/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Mupen64plus/PCSX - assem_arm.c * * Copyright (C) 2009-2011 Ari64 * * Copyright (C) 2010-2011 GraÅžvydas "notaz" Ignotas * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ #include "../../gte.h" #define FLAGLESS #include "../../gte.h" #undef FLAGLESS #include "../../gte_arm.h" #include "../../gte_neon.h" #include "pcnt.h" #include "arm_features.h" #if defined(BASE_ADDR_FIXED) #elif defined(BASE_ADDR_DYNAMIC) char *translation_cache; #else char translation_cache[1 << TARGET_SIZE_2] __attribute__((aligned(4096))); #endif #ifndef __MACH__ #define CALLER_SAVE_REGS 0x100f #else #define CALLER_SAVE_REGS 0x120f #endif #define unused __attribute__((unused)) extern int cycle_count; extern int last_count; extern int pcaddr; extern int pending_exception; extern int branch_target; extern uint64_t readmem_dword; extern void *dynarec_local; extern u_int mini_ht[32][2]; void indirect_jump_indexed(); void indirect_jump(); void do_interrupt(); void jump_vaddr_r0(); void jump_vaddr_r1(); void jump_vaddr_r2(); void jump_vaddr_r3(); void jump_vaddr_r4(); void jump_vaddr_r5(); void jump_vaddr_r6(); void jump_vaddr_r7(); void jump_vaddr_r8(); void jump_vaddr_r9(); void jump_vaddr_r10(); void jump_vaddr_r12(); const u_int jump_vaddr_reg[16] = { (int)jump_vaddr_r0, (int)jump_vaddr_r1, (int)jump_vaddr_r2, (int)jump_vaddr_r3, (int)jump_vaddr_r4, (int)jump_vaddr_r5, (int)jump_vaddr_r6, (int)jump_vaddr_r7, (int)jump_vaddr_r8, (int)jump_vaddr_r9, (int)jump_vaddr_r10, 0, (int)jump_vaddr_r12, 0, 0, 0}; void invalidate_addr_r0(); void invalidate_addr_r1(); void invalidate_addr_r2(); void invalidate_addr_r3(); void invalidate_addr_r4(); void invalidate_addr_r5(); void invalidate_addr_r6(); void invalidate_addr_r7(); void invalidate_addr_r8(); void invalidate_addr_r9(); void invalidate_addr_r10(); void invalidate_addr_r12(); const u_int invalidate_addr_reg[16] = { (int)invalidate_addr_r0, (int)invalidate_addr_r1, (int)invalidate_addr_r2, (int)invalidate_addr_r3, (int)invalidate_addr_r4, (int)invalidate_addr_r5, (int)invalidate_addr_r6, (int)invalidate_addr_r7, (int)invalidate_addr_r8, (int)invalidate_addr_r9, (int)invalidate_addr_r10, 0, (int)invalidate_addr_r12, 0, 0, 0}; static u_int needs_clear_cache[1<<(TARGET_SIZE_2-17)]; /* Linker */ static void set_jump_target(int addr,u_int target) { u_char *ptr=(u_char *)addr; u_int *ptr2=(u_int *)ptr; if(ptr[3]==0xe2) { assert((target-(u_int)ptr2-8)<1024); assert((addr&3)==0); assert((target&3)==0); *ptr2=(*ptr2&0xFFFFF000)|((target-(u_int)ptr2-8)>>2)|0xF00; //printf("target=%x addr=%x insn=%x\n",target,addr,*ptr2); } else if(ptr[3]==0x72) { // generated by emit_jno_unlikely if((target-(u_int)ptr2-8)<1024) { assert((addr&3)==0); assert((target&3)==0); *ptr2=(*ptr2&0xFFFFF000)|((target-(u_int)ptr2-8)>>2)|0xF00; } else if((target-(u_int)ptr2-8)<4096&&!((target-(u_int)ptr2-8)&15)) { assert((addr&3)==0); assert((target&3)==0); *ptr2=(*ptr2&0xFFFFF000)|((target-(u_int)ptr2-8)>>4)|0xE00; } else *ptr2=(0x7A000000)|(((target-(u_int)ptr2-8)<<6)>>8); } else { assert((ptr[3]&0x0e)==0xa); *ptr2=(*ptr2&0xFF000000)|(((target-(u_int)ptr2-8)<<6)>>8); } } // This optionally copies the instruction from the target of the branch into // the space before the branch. Works, but the difference in speed is // usually insignificant. #if 0 static void set_jump_target_fillslot(int addr,u_int target,int copy) { u_char *ptr=(u_char *)addr; u_int *ptr2=(u_int *)ptr; assert(!copy||ptr2[-1]==0xe28dd000); if(ptr[3]==0xe2) { assert(!copy); assert((target-(u_int)ptr2-8)<4096); *ptr2=(*ptr2&0xFFFFF000)|(target-(u_int)ptr2-8); } else { assert((ptr[3]&0x0e)==0xa); u_int target_insn=*(u_int *)target; if((target_insn&0x0e100000)==0) { // ALU, no immediate, no flags copy=0; } if((target_insn&0x0c100000)==0x04100000) { // Load copy=0; } if(target_insn&0x08000000) { copy=0; } if(copy) { ptr2[-1]=target_insn; target+=4; } *ptr2=(*ptr2&0xFF000000)|(((target-(u_int)ptr2-8)<<6)>>8); } } #endif /* Literal pool */ static void add_literal(int addr,int val) { assert(literalcount>6)+8; } // Find the "clean" entry point from a "dirty" entry point // by skipping past the call to verify_code static u_int get_clean_addr(int addr) { int *ptr=(int *)addr; #ifndef HAVE_ARMV7 ptr+=4; #else ptr+=6; #endif if((*ptr&0xFF000000)!