,jit_float32_t*); # define dp(code,r0,r1,i0) _dp(_jit,jit_code_##code##i_d,r0,r1,i0) static void _dp(jit_state_t*,jit_code_t, jit_int32_t,jit_int32_t,jit_float64_t*); # define fr(cc,r0,r1,r2) _fr(_jit,cc,r0,r1,r2) static void _fr(jit_state_t*,jit_int32_t, jit_int32_t,jit_int32_t,jit_int32_t); # define dr(cc,r0,r1,r2) _dr(_jit,cc,r0,r1,r2) static void _dr(jit_state_t*,jit_int32_t, jit_int32_t,jit_int32_t,jit_int32_t); # define fi(cc,r0,r1,i0) _fi(_jit,cc,r0,r1,i0) static void _fi(jit_state_t*,jit_int32_t, jit_int32_t,jit_int32_t,jit_float32_t*); # define di(cc,r0,r1,i0) _di(_jit,cc,r0,r1,i0) static void _di(jit_state_t*,jit_int32_t, jit_int32_t,jit_int32_t,jit_float64_t*); # define bfr(cc,i0,r0,r1) _bfr(_jit,cc,i0,r0,r1) static void _bfr(jit_state_t*,jit_int32_t, jit_word_t,jit_int32_t,jit_int32_t); # define bdr(cc,i0,r0,r1) _bdr(_jit,cc,i0,r0,r1) static void _bdr(jit_state_t*,jit_int32_t, jit_word_t,jit_int32_t,jit_int32_t); # define bfr_p(cc,i0,r0,r1) _bfr_p(_jit,cc,i0,r0,r1) static jit_word_t _bfr_p(jit_state_t*,jit_int32_t, jit_word_t,jit_int32_t,jit_int32_t); # define bdr_p(cc,i0,r0,r1) _bdr_p(_jit,cc,i0,r0,r1) static jit_word_t _bdr_p(jit_state_t*,jit_int32_t, jit_word_t,jit_int32_t,jit_int32_t); # define bfi(cc,i0,r0,i1) _bfi(_jit,cc,i0,r0,i1) static void _bfi(jit_state_t*,jit_int32_t, jit_word_t,jit_int32_t,jit_float32_t*); # define bdi(cc,i0,r0,i1) _bdi(_jit,cc,i0,r0,i1) static void _bdi(jit_state_t*,jit_int32_t, jit_word_t,jit_int32_t,jit_float64_t*); # define bfi_p(cc,i0,r0,i1) _bfi_p(_jit,cc,i0,r0,i1) static jit_word_t _bfi_p(jit_state_t*,jit_int32_t, jit_word_t,jit_int32_t,jit_float32_t*); # define bdi_p(cc,i0,r0,i1) _bdi_p(_jit,cc,i0,r0,i1) static jit_word_t _bdi_p(jit_state_t*,jit_int32_t, jit_word_t,jit_int32_t,jit_float64_t*); # define buneqr(db,i0,r0,r1) _buneqr(_jit,db,i0,r0,r1) static jit_word_t _buneqr(jit_state_t*,jit_int32_t, jit_word_t,jit_int32_t,jit_int32_t); # define buneqi(db,i0,r0,i1) _buneqi(_jit,db,i0,r0,(jit_word_t)i1) static jit_word_t _buneqi(jit_state_t*,jit_int32_t, jit_word_t,jit_int32_t,jit_word_t); # define bltgtr(db,i0,r0,r1) _bltgtr(_jit,db,i0,r0,r1) static jit_word_t _bltgtr(jit_state_t*,jit_int32_t, jit_word_t,jit_int32_t,jit_int32_t); # define bltgti(db,i0,r0,i1) _bltgti(_jit,db,i0,r0,(jit_word_t)i1) static jit_word_t _bltgti(jit_state_t*,jit_int32_t, jit_word_t,jit_int32_t,jit_word_t); # define movr_f(r0,r1) _movr_f(_jit,r0,r1) static void _movr_f(jit_state_t*,jit_int32_t,jit_int32_t); # define movi_f(r0,i0) _movi_f(_jit,r0,i0) static void _movi_f(jit_state_t*,jit_int32_t,jit_float32_t*); # define movr_d(r0,r1) _movr_d(_jit,r0,r1) static void _movr_d(jit_state_t*,jit_int32_t,jit_int32_t); # define movi_d(r0,i0) _movi_d(_jit,r0,i0) static void _movi_d(jit_state_t*,jit_int32_t,jit_float64_t*); # define absr_f(r0,r1) LPEBR(r0,r1) # define absr_d(r0,r1) LPDBR(r0,r1) # define negr_f(r0,r1) LCEBR(r0,r1) # define negr_d(r0,r1) LCDBR(r0,r1) # define sqrtr_f(r0,r1) SQEBR(r0,r1) # define sqrtr_d(r0,r1) SQDBR(r0,r1) # define truncr_f_i(r0,r1) CFEBR(r0,RND_ZERO,r1) # define truncr_d_i(r0,r1) CFDBR(r0,RND_ZERO,r1) # if __WORDSIZE == 64 # define truncr_f_l(r0,r1) CGEBR(r0,RND_ZERO,r1) # define truncr_d_l(r0,r1) CGDBR(r0,RND_ZERO,r1) # endif # if __WORDSIZE == 32 # define extr_f(r0,r1) CEFBR(r0,r1) # define extr_d(r0,r1) CDFBR(r0,r1) # else # define extr_f(r0,r1) CEGBR(r0,r1) # define extr_d(r0,r1) CDGBR(r0,r1) # endif # define extr_d_f(r0,r1) LEDBR(r0,r1) # define extr_f_d(r0,r1) LDEBR(r0,r1) # define addr_f(r0,r1,r2) _addr_f(_jit,r0,r1,r2) static void _addr_f(jit_state_t*,jit_int32_t,jit_int32_t,jit_int32_t); # define addi_f(r0,r1,i0) fp(add,r0,r1,i0) # define addr_d(r0,r1,r2) _addr_d(_jit,r0,r1,r2) static