=0xeb000000) ptr++; assert((*ptr&0xFF000000)==0xeb000000); // bl instruction ptr++; if((*ptr&0xFF000000)==0xea000000) { return (int)ptr+((*ptr<<8)>>6)+8; // follow jump } return (u_int)ptr; } static int verify_dirty(u_int *ptr) { #ifndef HAVE_ARMV7 // get from literal pool assert((*ptr&0xFFFF0000)==0xe59f0000); u_int offset=*ptr&0xfff; u_int *l_ptr=(void *)ptr+offset+8; u_int source=l_ptr[0]; u_int copy=l_ptr[1]; u_int len=l_ptr[2]; ptr+=4; #else // ARMv7 movw/movt assert((*ptr&0xFFF00000)==0xe3000000); u_int source=(ptr[0]&0xFFF)+((ptr[0]>>4)&0xF000)+((ptr[2]<<16)&0xFFF0000)+((ptr[2]<<12)&0xF0000000); u_int copy=(ptr[1]&0xFFF)+((ptr[1]>>4)&0xF000)+((ptr[3]<<16)&0xFFF0000)+((ptr[3]<<12)&0xF0000000); u_int len=(ptr[4]&0xFFF)+((ptr[4]>>4)&0xF000); ptr+=6; #endif if((*ptr&0xFF000000)!=0xeb000000) ptr++; assert((*ptr&0xFF000000)==0xeb000000); // bl instruction //printf("verify_dirty: %x %x %x\n",source,copy,len); return !memcmp((void *)source,(void *)copy,len); } // This doesn't necessarily find all clean entry points, just // guarantees that it's not dirty static int isclean(int addr) { #ifndef HAVE_ARMV7 u_int *ptr=((u_int *)addr)+4; #else u_int *ptr=((u_int *)addr)+6; #endif if((*ptr&0xFF000000)!=0xeb000000) ptr++; if((*ptr&0xFF000000)!=0xeb000000) return 1; // bl instruction if((int)ptr+((*ptr<<8)>>6)+8==(int)verify_code) return 0; if((int)ptr+((*ptr<<8)>>6)+8==(int)verify_code_vm) return 0; if((int)ptr+((*ptr<<8)>>6)+8==(int)verify_code_ds) return 0; return 1; } // get source that block at addr was compiled from (host pointers) static void get_bounds(int addr,u_int *start,u_int *end) { u_int *ptr=(u_int *)addr; #ifndef HAVE_ARMV7 // get from literal pool assert((*ptr&0xFFFF0000)==0xe59f0000); u_int offset=*ptr&0xfff; u_int *l_ptr=(void *)ptr+offset+8; u_int source=l_ptr[0]; //u_int copy=l_ptr[1]; u_int len=l_ptr[2]; ptr+=4; #else // ARMv7 movw/movt assert((*ptr&0xFFF00000)==0xe3000000); u_int source=(ptr[0]&0xFFF)+((ptr[0]>>4)&0xF000)+((ptr[2]<<16)&0xFFF0000)+((ptr[2]<<12)&0xF0000000); //u_int copy=(ptr[1]&0xFFF)+((ptr[1]>>4)&0xF000)+((ptr[3]<<16)&0xFFF0000)+((ptr[3]<<12)&0xF0000000); u_int len=(ptr[4]&0xFFF)+((ptr[4]>>4)&0xF000); ptr+=6; #endif if((*ptr&0xFF000000)!=0xeb000000) ptr++; assert((*ptr&0xFF000000)==0xeb000000); // bl instruction *start=source; *end=source+len; } /* Register allocation */ // Note: registers are allocated clean (unmodified state) // if you intend to modify the register, you must call dirty_reg(). static void alloc_reg(struct regstat *cur,int i,signed char reg) { int r,hr; int preferred_reg = (reg&7); if(reg==CCREG) preferred_reg=HOST_CCREG; if(reg==PTEMP||reg==FTEMP) preferred_reg=12; // Don't allocate unused registers if((cur->u>>reg)&1) return; // see if it's already allocated for(hr=0;hrregmap[hr]==reg) return; } // Keep the same mapping if the register was already allocated in a loop preferred_reg = loop_reg(i,reg,preferred_reg); // Try to allocate the preferred register if(cur->regmap[preferred_reg]==-1) { cur->regmap[preferred_reg]=reg; cur->dirty&=~(1<isconst&=~(1<regmap[preferred_reg]; if(r<64&&((cur->u>>r)&1)) { cur->regmap[preferred_reg]=reg; cur->dirty&=~(1<isconst&=~(1<=64&&((cur->uu>>(r&63))&1)) { cur->regmap[preferred_reg]=reg; cur->dirty&=~(1<isconst&=~(1<regmap[hr]; if(r>=0) { if(r<64) { if((cur->u>>r)&1) {cur->regmap[hr]=-1;break;} } else { if((cur->uu>>(r&63))&1) {cur->regmap[hr]=-1;break;} } } } // Try to allocate any available register, but prefer // registers that have not been used recently. if(i>0) { for(hr=0;hrregmap[hr]==-1) { if(regs[i-1].regmap[hr]!=rs1[i-1]&®s[i-1].regmap[hr]!=rs2[i-1]&®s[i-1].regmap[hr]!=rt1[i-1]&®s[i-1].regmap[hr]!=rt2[i-1]) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<regmap[hr]==-1) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<regmap[0],cur->regmap[1],cur->regmap[2],cur->regmap[3],cur->regmap[5],cur->regmap[6],cur->regmap[7]); //printf("hsn(%x): %d %d %d %d %d %d %d\n",start+i*4,hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]); if(i>0) { // Don't evict the cycle count at entry points, otherwise the entry // stub will have to write it. if(bt[i]&&hsn[CCREG]>2) hsn[CCREG]=2; if(i>1&&hsn[CCREG]>2&&(itype[i-2]==RJUMP||itype[i-2]==UJUMP||itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP)) hsn[CCREG]=2; for(j=10;j>=3;j--) { // Alloc preferred register if available if(hsn[r=cur->regmap[preferred_reg]&63]==j) { for(hr=0;hrregmap[hr]&63)==r) { cur->regmap[hr]=-1; cur->dirty&=~(1<isconst&=~(1<regmap[preferred_reg]=reg; return; } for(r=1;r<=MAXREG;r++) { if(hsn[r]==j&&r!=rs1[i-1]&&r!=rs2[i-1]&&r!=rt1[i-1]&&r!=rt2[i-1]) { for(hr=0;hrregmap[hr]==r+64) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<regmap[hr]==r) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<=0;j--) { for(r=1;r<=MAXREG;r++) { if(hsn[r]==j) { for(hr=0;hrregmap[hr]==r+64) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<regmap[hr]==r) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<uu>>reg)&1) return; // see if the upper half is already allocated for(hr=0;hrregmap[hr]==reg+64) return; } // Keep the same mapping if the register was already allocated in a loop preferred_reg = loop_reg(i,reg,preferred_reg); // Try to allocate the preferred register if(cur->regmap[preferred_reg]==-1) { cur->regmap[preferred_reg]=reg|64; cur->dirty&=~(1<isconst&=~(1<regmap[preferred_reg]; if(r<64&&((cur->u>>r)&1)) { cur->regmap[preferred_reg]=reg|64; cur->dirty&=~(1<isconst&=~(1<=64&&((cur->uu>>(r&63))&1)) { cur->regmap[preferred_reg]=reg|64; cur->dirty&=~(1<isconst&=~(1<=0;hr--) { r=cur->regmap[hr]; if(r>=0) { if(r<64) { if((cur->u>>r)&1) {cur->regmap[hr]=-1;break;} } else { if((cur->uu>>(r&63))&1) {cur->regmap[hr]=-1;break;} } } } // Try to allocate any available register, but prefer // registers that have not been used recently. if(i>0) { for(hr=0;hrregmap[hr]==-1) { if(regs[i-1].regmap[hr]!=rs1[i-1]&®s[i-1].regmap[hr]!=rs2[i-1]&®s[i-1].regmap[hr]!=rt1[i-1]&®s[i-1].regmap[hr]!=rt2[i-1]) { cur->regmap[hr]=reg|64; cur->dirty&=~(1<isconst&=~(1<regmap[hr]==-1) { cur->regmap[hr]=reg|64; cur->dirty&=~(1<isconst&=~(1<regmap[0],cur->regmap[1],cur->regmap[2],cur->regmap[3],cur->regmap[5],cur->regmap[6],cur->regmap[7]); //printf("hsn(%x): %d %d %d %d %d %d %d\n",start+i*4,hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]); if(i>0) { // Don't evict the cycle count at entry points, otherwise the entry // stub will have to write it. if(bt[i]&&hsn[CCREG]>2) hsn[CCREG]=2; if(i>1&&hsn[CCREG]>2&&(itype[i-2]==RJUMP||itype[i-2]==UJUMP||itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP)) hsn[CCREG]=2; for(j=10;j>=3;j--) { // Alloc preferred register if available if(hsn[r=cur->regmap[preferred_reg]&63]==j) { for(hr=0;hrregmap[hr]&63)==r) { cur->regmap[hr]=-1; cur->dirty&=~(1<isconst&=~(1<regmap[preferred_reg]=reg|64; return; } for(r=1;r<=MAXREG;r++) { if(hsn[r]==j&&r!=rs1[i-1]&&r!=rs2[i-1]&&r!=rt1[i-1]&&r!