void _addr_d(jit_state_t*,jit_int32_t,jit_int32_t,jit_int32_t); # define addi_d(r0,r1,i0) dp(add,r0,r1,i0) # define subr_f(r0,r1,r2) _subr_f(_jit,r0,r1,r2) static void _subr_f(jit_state_t*,jit_int32_t,jit_int32_t,jit_int32_t); # define subi_f(r0,r1,i0) fp(sub,r0,r1,i0) # define subr_d(r0,r1,r2) _subr_d(_jit,r0,r1,r2) static void _subr_d(jit_state_t*,jit_int32_t,jit_int32_t,jit_int32_t); # define subi_d(r0,r1,i0) dp(sub,r0,r1,i0) # define rsbr_f(r0,r1,r2) subr_f(r0,r2,r1) # define rsbi_f(r0,r1,i0) fp(rsb,r0,r1,i0) # define rsbr_d(r0,r1,r2) subr_d(r0,r2,r1) # define rsbi_d(r0,r1,i0) dp(rsb,r0,r1,i0) # define mulr_f(r0,r1,r2) _mulr_f(_jit,r0,r1,r2) static void _mulr_f(jit_state_t*,jit_int32_t,jit_int32_t,jit_int32_t); # define muli_f(r0,r1,i0) fp(mul,r0,r1,i0) # define mulr_d(r0,r1,r2) _mulr_d(_jit,r0,r1,r2) static void _mulr_d(jit_state_t*,jit_int32_t,jit_int32_t,jit_int32_t); # define muli_d(r0,r1,i0) dp(mul,r0,r1,i0) # define divr_f(r0,r1,r2) _divr_f(_jit,r0,r1,r2) static void _divr_f(jit_state_t*,jit_int32_t,jit_int32_t,jit_int32_t); # define divi_f(r0,r1,i0) fp(div,r0,r1,i0) # define divr_d(r0,r1,r2) _divr_d(_jit,r0,r1,r2) static void _divr_d(jit_state_t*,jit_int32_t,jit_int32_t,jit_int32_t); # define divi_d(r0,r1,i0) dp(div,r0,r1,i0) # define ldr_f(r0,r1) LE(r0,0,0,r1) # define ldr_d(r0,r1) LD(r0,0,0,r1) # define ldi_f(r0,i0) _ldi_f(_jit,r0,i0) static void _ldi_f(jit_state_t*,jit_int32_t,jit_word_t); # define ldi_d(r0,i0) _ldi_d(_jit,r0,i0) static void _ldi_d(jit_state_t*,jit_int32_t,jit_word_t); # define ldxr_f(r0,r1,r2) _ldxr_f(_jit,r0,r1,r2) static void _ldxr_f(jit_state_t*,jit_int32_t,jit_int32_t,jit_int32_t); # define ldxr_d(r0,r1,r2) _ldxr_d(_jit,r0,r1,r2) static void _ldxr_d(jit_state_t*,jit_int32_t,jit_int32_t,jit_int32_t); # define ldxi_f(r0,r1,i0) _ldxi_f(_jit,r0,r1,i0) static void _ldxi_f(jit_state_t*,jit_int32_t,jit_int32_t,jit_word_t); # define ldxi_d(r0,r1,i0) _ldxi_d(_jit,r0,r1,i0) static void _ldxi_d(jit_state_t*,jit_int32_t,jit_int32_t,jit_word_t); # define str_f(r0,r1) STE(r1,0,0,r0) # define str_d(r0,r1) STD(r1,0,0,r0) # define sti_f(i0,r0) _sti_f(_jit,i0,r0) static void _sti_f(jit_state_t*,jit_word_t,jit_int32_t); # define sti_d(i0,r0) _sti_d(_jit,i0,r0) static void _sti_d(jit_state_t*,jit_word_t,jit_int32_t); # define stxr_f(r0,r1,r2) _stxr_f(_jit,r0,r1,r2) static void _stxr_f(jit_state_t*,jit_int32_t,jit_int32_t,jit_int32_t); # define stxr_d(r0,r1,r2) _stxr_d(_jit,r0,r1,r2) static void _stxr_d(jit_state_t*,jit_int32_t,jit_int32_t,jit_int32_t); # define stxi_f(i0,r0,r1) _stxi_f(_jit,i0,r0,r1) static void _stxi_f(jit_state_t*,jit_word_t,jit_int32_t,jit_int32_t); # define stxi_d(i0,r0,r1) _stxi_d(_jit,i0,r0,r1) static void _stxi_d(jit_state_t*,jit_word_t,jit_int32_t,jit_int32_t); # define ltr_f(r0,r1,r2) fr(CC_L,r0,r1,r2) # define ltr_d(r0,r1,r2) dr(CC_L,r0,r1,r2) # define lti_f(r0,r1,i0) fi(CC_L,r0,r1,i0) # define lti_d(r0,r1,i0) di(CC_L,r0,r1,i0) # define ler_f(r0,r1,r2) fr(CC_LE,r0,r1,r2) # define ler_d(r0,r1,r2) dr(CC_LE,r0,r1,r2) # define lei_f(r0,r1,i0) fi(CC_LE,r0,r1,i0) # define lei_d(r0,r1,i0) di(CC_LE,r0,r1,i0) # define eqr_f(r0,r1,r2) fr(CC_E,r0,r1,r2) # define eqr_d(r0,r1,r2) dr(CC_E,r0,r1,r2) # define eqi_f(r0,r1,i0) fi(CC_E,r0,r1,i0) # define eqi_d(r0,r1,i0) di(CC_E,r0,r1,i0) # define ger_f(r0,r1,r2) fr(CC_HE,r0,r1,r2) # define ger_d(r0,r1,r2) dr(CC_HE,r0,r1,r2) # define gei_f(r0,r1,i0) fi(CC_HE,r0,r1,i0) # define gei_d(r0,r1,i0) di(CC_HE,r0,r1,i0) # define gtr_f(r0,r1,r2) fr(CC_H,r0,r1,r2) # define gtr_d(r0,r1,r2) dr(CC_H,r0,r1,r2) # define gti_f(r0,r1,i0) fi(CC_H,r0,r1,i0) # define gti_d(r0,r1,i0) di(CC_H,r0,r1,i0) # define ner_f(r0,r1,r2) fr(CC_NE,r0,r1,r2) # define ner_d(r0,r1,r2) dr(CC_NE,r0,r1,r2) # define nei_f(r0,r1,i0) fi(CC_NE,r0,r1,i0) # define nei_d(r0,r1,i0) di(CC_NE,r0,r1,i0) # define unltr_f(r0,r1,r2) fr(CC_NHE,r0,r1,r2) # define unltr_d(r0,r1,r2) dr(CC_NHE,r0,r1,r2) # define unlti_f(r0,r1,i0) fi(CC_NHE,r0,r1,i0) # define unlti_d(r0,r1,i0) di(CC_NHE,r0,r1,i0) # define unler_f(r0,r1,r2) fr(CC_NH,r0,r1,r2) # define unler_d(r0,r1,r2) dr(CC_NH,r0,r1,r2) # define unlei_f(r0,r1,i0) fi(CC_NH,r0,r1,i0) # define unlei_d(r0,r1,i0) di(CC_NH,r0,r1,i0) # define uneqr_f(r0,r1,r2) _uneqr_f(_jit,r0,r1,r2) static void _uneqr_f(jit_state_t*,jit_int32_t,jit_int32_t,jit_int32_t); # define uneqr_d(r0,r1,r2) _uneqr_d(_jit,r0,r1,r2) static void _uneqr_d(jit_state_t*,jit_int32_t,jit_int32_t,jit_int32_t); # define uneqi_f(r0,r1,i0) fp(uneq,r0,r1,i0) # define uneqi_d(r0,r1,i0) dp(uneq,r0,r1,i0) # define unger_f(r0,r1,r2) fr(CC_NL,r0,r1,r2) # define unger_d(r0,r1,r2) dr(CC_NL,r0,r1,r2) # define ungei_f(r0,r1,i0) fi(CC_NL,r0,r1,i0) # define ungei_d(r0,r1,i0) di(CC_NL,r0,r1,i0) # define ungtr_f(r0,r1,r2) fr(CC_NLE,r0,r1,r2) # define ungtr_d(r0,r1,r2) dr(CC_NLE,r0,r1,r2) # define ungti_f(r0,r1,i0) fi(CC_NLE,r0,r1,i0) # define ungti_d(r0,r1,i0) di(CC_NLE,r0,r1,i0) # define ltgtr_f(r0,r1,r2) _ltgtr_f(_jit,r0,r1,r2) static void _ltgtr_f(jit_state_t*,jit_int32_t,jit_int32_t,jit_int32_t); # define ltgtr_d(r0,r1,r2) _ltgtr_d(_jit,r0,r1,r2) static void _ltgtr_d(jit_state_t*,jit_int32_t,jit_int32_t,jit_int32_t); # define ltgti_f(r0,r1,i0) fp(ltgt,r0,r1,i0) # define ltgti_d(r0,r1,i0) dp(ltgt,r0,r1,i0) # define ordr_f(r0,r1,r2) fr(CC_NO,r0,r1,r2) # define ordr_d(r0,r1,r2) dr(CC_NO,r0,r1,r2) # define ordi_f(r0,r1,i0) fi(CC_NO,r0,r1,i0) # define ordi_d(r0,r1,i0) di(CC_NO,r0,r1,i0) # define unordr_f(r0,r1,r2) fr(CC_O,r0,r1,r2) # define unordr_d(r0,r1,r2) dr(CC_O,r0,r1,r2) # define unordi_f(r0,r1,i0) fi(CC_O,r0,r1,i0) # define unordi_d(r0,r1,i0) di(CC_O,r0,r1,i0) # define bltr_f(i0,r0,r1) bfr(CC_L,i0,r0,r1) # define bltr_d(i0,r0,r1) bdr(CC_L,i0,r0,r1) # define blti_f(i0,r0,i1) bfi(CC_L,i0,r0,i1) # define blti_d(i0,r0,i1) bdi(CC_L,i0,r0,i1) # define bltr_f_p(i0,r0,r1) bfr_p(CC_L,i0,r0,r1) # define bltr_d_p(i0,r0,r1) bdr_p(CC_L,i0,r0,r1) # define blti_f_p(i0,r0,i1) bfi_p(CC_L,i0,r0,i1) # define blti_d_p(i0,r0,i1) bdi_p(CC_L,i0,r0,i1) # define bler_f(i0,r0,r1) bfr(CC_LE,i0,r0,r1) # define bler_d(i0,r0,r1) bdr(CC_LE,i0,r0,r1) # define blei_f(i0,r0,i1) bfi(CC_LE,i0,r0,i1) # define blei_d(i0,r0,i1) bdi(CC_LE,i0,r0,i1) # define bler_f_p(i0,r0,r1) bfr_p(CC_LE,i0,r0,r1) # define bler_d_p(i0,r0,r1) bdr_p(CC_LE,i0,r0,r1) # define blei_f_p(i0,r0,i1) bfi_p(CC_LE,i0,r0,i1) # define blei_d_p(i0,r0,i1) bdi_p(CC_LE,i0,r0,i1) # define beqr_f(i0,r0,r1) bfr(CC_E,i0,r0,r1) # define beqr_d(i0,r0,r1) bdr(CC_E,i0,r0,r1) # define beqi_f(i0,r0,i1) bfi(CC_E,i0,r0,i1) # define beqi_d(i0,r0,i1) bdi(CC_E,i0,r0,i1) # define beqr_f_p(i0,r0,r1) bfr_p(CC_E,i0,r0,r1) # define beqr_d_p(i0,r0,r1) bdr_p(CC_E,i0,r0,r1) # define beqi_f_p(i0,r0,i1) bfi_p(CC_E,i0,r0,i1) # define beqi_d_p(i0,r0,i1) bdi_p(CC_E,i0,r0,i1) # define bger_f(i0,r0,r1) bfr(CC_HE,i0,r0,r1) # define bger_d(i0,r0,r1) bdr(CC_HE,i0,r0,r1) # define bgei_f(i0,r0,i1) bfi(CC_HE,i0,r0,i1) # define bgei_d(i0,r0,i1) bdi(CC_HE,i0,r0,i1) # define bger_f_p(i0,r0,r1) bfr_p(CC_HE,i0,r0,r1) # define bger_d_p(i0,r0,r1) bdr_p(CC_HE,i0,r0,r1) # define bgei_f_p(i0,r0,i1) bfi_p(CC_HE,i0,r0,i1) # define bgei_d_p(i0,r0,i1) bdi_p(CC_HE,i0,r0,i1) # define bgtr_f(i0,r0,r1) bfr(CC_H,i0,r0,r1) # define bgtr_d(i0,r0,r1) bdr(CC_H,i0,r0,r1) # define bgti_f(i0,r0,i1) bfi(CC_H,i0,r0,i1) # define bgti_d(i0,r0,i1) bdi(CC_H,i0,r0,i1) # define bgtr_f_p(i0,r0,r1) bfr_p(CC_H,i0,r0,r1) # define bgtr_d_p(i0,r0,r1) bdr_p(CC_H,i0,r0,r1) # define