=rt2[i-1]) { for(hr=0;hrregmap[hr]==r+64) { cur->regmap[hr]=reg|64; cur->dirty&=~(1<isconst&=~(1<regmap[hr]==r) { cur->regmap[hr]=reg|64; cur->dirty&=~(1<isconst&=~(1<=0;j--) { for(r=1;r<=MAXREG;r++) { if(hsn[r]==j) { for(hr=0;hrregmap[hr]==r+64) { cur->regmap[hr]=reg|64; cur->dirty&=~(1<isconst&=~(1<regmap[hr]==r) { cur->regmap[hr]=reg|64; cur->dirty&=~(1<isconst&=~(1<regmap[hr]==reg) return; } // Try to allocate any available register for(hr=HOST_REGS-1;hr>=0;hr--) { if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<=0;hr--) { r=cur->regmap[hr]; if(r>=0) { if(r<64) { if((cur->u>>r)&1) { if(i==0||((unneeded_reg[i-1]>>r)&1)) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<uu>>(r&63))&1) { if(i==0||((unneeded_reg_upper[i-1]>>(r&63))&1)) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]); if(i>0) { // Don't evict the cycle count at entry points, otherwise the entry // stub will have to write it. if(bt[i]&&hsn[CCREG]>2) hsn[CCREG]=2; if(i>1&&hsn[CCREG]>2&&(itype[i-2]==RJUMP||itype[i-2]==UJUMP||itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP)) hsn[CCREG]=2; for(j=10;j>=3;j--) { for(r=1;r<=MAXREG;r++) { if(hsn[r]==j&&r!=rs1[i-1]&&r!=rs2[i-1]&&r!=rt1[i-1]&&r!=rt2[i-1]) { for(hr=0;hr2) { if(cur->regmap[hr]==r+64) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<2) { if(cur->regmap[hr]==r) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<=0;j--) { for(r=1;r<=MAXREG;r++) { if(hsn[r]==j) { for(hr=0;hrregmap[hr]==r+64) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<regmap[hr]==r) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<regmap[n]==reg) { dirty=(cur->dirty>>n)&1; cur->regmap[n]=-1; } } cur->regmap[hr]=reg; cur->dirty&=~(1<dirty|=dirty<isconst&=~(1<0) { if(imm<256) { *encoded=((i&30)<<7)|imm; return 1; } imm=(imm>>2)|(imm<<30);i-=2; } return 0; } static void genimm_checked(u_int imm,u_int *encoded) { u_int ret=genimm(imm,encoded); assert(ret); (void)ret; } static u_int genjmp(u_int addr) { int offset=addr-(int)out-8; if(offset<-33554432||offset>=33554432) { if (addr>2) { SysPrintf("genjmp: out of range: %08x\n", offset); exit(1); } return 0; } return ((u_int)offset>>2)&0xffffff; } static void emit_mov(int rs,int rt) { assem_debug("mov %s,%s\n",regname[rt],regname[rs]); output_w32(0xe1a00000|rd_rn_rm(rt,0,rs)); } static void emit_movs(int rs,int rt) { assem_debug("movs %s,%s\n",regname[rt],regname[rs]); output_w32(0xe1b00000|rd_rn_rm(rt,0,rs)); } static void emit_add(int rs1,int rs2,int rt) { assem_debug("add %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe0800000|rd_rn_rm(rt,rs1,rs2)); } static void emit_adds(int rs1,int rs2,int rt) { assem_debug("adds %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe0900000|rd_rn_rm(rt,rs1,rs2)); } static void emit_adcs(int rs1,int rs2,int rt) { assem_debug("adcs %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe0b00000|rd_rn_rm(rt,rs1,rs2)); } static void emit_sbc(int rs1,int rs2,int rt) { assem_debug("sbc %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe0c00000|rd_rn_rm(rt,rs1,rs2)); } static void emit_sbcs(int rs1,int rs2,int rt) { assem_debug("sbcs %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe0d00000|rd_rn_rm(rt,rs1,rs2)); } static void emit_neg(int rs, int rt) { assem_debug("rsb %s,%s,#0\n",regname[rt],regname[rs]); output_w32(0xe2600000|rd_rn_rm(rt,rs,0)); } static void emit_negs(int rs, int rt) { assem_debug("rsbs %s,%s,#0\n",regname[rt],regname[rs]); output_w32(0xe2700000|rd_rn_rm(rt,rs,0)); } static void emit_sub(int rs1,int rs2,int rt) { assem_debug("sub %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe0400000|rd_rn_rm(rt,rs1,rs2)); } static void emit_subs(int rs1,int rs2,int rt) { assem_debug("subs %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe0500000|rd_rn_rm(rt,rs1,rs2)); } static void emit_zeroreg(int rt) { assem_debug("mov %s,#0\n",regname[rt]); output_w32(0xe3a00000|rd_rn_rm(rt,0,0)); } static