bgti_f_p(i0,r0,i1) bfi_p(CC_H,i0,r0,i1) # define bgti_d_p(i0,r0,i1) bdi_p(CC_H,i0,r0,i1) # define bner_f(i0,r0,r1) bfr(CC_NE,i0,r0,r1) # define bner_d(i0,r0,r1) bdr(CC_NE,i0,r0,r1) # define bnei_f(i0,r0,i1) bfi(CC_NE,i0,r0,i1) # define bnei_d(i0,r0,i1) bdi(CC_NE,i0,r0,i1) # define bner_f_p(i0,r0,r1) bfr_p(CC_NE,i0,r0,r1) # define bner_d_p(i0,r0,r1) bdr_p(CC_NE,i0,r0,r1) # define bnei_f_p(i0,r0,i1) bfi_p(CC_NE,i0,r0,i1) # define bnei_d_p(i0,r0,i1) bdi_p(CC_NE,i0,r0,i1) # define bunltr_f(i0,r0,r1) bfr(CC_NHE,i0,r0,r1) # define bunltr_d(i0,r0,r1) bdr(CC_NHE,i0,r0,r1) # define bunlti_f(i0,r0,i1) bfi(CC_NHE,i0,r0,i1) # define bunlti_d(i0,r0,i1) bdi(CC_NHE,i0,r0,i1) # define bunltr_f_p(i0,r0,r1) bfr_p(CC_NHE,i0,r0,r1) # define bunltr_d_p(i0,r0,r1) bdr_p(CC_NHE,i0,r0,r1) # define bunlti_f_p(i0,r0,i1) bfi_p(CC_NHE,i0,r0,i1) # define bunlti_d_p(i0,r0,i1) bdi_p(CC_NHE,i0,r0,i1) # define bunler_f(i0,r0,r1) bfr(CC_NH,i0,r0,r1) # define bunler_d(i0,r0,r1) bdr(CC_NH,i0,r0,r1) # define bunlei_f(i0,r0,i1) bfi(CC_NH,i0,r0,i1) # define bunlei_d(i0,r0,i1) bdi(CC_NH,i0,r0,i1) # define bunler_f_p(i0,r0,r1) bfr_p(CC_NH,i0,r0,r1) # define bunler_d_p(i0,r0,r1) bdr_p(CC_NH,i0,r0,r1) # define bunlei_f_p(i0,r0,i1) bfi_p(CC_NH,i0,r0,i1) # define bunlei_d_p(i0,r0,i1) bdi_p(CC_NH,i0,r0,i1) # define buneqr_f(i0,r0,r1) buneqr(0,i0,r0,r1) # define buneqr_d(i0,r0,r1) buneqr(1,i0,r0,r1) # define buneqi_f(i0,r0,i1) buneqi(0,i0,r0,i1) # define buneqi_d(i0,r0,i1) buneqi(1,i0,r0,i1) # define buneqr_f_p(i0,r0,r1) buneqr(0,i0,r0,r1) # define buneqr_d_p(i0,r0,r1) buneqr(1,i0,r0,r1) # define buneqi_f_p(i0,r0,i1) buneqi(0,i0,r0,i1) # define buneqi_d_p(i0,r0,i1) buneqi(1,i0,r0,i1) # define bunger_f(i0,r0,r1) bfr(CC_NL,i0,r0,r1) # define bunger_d(i0,r0,r1) bdr(CC_NL,i0,r0,r1) # define bungei_f(i0,r0,i1) bfi(CC_NL,i0,r0,i1) # define bungei_d(i0,r0,i1) bdi(CC_NL,i0,r0,i1) # define bunger_f_p(i0,r0,r1) bfr_p(CC_NL,i0,r0,r1) # define bunger_d_p(i0,r0,r1) bdr_p(CC_NL,i0,r0,r1) # define bungei_f_p(i0,r0,i1) bfi_p(CC_NL,i0,r0,i1) # define bungei_d_p(i0,r0,i1) bdi_p(CC_NL,i0,r0,i1) # define bungtr_f(i0,r0,r1) bfr(CC_NLE,i0,r0,r1) # define bungtr_d(i0,r0,r1) bdr(CC_NLE,i0,r0,r1) # define bungti_f(i0,r0,i1) bfi(CC_NLE,i0,r0,i1) # define bungti_d(i0,r0,i1) bdi(CC_NLE,i0,r0,i1) # define bungtr_f_p(i0,r0,r1) bfr_p(CC_NLE,i0,r0,r1) # define bungtr_d_p(i0,r0,r1) bdr_p(CC_NLE,i0,r0,r1) # define bungti_f_p(i0,r0,i1) bfi_p(CC_NLE,i0,r0,i1) # define bungti_d_p(i0,r0,i1) bdi_p(CC_NLE,i0,r0,i1) # define bltgtr_f(i0,r0,r1) bltgtr(0,i0,r0,r1) # define bltgtr_d(i0,r0,r1) bltgtr(1,i0,r0,r1) # define bltgti_f(i0,r0,i1) bltgti(0,i0,r0,i1) # define bltgti_d(i0,r0,i1) bltgti(1,i0,r0,i1) # define bltgtr_f_p(i0,r0,r1) bltgtr(0,i0,r0,r1) # define bltgtr_d_p(i0,r0,r1) bltgtr(1,i0,r0,r1) # define bltgti_f_p(i0,r0,i1) bltgti(0,i0,r0,i1) # define bltgti_d_p(i0,r0,i1) bltgti(1,i0,r0,i1) # define bordr_f(i0,r0,r1) bfr(CC_NO,i0,r0,r1) # define bordr_d(i0,r0,r1) bdr(CC_NO,i0,r0,r1) # define bordi_f(i0,r0,i1) bfi(CC_NO,i0,r0,i1) # define bordi_d(i0,r0,i1) bdi(CC_NO,i0,r0,i1) # define bordr_f_p(i0,r0,r1) bfr_p(CC_NO,i0,r0,r1) # define bordr_d_p(i0,r0,r1) bdr_p(CC_NO,i0,r0,r1) # define bordi_f_p(i0,r0,i1) bfi_p(CC_NO,i0,r0,i1) # define bordi_d_p(i0,r0,i1) bdi_p(CC_NO,i0,r0,i1) # define bunordr_f(i0,r0,r1) bfr(CC_O,i0,r0,r1) # define bunordr_d(i0,r0,r1) bdr(CC_O,i0,r0,r1) # define bunordi_f(i0,r0,i1) bfi(CC_O,i0,r0,i1) # define bunordi_d(i0,r0,i1) bdi(CC_O,i0,r0,i1) # define bunordr_f_p(i0,r0,r1) bfr_p(CC_O,i0,r0,r1) # define bunordr_d_p(i0,r0,r1) bdr_p(CC_O,i0,r0,r1) # define bunordi_f_p(i0,r0,i1) bfi_p(CC_O,i0,r0,i1) # define bunordi_d_p(i0,r0,i1) bdi_p(CC_O,i0,r0,i1) # define vaarg_d(r0, r1) _vaarg_d(_jit, r0, r1) static