void emit_loadlp(u_int imm,u_int rt) { add_literal((int)out,imm); assem_debug("ldr %s,pc+? [=%x]\n",regname[rt],imm); output_w32(0xe5900000|rd_rn_rm(rt,15,0)); } static void emit_movw(u_int imm,u_int rt) { assert(imm<65536); assem_debug("movw %s,#%d (0x%x)\n",regname[rt],imm,imm); output_w32(0xe3000000|rd_rn_rm(rt,0,0)|(imm&0xfff)|((imm<<4)&0xf0000)); } static void emit_movt(u_int imm,u_int rt) { assem_debug("movt %s,#%d (0x%x)\n",regname[rt],imm&0xffff0000,imm&0xffff0000); output_w32(0xe3400000|rd_rn_rm(rt,0,0)|((imm>>16)&0xfff)|((imm>>12)&0xf0000)); } static void emit_movimm(u_int imm,u_int rt) { u_int armval; if(genimm(imm,&armval)) { assem_debug("mov %s,#%d\n",regname[rt],imm); output_w32(0xe3a00000|rd_rn_rm(rt,0,0)|armval); }else if(genimm(~imm,&armval)) { assem_debug("mvn %s,#%d\n",regname[rt],imm); output_w32(0xe3e00000|rd_rn_rm(rt,0,0)|armval); }else if(imm<65536) { #ifndef HAVE_ARMV7 assem_debug("mov %s,#%d\n",regname[rt],imm&0xFF00); output_w32(0xe3a00000|rd_rn_imm_shift(rt,0,imm>>8,8)); assem_debug("add %s,%s,#%d\n",regname[rt],regname[rt],imm&0xFF); output_w32(0xe2800000|rd_rn_imm_shift(rt,rt,imm&0xff,0)); #else emit_movw(imm,rt); #endif }else{ #ifndef HAVE_ARMV7 emit_loadlp(imm,rt); #else emit_movw(imm&0x0000FFFF,rt); emit_movt(imm&0xFFFF0000,rt); #endif } } static void emit_pcreladdr(u_int rt) { assem_debug("add %s,pc,#?\n",regname[rt]); output_w32(0xe2800000|rd_rn_rm(rt,15,0)); } static void emit_loadreg(int r, int hr) { if(r&64) { SysPrintf("64bit load in 32bit mode!\n"); assert(0); return; } if((r&63)==0) emit_zeroreg(hr); else { int addr=((int)reg)+((r&63)<>4); if((r&63)==HIREG) addr=(int)&hi+((r&64)>>4); if((r&63)==LOREG) addr=(int)&lo+((r&64)>>4); if(r==CCREG) addr=(int)&cycle_count; if(r==CSREG) addr=(int)&Status; if(r==FSREG) addr=(int)&FCR31; if(r==INVCP) addr=(int)&invc_ptr; u_int offset = addr-(u_int)&dynarec_local; assert(offset<4096); assem_debug("ldr %s,fp+%d\n",regname[hr],offset); output_w32(0xe5900000|rd_rn_rm(hr,FP,0)|offset); } } static void emit_storereg(int r, int hr) { if(r&64) { SysPrintf("64bit store in 32bit mode!\n"); assert(0); return; } int addr=((int)reg)+((r&63)<>4); if((r&63)==HIREG) addr=(int)&hi+((r&64)>>4); if((r&63)==LOREG) addr=(int)&lo+((r&64)>>4); if(r==CCREG) addr=(int)&cycle_count; if(r==FSREG) addr=(int)&FCR31; u_int offset = addr-(u_int)&dynarec_local; assert(offset<4096); assem_debug("str %s,fp+%d\n",regname[hr],offset); output_w32(0xe5800000|rd_rn_rm(hr,FP,0)|offset); } static void emit_test(int rs, int rt) { assem_debug("tst %s,%s\n",regname[rs],regname[rt]); output_w32(0xe1100000|rd_rn_rm(0,rs,rt)); } static void emit_testimm(int rs,int imm) { u_int armval; assem_debug("tst %s,#%d\n",regname[rs],imm); genimm_checked(imm,&armval); output_w32(0xe3100000|rd_rn_rm(0,rs,0)|armval); } static void emit_testeqimm(int rs,int imm) { u_int armval; assem_debug("tsteq %s,$%d\n",regname[rs],imm); genimm_checked(imm,&armval); output_w32(0x03100000|rd_rn_rm(0,rs,0)|armval); } static void emit_not(int rs,int rt) { assem_debug("mvn %s,%s\n",regname[rt],regname[rs]); output_w32(0xe1e00000|rd_rn_rm(rt,0,rs)); } static void emit_mvnmi(int rs,int rt) { assem_debug("mvnmi %s,%s\n",regname[rt],regname[rs]); output_w32(0x41e00000|rd_rn_rm(rt,0,rs)); } static void emit_and(u_int rs1,u_int rs2,u_int rt) { assem_debug("and %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe0000000|rd_rn_rm(rt,rs1,rs2)); } static void emit_or(u_int rs1,u_int rs2,u_int rt) { assem_debug("orr %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe1800000|rd_rn_rm(rt,rs1,rs2)); } static void emit_or_and_set_flags(int rs1,int rs2,int rt) { assem_debug("orrs %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe1900000|rd_rn_rm(rt,rs1,rs2)); } static void emit_orrshl_imm(u_int rs,u_int imm,u_int rt) { assert(rs<16); assert(rt<16); assert(imm<32); assem_debug("orr %s,%s,%s,lsl #%d\n",regname[rt],regname[rt],regname[rs],imm); output_w32(0xe1800000|rd_rn_rm(rt,rt,rs)|(imm<<7)); } static void emit_orrshr_imm(u_int rs,u_int imm,u_int rt) { assert(rs<16); assert(rt<16); assert(imm<32); assem_debug("orr %s,%s,%s,lsr #%d\n",regname[rt],regname[rt],regname[rs],imm); output_w32(0xe1800020|rd_rn_rm(rt,rt,rs)|(imm<<7)); } static void emit_xor(u_int rs1,u_int rs2,u_int rt) { assem_debug("eor %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe0200000|rd_rn_rm(rt,rs1,rs2)); } static void emit_addimm(u_int rs,int imm,u_int rt) { assert(rs<16); assert(rt<16); if(imm!=0) { u_int armval; if(genimm(imm,&armval)) { assem_debug("add %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe2800000|rd_rn_rm(rt,rs,0)|armval); }else if(genimm(-imm,&armval)) { assem_debug("sub %s,%s,#%d\n",regname[rt],regname[rs],-imm); output_w32(0xe2400000|rd_rn_rm(rt,rs,0)|armval); #ifdef HAVE_ARMV7 }else if(rt!=rs&&(u_int)imm<65536) { emit_movw(imm&0x0000ffff,rt); emit_add(rs,rt,rt); }else if(rt!=rs&&(u_int)-imm<65536) { emit_movw(-imm&0x0000ffff,rt); emit_sub(rs,rt,rt); #endif }else if((u_int)-imm<65536) { assem_debug("sub %s,%s,#%d\n",regname[rt],regname[rs],(-imm)&0xFF00); assem_debug("sub %s,%s,#%d\n",regname[rt],regname[rt],(-imm)&0xFF); output_w32(0xe2400000|rd_rn_imm_shift(rt,rs,(-imm)>>8,8)); output_w32(0xe2400000|rd_rn_imm_shift(rt,rt,(-imm)&0xff,0)); }else { do { int shift = (ffs(imm) - 1) & ~1; int imm8 = imm & (0xff << shift); genimm_checked(imm8,&armval); assem_debug("add %s,%s,#0x%x\n",regname[rt],regname[rs],imm8); output_w32(0xe2800000|rd_rn_rm(rt,rs,0)|armval); rs = rt; imm &= ~imm8; } while (imm != 0); } } else if(rs!=rt) emit_mov(rs,rt); } static void emit_addimm_and_set_flags(int imm,int rt) { assert(imm>-65536&&imm<65536); u_int armval; if(genimm(imm,&armval)) { assem_debug("adds %s,%s,#%d\n",regname[rt],regname[rt],imm); output_w32(0xe2900000|rd_rn_rm(rt,rt,0)|armval); }else if(genimm(-imm,&armval)) { assem_debug("subs %s,%s,#%d\n",regname[rt],regname[rt],imm); output_w32(0xe2500000|rd_rn_rm(rt,rt,0)|armval); }else if(imm<0) { assem_debug("sub %s,%s,#%d\n",regname[rt],regname[rt],(-imm)&0xFF00); assem_debug("subs %s,%s,#%d\n",regname[rt],regname[rt],(-imm)&0xFF); output_w32(0xe2400000|rd_rn_imm_shift(rt,rt,(-imm)>>8,8)); output_w32(0xe2500000|rd_rn_imm_shift(rt,rt,(-imm)&0xff,0)); }else{ assem_debug("add %s,%s,#%d\n",regname[rt],regname[rt],imm&0xFF00); assem_debug("adds %s,%s,#%d\n",regname[rt],regname[rt],imm&0xFF); output_w32(0xe2800000|rd_rn_imm_shift(rt,rt,imm>>8,8)); output_w32(0xe2900000|rd_rn_imm_shift(rt,rt,imm&0xff,0)); } } static void emit_addimm_no_flags(u_int imm,u_int rt) { emit_addimm(rt,imm,rt); } static void emit_addnop(u_int r) { assert(r<16); assem_debug("add %s,%s,#0 (nop)\n",regname[r],regname[r]); output_w32(0xe2800000|rd_rn_rm(r,r,0)); } static void emit_adcimm(u_int rs,int imm,u_int rt) { u_int armval; genimm_checked(imm,&armval); assem_debug("adc %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe2a00000|rd_rn_rm(rt,rs,0)|armval); } static void emit_rscimm(int rs,int imm,u_int rt) { assert(0); u_int armval; genimm_checked(imm,&armval); assem_debug("rsc %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe2e00000|rd_rn_rm(rt,rs,0)|armval); } static void emit_addimm64_32(int rsh,int rsl,int imm,int rth,int rtl) { // TODO: if(genimm(imm,&armval)) ... // else emit_movimm(imm,HOST_TEMPREG); emit_adds(HOST_TEMPREG,rsl,rtl); emit_adcimm(rsh,0,rth); } static void emit_andimm(int rs,int imm,int rt) { u_int armval; if(imm==0) { emit_zeroreg(rt); }else if(genimm(imm,&armval)) { assem_debug("and %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe2000000|rd_rn_rm(rt,rs,0)|armval); }else