void _vaarg_d(jit_state_t*, jit_int32_t, jit_int32_t); #endif #if CODE static void _fp(jit_state_t *_jit, jit_code_t code, jit_int32_t r0, jit_int32_t r1, jit_float32_t *i0) { jit_int32_t reg; reg = jit_get_reg(jit_class_fpr); movi_f(rn(reg), i0); switch (code) { case jit_code_addi_f: addr_f(r0, r1, rn(reg)); break; case jit_code_subi_f: subr_f(r0, r1, rn(reg)); break; case jit_code_rsbi_f: rsbr_f(r0, r1, rn(reg)); break; case jit_code_muli_f: mulr_f(r0, r1, rn(reg)); break; case jit_code_divi_f: divr_f(r0, r1, rn(reg)); break; case jit_code_uneqi_f: uneqr_f(r0, r1, rn(reg)); break; case jit_code_ltgti_f: ltgtr_f(r0, r1, rn(reg)); break; default: abort(); } jit_unget_reg(reg); } static void _dp(jit_state_t *_jit, jit_code_t code, jit_int32_t r0, jit_int32_t r1, jit_float64_t *i0) { jit_int32_t reg; reg = jit_get_reg(jit_class_fpr); movi_d(rn(reg), i0); switch (code) { case jit_code_addi_d: addr_d(r0, r1, rn(reg)); break; case jit_code_subi_d: subr_d(r0, r1, rn(reg)); break; case jit_code_rsbi_d: rsbr_d(r0, r1, rn(reg)); break; case jit_code_muli_d: mulr_d(r0, r1, rn(reg)); break; case jit_code_divi_d: divr_d(r0, r1, rn(reg)); break; case jit_code_uneqi_d: uneqr_d(r0, r1, rn(reg)); break; case jit_code_ltgti_d: ltgtr_d(r0, r1, rn(reg)); break; default: abort(); } jit_unget_reg(reg); } static void _fr(jit_state_t *_jit, jit_int32_t cc, jit_int32_t r0, jit_int32_t r1, jit_int32_t r2) { jit_word_t w; LGHI(r0, 1); CEBR(r1, r2); w = _jit->pc.w; BRC(cc, 0); LGHI(r0, 0); patch_at(w, _jit->pc.w); } static void _dr(jit_state_t *_jit, jit_int32_t cc, jit_int32_t r0, jit_int32_t r1, jit_int32_t r2) { jit_word_t w; LGHI(r0, 1); CDBR(r1, r2); w = _jit->pc.w; BRC(cc, 0); LGHI(r0, 0); patch_at(w, _jit->pc.w); } static void _fi(jit_state_t *_jit, jit_int32_t cc, jit_int32_t r0, jit_int32_t r1, jit_float32_t *i0) { jit_int32_t reg; reg = jit_get_reg(jit_class_fpr|jit_class_nospill); movi_f(rn(reg), i0); fr(cc, r0, r1, rn(reg)); jit_unget_reg(reg); } static void _di(jit_state_t *_jit, jit_int32_t cc, jit_int32_t r0, jit_int32_t r1, jit_float64_t *i0) { jit_int32_t reg; reg = jit_get_reg(jit_class_fpr|jit_class_nospill); movi_d(rn(reg), i0); dr(cc, r0, r1, rn(reg)); jit_unget_reg(reg); } static void _bfr(jit_state_t *_jit, jit_int32_t cc, jit_word_t i0, jit_int32_t r0, jit_int32_t r1) { jit_word_t d; CEBR(r0, r1); d = (i0 - _jit->pc.w) >> 1; if (s16_p(d)) BRC(cc, x16(d)); else { assert(s32_p(d)); BRCL(cc, d); } } static void _bdr(jit_state_t *_jit, jit_int32_t cc, jit_word_t i0, jit_int32_t r0, jit_int32_t r1) { jit_word_t d; CDBR(r0, r1); d = (i0 - _jit->pc.w) >> 1; if (s16_p(d)) BRC(cc, x16(d)); else { assert(s32_p(d)); BRCL(cc, d); } } static jit_word_t _bfr_p(jit_state_t *_jit, jit_int32_t cc, jit_word_t i0, jit_int32_t r0, jit_int32_t r1) { jit_word_t w; CEBR(r0, r1); w = _jit->pc.w; BRCL(cc, 0); return (w); } static jit_word_t _bdr_p(jit_state_t *_jit, jit_int32_t cc, jit_word_t i0, jit_int32_t r0, jit_int32_t r1) { jit_word_t w; CDBR(r0, r1); w = _jit->pc.w; BRCL(cc, 0); return (w); } static void _bfi(jit_state_t *_jit, jit_int32_t cc, jit_word_t i0, jit_int32_t r0, jit_float32_t *i1) { jit_int32_t reg; reg = jit_get_reg(jit_class_gpr|jit_class_nospill); movi_f(rn(reg), i1); bfr(cc, i0, r0, rn(reg)); jit_unget_reg(reg); } static void _bdi(jit_state_t *_jit, jit_int32_t cc, jit_word_t i0, jit_int32_t r0, jit_float64_t *i1) { jit_int32_t reg; reg = jit_get_reg(jit_class_gpr|jit_class_nospill); movi_d(rn(reg), i1); bdr(cc, i0, r0, rn(reg)); jit_unget_reg(reg); } static jit_word_t _bfi_p(jit_state_t *_jit, jit_int32_t cc, jit_word_t i0, jit_int32_t r0, jit_float32_t *i1) { jit_word_t w; jit_int32_t reg; reg = jit_get_reg(jit_class_gpr|jit_class_nospill); movi_f(rn(reg), i1); w = bfr_p(cc, i0, r0, rn(reg)); jit_unget_reg(reg); return (w); } static jit_word_t _bdi_p(jit_state_t *_jit, jit_int32_t cc, jit_word_t i0, jit_int32_t r0, jit_float64_t *i1) { jit_word_t w; jit_int32_t reg; reg = jit_get_reg(jit_class_gpr|jit_class_nospill); movi_d(rn(reg), i1); w = bdr_p(cc, i0, r0, rn(reg)); jit_unget_reg(reg); return (w); } static jit_word_t _buneqr(jit_state_t *_jit, jit_int32_t db, jit_word_t i0, jit_int32_t r0, jit_int32_t r1) { jit_word_t unord, ne, w; if (db) CDBR(r0, r1); else CEBR(r0, r1); unord = _jit->pc.w; BRC(CC_O, 0); /* unord satisfies condition */ ne = _jit->pc.w; BRC(CC_NE, 0); /* ne does not satisfy condition */ patch_at(unord, _jit->pc.w); w = _jit->pc.w; BRCL(CC_AL, (i0 - _jit->pc.w) >> 1); patch_at(ne, _jit->pc.w); return (w); } static jit_word_t _buneqi(jit_state_t *_jit, jit_int32_t db, jit_word_t i0, jit_int32_t r0, jit_word_t i1) { jit_word_t w; jit_int32_t reg; reg = jit_get_reg(jit_class_fpr|jit_class_nospill); if (db) movi_d(rn(reg), (jit_float64_t *)i1); else movi_f(rn(reg), (jit_float32_t *)i1); w = buneqr(db, i0, r0, rn(reg)); jit_unget_reg(reg); return (w); } static jit_word_t _bltgtr(jit_state_t *_jit, jit_int32_t db, jit_word_t i0, jit_int32_t r0, jit_int32_t r1) { jit_word_t unord, eq, w; if (db) CDBR(r0, r1); else CEBR(r0, r1); unord = _jit->pc.w; BRC(CC_O, 0); /* unord does not satisfy condition */ eq = _jit->pc.w; BRC(CC_E, 0); /* eq does not satisfy condition */ w = _jit->pc.w; BRCL(CC_AL, (i0 - _jit->pc.w) >> 1); patch_at(unord, _jit->pc.w); patch_at(eq, _jit->pc.w); return (w); } static jit_word_t _bltgti(jit_state_t *_jit, jit_int32_t db, jit_word_t i0, jit_int32_t r0, jit_word_t i1) { jit_word_t w; jit_int32_t reg; reg = jit_get_reg(jit_class_fpr|jit_class_nospill); if (db) movi_d(rn(reg), (jit_float64_t *)i1); else movi_f(rn(reg), (jit_float32_t *)i1); w = bltgtr(db, i0, r0, rn(reg)); jit_unget_reg(reg); return (w); } static void _movr_f(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1) { if (r0 != r1) LER(r0, r1); } static void _movi_f(jit_state_t *_jit, jit_int32_t r0, jit_float32_t *i0) { union { jit_int32_t i; jit_float32_t f; } data; jit_int32_t reg; if (*(jit_int32_t *)i0 == 0) LZER(r0); else if (_jitc->no_data) { data.f = *i0; reg = jit_get_reg_but_zero(0); movi(rn(reg), data.i & 0xffffffff); stxi_i(-4, _FP_REGNO, rn(reg)); jit_unget_reg_but_zero(reg); ldxi_f(r0, _FP_REGNO, -4); } else ldi_f(r0, (jit_word_t)i0); } static void _movr_d(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1) { if (r0 != r1) LDR(r0, r1); } static void _movi_d(jit_state_t *_jit, jit_int32_t r0, jit_float64_t *i0) { union { #if __WORDSIZE == 32 jit_int32_t i[2]; #else jit_int64_t l; #endif jit_float64_t d; } data; jit_int32_t reg; if (*(jit_int64_t *)i0 == 0) LZDR(r0); else if (_jitc->no_data) { data.d = *i0; reg = jit_get_reg_but_zero(0); #if __WORDSIZE == 32 movi(rn(reg), data.i[0]); stxi_i(-8, _FP_REGNO, rn(reg)); movi(rn(reg), data.i[1]); stxi_i(-4, _FP_REGNO, rn(reg)); #else movi(rn(reg), data.l); stxi_l(-8, _FP_REGNO, rn(reg)); #endif jit_unget_reg_but_zero(reg); ldxi_d(r0, _FP_REGNO, -8); } else ldi_d(r0, (jit_word_t)i0); } static void _addr_f(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1, jit_int32_t r2) { if (r0 == r2) AEBR(r0, r1); else { movr_f(r0, r1); AEBR(r0, r2); } } static void _addr_d(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1, jit_int32_t r2) { if (r0 == r2) ADBR(r0, r1); else { movr_d(r0, r1); ADBR(r0, r2); } } static void _subr_f(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1, jit_int32_t r2) { jit_int32_t reg; if (r0 == r2) { reg = jit_get_reg(jit_class_fpr); movr_f(rn(reg), r2); movr_f(r0, r1); SEBR(r0, rn(reg)); jit_unget_reg(reg); } else { movr_f(r0, r1); SEBR(r0, r2); } } static void _subr_d(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1, jit_int32_t r2) { jit_int32_t reg; if (r0 == r2) { reg = jit_get_reg(jit_class_fpr); movr_d(rn(reg), r2); movr_d(r0, r1); SDBR(r0, rn(reg)); jit_unget_reg(reg); } else { movr_d(r0, r1); SDBR(r0, r2); } } static void _mulr_f(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1, jit_int32_t r2) { if (r0 == r2) MEEBR(r0, r1); else { movr_f(r0, r1); MEEBR(r0, r2); } } static void _mulr_d(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1, jit_int32_t r2) { if (r0 == r2) MDBR(r0, r1); else { movr_d(r0, r1); MDBR(r0, r2); } } static void _divr_f(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1, jit_int32_t r2) { jit_int32_t reg; if (r0 == r2) { reg = jit_get_reg(jit_class_fpr); movr_f(rn(reg), r2); movr_f(r0, r1); DEBR(r0, rn(reg)); jit_unget_reg(reg); } else { movr_f(r0, r1); DEBR(r0, r2); } } static void _divr_d(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1, jit_int32_t r2) { jit_int32_t reg; if (r0 == r2) { reg = jit_get_reg(jit_class_fpr); movr_d(rn(reg), r2); movr_d(r0, r1); DDBR(r0, rn(reg)); jit_unget_reg(reg); } else { movr_d(r0, r1); DDBR(r0, r2); } } static void _ldi_f(jit_state_t *_jit, jit_int32_t r0, jit_word_t i0) { jit_int32_t reg; reg = jit_get_reg_but_zero(0); movi(rn(reg), i0); ldr_f(r0, rn(reg)); jit_unget_reg_but_zero(reg); } static void _ldi_d(jit_state_t *_jit, jit_int32_t r0, jit_word_t i0) { jit_int32_t reg; reg = jit_get_reg_but_zero(0); movi(rn(reg), i0); ldr_d(r0, rn(reg)); jit_unget_reg_but_zero(reg); } static void _ldxr_f(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1, jit_int32_t r2) { jit_int32_t reg; reg = jit_get_reg_but_zero(0); movr(rn(reg), r1); addr(rn(reg), rn(reg), r2); ldr_f(r0, rn(reg)); jit_unget_reg_but_zero(reg); } static void _ldxr_d(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1, jit_int32_t r2) { jit_int32_t reg; reg = jit_get_reg_but_zero(0); movr(rn(reg), r1); addr(rn(reg), rn(reg), r2); ldr_d(r0, rn(reg)); jit_unget_reg_but_zero(reg); } static void _ldxi_f(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1, jit_word_t i0) { jit_int32_t reg; if (u12_p(i0)) LE(r0, i0, 0, r1); else if (s20_p(i0)) LEY(r0, x20(i0), 0, r1); else { reg = jit_get_reg_but_zero(0); movi(rn(reg), i0); addr(rn(reg), rn(reg), r1); ldr_f(r0, rn(reg)); jit_unget_reg_but_zero(reg); } } static void _ldxi_d(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1, jit_word_t i0) { jit_int32_t reg; if (u12_p(i0)) LD(r0, i0, 0, r1); else if (s20_p(i0)) LDY(r0, x20(i0), 0, r1); else { reg = jit_get_reg_but_zero(0); movi(rn(reg), i0); addr(rn(reg), rn(reg), r1); ldr_d(r0, rn(reg)); jit_unget_reg_but_zero(reg); } } static void _sti_f(jit_state_t *_jit, jit_word_t i0, jit_int32_t r0) { jit_int32_t reg; reg = jit_get_reg_but_zero(0); movi(rn(reg), i0); str_f(rn(reg), r0); jit_unget_reg_but_zero(reg); } static void _sti_d(jit_state_t *_jit, jit_word_t i0, jit_int32_t r0) { jit_int32_t reg; reg = jit_get_reg_but_zero(0); movi(rn(reg), i0); str_d(rn(reg), r0); jit_unget_reg_but_zero(reg); } static void _stxr_f(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1, jit_int32_t r2) { jit_int32_t reg; reg = jit_get_reg_but_zero(0); movr(rn(reg), r0); addr(rn(reg), rn(reg), r1); str_f(rn(reg), r2); jit_unget_reg_but_zero(reg); } static void _stxr_d(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1, jit_int32_t r2) { jit_int32_t reg; reg = jit_get_reg_but_zero(0); movr(rn(reg), r0); addr(rn(reg), rn(reg), r1); str_d(rn(reg), r2); jit_unget_reg_but_zero(reg); } static void _stxi_f(jit_state_t *_jit, jit_word_t i0, jit_int32_t r0, jit_int32_t r1) { jit_int32_t reg; if (u12_p(i0)) STE(r1, i0, 0, r0); else if (s20_p(i0)) STEY(r1, x20(i0), 0, r0); else { reg = jit_get_reg_but_zero(0); movi(rn(reg), i0); addr(rn(reg), rn(reg), r0); str_f(rn(reg), r1); jit_unget_reg_but_zero(reg); } } static void _stxi_d(jit_state_t *_jit, jit_word_t i0, jit_int32_t r0, jit_int32_t r1) { jit_int32_t reg; if (u12_p(i0)) STD(r1, i0, 0, r0); else if (s20_p(i0)) STDY(r1, x20(i0), 0, r0); else { reg = jit_get_reg_but_zero(0); movi(rn(reg), i0); addr(rn(reg), rn(reg), r0); str_d(rn(reg), r1); jit_unget_reg_but_zero(reg); } } static void _uneqr_f(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1, jit_int32_t r2) { jit_word_t unord, eq; movi(r0, 1); /* set to one */ CEBR(r1, r2); unord = _jit->pc.w; /* keep set to one if unord */ BRC(CC_O, 0); eq = _jit->pc.w; BRC(CC_E, 0); /* keep set to one if eq */ movi(r0, 0); /* set to zero */ patch_at(unord, _jit->pc.w); patch_at(eq, _jit->pc.w); } static void _uneqr_d(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1, jit_int32_t r2) { jit_word_t unord, eq; movi(r0, 1); /* set to one */ CDBR(r1, r2); unord = _jit->pc.w; /* keep set to one if unord */ BRC(CC_O, 0); eq = _jit->pc.w; BRC(CC_E, 0); /* keep set to one if eq */ movi(r0, 0); /* set to zero */ patch_at(unord, _jit->pc.w); patch_at(eq, _jit->pc.w); } static void _ltgtr_f(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1, jit_int32_t r2) { jit_word_t unord, eq; movi(r0, 0); /* set to zero */ CEBR(r1, r2); unord = _jit->pc.w; /* keep set to zero if unord */ BRC(CC_O, 0); eq = _jit->pc.w; BRC(CC_E, 0); /* keep set to zero if eq */ movi(r0, 1); /* set to one */ patch_at(unord, _jit->pc.w); patch_at(eq, _jit->pc.w); } static void _ltgtr_d(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1, jit_int32_t r2) { jit_word_t unord, eq; movi(r0, 0); /* set to zero */ CDBR(r1, r2); unord = _jit->pc.w; /* keep set to zero if unord */ BRC(CC_O, 0); eq = _jit->pc.w; BRC(CC_E, 0); /* keep set to zero if eq */ movi(r0, 1); /* set to one */ patch_at(unord, _jit->pc.w); patch_at(eq, _jit->pc.w); } static void _vaarg_d(jit_state_t *_jit, jit_int32_t r0, jit_int32_t r1) { jit_int32_t rg0; jit_int32_t rg1; jit_int32_t rg2; jit_word_t ge_code; jit_word_t lt_code; assert(_jitc->function->self.call & jit_call_varargs); rg0 = jit_get_reg_but_zero(jit_class_gpr); rg1 = jit_get_reg_but_zero(jit_class_gpr); /* Load the fp offset in save area in the first temporary. */ ldxi(rn(rg0), r1, offsetof(jit_va_list_t, fpoff)); /* Jump over if there are no remaining arguments in the save area. */ ge_code = bgei_p(_jit->pc.w, rn(rg0), NUM_FLOAT_REG_ARGS); /* Load the save area pointer in the second temporary. */ ldxi(rn(rg1), r1, offsetof(jit_va_list_t, save)); /* Scale offset. */ rg2 = jit_get_reg_but_zero(0); lshi(rn(rg2), rn(rg0), 3); /* Add offset to saved area */ addi(rn(rg2), rn(rg2), 16 * sizeof(jit_word_t)); /* Load the vararg argument in the first argument. */ ldxr_d(r0, rn(rg1), rn(rg2)); jit_unget_reg_but_zero(rg2); /* Update the fp offset. */ addi(rn(rg0), rn(rg0), 1); stxi(offsetof(jit_va_list_t, fpoff), r1, rn(rg0)); /* Will only need one temporary register below. */ jit_unget_reg_but_zero(rg1); /* Jump over overflow code. */ lt_code = jmpi_p(_jit->pc.w); /* Where to land if argument is in overflow area. */ patch_at(ge_code, _jit->pc.w); /* Load overflow pointer. */ ldxi(rn(rg0), r1, offsetof(jit_va_list_t, over)); /* Load argument. */ ldr_d(r0, rn(rg0)); /* Update overflow pointer. */ addi(rn(rg0), rn(rg0), sizeof(jit_float64_t)); stxi(offsetof(jit_va_list_t, over), r1, rn(rg0)); /* Where to land if argument is in save area. */ patch_at(lt_code, _jit->pc.w); jit_unget_reg_but_zero(rg0); } #endif