if(genimm(~imm,&armval)) { assem_debug("bic %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe3c00000|rd_rn_rm(rt,rs,0)|armval); }else if(imm==65535) { #ifndef HAVE_ARMV6 assem_debug("bic %s,%s,#FF000000\n",regname[rt],regname[rs]); output_w32(0xe3c00000|rd_rn_rm(rt,rs,0)|0x4FF); assem_debug("bic %s,%s,#00FF0000\n",regname[rt],regname[rt]); output_w32(0xe3c00000|rd_rn_rm(rt,rt,0)|0x8FF); #else assem_debug("uxth %s,%s\n",regname[rt],regname[rs]); output_w32(0xe6ff0070|rd_rn_rm(rt,0,rs)); #endif }else{ assert(imm>0&&imm<65535); #ifndef HAVE_ARMV7 assem_debug("mov r14,#%d\n",imm&0xFF00); output_w32(0xe3a00000|rd_rn_imm_shift(HOST_TEMPREG,0,imm>>8,8)); assem_debug("add r14,r14,#%d\n",imm&0xFF); output_w32(0xe2800000|rd_rn_imm_shift(HOST_TEMPREG,HOST_TEMPREG,imm&0xff,0)); #else emit_movw(imm,HOST_TEMPREG); #endif assem_debug("and %s,%s,r14\n",regname[rt],regname[rs]); output_w32(0xe0000000|rd_rn_rm(rt,rs,HOST_TEMPREG)); } } static void emit_orimm(int rs,int imm,int rt) { u_int armval; if(imm==0) { if(rs!=rt) emit_mov(rs,rt); }else if(genimm(imm,&armval)) { assem_debug("orr %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe3800000|rd_rn_rm(rt,rs,0)|armval); }else{ assert(imm>0&&imm<65536); assem_debug("orr %s,%s,#%d\n",regname[rt],regname[rs],imm&0xFF00); assem_debug("orr %s,%s,#%d\n",regname[rt],regname[rs],imm&0xFF); output_w32(0xe3800000|rd_rn_imm_shift(rt,rs,imm>>8,8)); output_w32(0xe3800000|rd_rn_imm_shift(rt,rt,imm&0xff,0)); } } static void emit_xorimm(int rs,int imm,int rt) { u_int armval; if(imm==0) { if(rs!=rt) emit_mov(rs,rt); }else if(genimm(imm,&armval)) { assem_debug("eor %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe2200000|rd_rn_rm(rt,rs,0)|armval); }else{ assert(imm>0&&imm<65536); assem_debug("eor %s,%s,#%d\n",regname[rt],regname[rs],imm&0xFF00); assem_debug("eor %s,%s,#%d\n",regname[rt],regname[rs],imm&0xFF); output_w32(0xe2200000|rd_rn_imm_shift(rt,rs,imm>>8,8)); output_w32(0xe2200000|rd_rn_imm_shift(rt,rt,imm&0xff,0)); } } static void emit_shlimm(int rs,u_int imm,int rt) { assert(imm>0); assert(imm<32); //if(imm==1) ... assem_debug("lsl %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe1a00000|rd_rn_rm(rt,0,rs)|(imm<<7)); } static void emit_lsls_imm(int rs,int imm,int rt) { assert(imm>0); assert(imm<32); assem_debug("lsls %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe1b00000|rd_rn_rm(rt,0,rs)|(imm<<7)); } static unused void emit_lslpls_imm(int rs,int imm,int rt) { assert(imm>0); assert(imm<32); assem_debug("lslpls %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0x51b00000|rd_rn_rm(rt,0,rs)|(imm<<7)); } static void emit_shrimm(int rs,u_int imm,int rt) { assert(imm>0); assert(imm<32); assem_debug("lsr %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe1a00000|rd_rn_rm(rt,0,rs)|0x20|(imm<<7)); } static void emit_sarimm(int rs,u_int imm,int rt) { assert(imm>0); assert(imm<32); assem_debug("asr %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe1a00000|rd_rn_rm(rt,0,rs)|0x40|(imm<<7)); } static void emit_rorimm(int rs,u_int imm,int rt) { assert(imm>0); assert(imm<32); assem_debug("ror %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe1a00000|rd_rn_rm(rt,0,rs)|0x60|(imm<<7)); } static void emit_shldimm(int rs,int rs2,u_int imm,int rt) { assem_debug("shld %%%s,%%%s,%d\n",regname[rt],regname[rs2],imm); assert(imm>0); assert(imm<32); //if(imm==1) ... assem_debug("lsl %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe1a00000|rd_rn_rm(rt,0,rs)|(imm<<7)); assem_debug("orr %s,%s,%s,lsr #%d\n",regname[rt],regname[rt],regname[rs2],32-imm); output_w32(0xe1800020|rd_rn_rm(rt,rt,rs2)|((32-imm)<<7)); } static void emit_shrdimm(int rs,int rs2,u_int imm,int rt) { assem_debug("shrd %%%s,%%%s,%d\n",regname[rt],regname[rs2],imm); assert(imm>0); assert(imm<32); //if(imm==1) ... assem_debug("lsr %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe1a00020|rd_rn_rm(rt,0,rs)|(imm<<7)); assem_debug("orr %s,%s,%s,lsl #%d\n",regname[rt],regname[rt],regname[rs2],32-imm); output_w32(0xe1800000|rd_rn_rm(rt,rt,rs2)|((32-imm)<<7)); } static void emit_signextend16(int rs,int rt) { #ifndef HAVE_ARMV6 emit_shlimm(rs,16,rt); emit_sarimm(rt,16,rt); #else assem_debug("sxth %s,%s\n",regname[rt],regname[rs]); output_w32(0xe6bf0070|rd_rn_rm(rt,0,rs)); #endif } static void emit_signextend8(int rs,int rt) { #ifndef HAVE_ARMV6 emit_shlimm(rs,24,rt); emit_sarimm(rt,24,rt); #else assem_debug("sxtb %s,%s\n",regname[rt],regname[rs]); output_w32(0xe6af0070|rd_rn_rm(rt,0,rs)); #endif } static void emit_shl(u_int rs,u_int shift,u_int rt) { assert(rs<16); assert(rt<16); assert(shift<16); //if(imm==1) ... assem_debug("lsl %s,%s,%s\n",regname[rt],regname[rs],regname[shift]); output_w32(0xe1a00000|rd_rn_rm(rt,0,rs)|0x10|(shift<<8)); } static void emit_shr(u_int rs,u_int shift,u_int rt) { assert(rs<16); assert(rt<16); assert(shift<16); assem_debug("lsr %s,%s,%s\n",regname[rt],regname[rs],regname[shift]); output_w32(0xe1a00000|rd_rn_rm(rt,0,rs)|0x30|(shift<<8)); } static void emit_sar(u_int rs,u_int shift,u_int rt) { assert(rs<16); assert(rt<16); assert(shift<16); assem_debug("asr %s,%s,%s\n",regname[rt],regname[rs],regname[shift]); output_w32(0xe1a00000|rd_rn_rm(rt,0,rs)|0x50|(shift<<8)); } static void emit_orrshl(u_int rs,u_int shift,u_int rt) { assert(rs<16); assert(rt<16); assert(shift<16); assem_debug("orr %s,%s,%s,lsl %s\n",regname[rt],regname[rt],regname[rs],regname[shift]); output_w32(0xe1800000|rd_rn_rm(rt,rt,rs)|0x10|(shift<<8)); } static void emit_orrshr(u_int rs,u_int shift,u_int rt) { assert(rs<16); assert(rt<16); assert(shift<16); assem_debug("orr %s,%s,%s,lsr %s\n",regname[rt],regname[rt],regname[rs],regname[shift]); output_w32(0xe1800000|rd_rn_rm(rt,rt,rs)|0x30|(shift<<8)); } static void emit_cmpimm(int rs,int imm) { u_int armval; if(genimm(imm,&armval)) { assem_debug("cmp %s,#%d\n",regname[rs],imm); output_w32(0xe3500000|rd_rn_rm(0,rs,0)|armval); }else if(genimm(-imm,&armval)) { assem_debug("cmn %s,#%d\n",regname[rs],imm); output_w32(0xe3700000|rd_rn_rm(0,rs,0)|armval); }else if(imm>0) { assert(imm<65536); emit_movimm(imm,HOST_TEMPREG); assem_debug("cmp %s,r14\n",regname[rs]); output_w32(0xe1500000|rd_rn_rm(0,rs,HOST_TEMPREG)); }else{ assert(imm>-65536); emit_movimm(-imm,HOST_TEMPREG); assem_debug("cmn %s,r14\n",regname[rs]); output_w32(0xe1700000|rd_rn_rm(0,rs,HOST_TEMPREG)); } } static void emit_cmovne_imm(int imm,int rt) { assem_debug("movne %s,#%d\n",regname[rt],imm); u_int armval; genimm_checked(imm,&armval); output_w32(0x13a00000|rd_rn_rm(rt,0,0)|armval); } static void emit_cmovl_imm(int imm,int rt) { assem_debug("movlt %s,#%d\n",regname[rt],imm); u_int armval; genimm_checked(imm,&armval); output_w32(0xb3a00000|rd_rn_rm(rt,0,0)|armval); } static void emit_cmovb_imm(int imm,int rt) { assem_debug("movcc %s,#%d\n",regname[rt],imm); u_int armval; genimm_checked(imm,&armval); output_w32(0x33a00000|rd_rn_rm(rt,0,0)|armval); } static void emit_cmovs_imm(int imm,int rt) { assem_debug("movmi %s,#%d\n",regname[rt],imm); u_int armval; genimm_checked(imm,&armval); output_w32(0x43a00000|rd_rn_rm(rt,0,0)|armval); } static void emit_cmove_reg(int rs,int rt) { assem_debug("moveq %s,%s\n",regname[rt],regname[rs]); output_w32(0x01a00000|rd_rn_rm(rt,0,rs)); } static void emit_cmovne_reg(int rs,int rt) { assem_debug("movne %s,%s\n",regname[rt],regname[rs]); output_w32(0x11a00000|rd_rn_rm(rt,0,rs)); } static void emit_cmovl_reg(int rs,int rt) { assem_debug("movlt %s,%s\n",regname[rt],regname[rs]); output_w32(0xb1a00000|rd_rn_rm(rt,0,rs)); } static void emit_cmovs_reg(int rs,int rt) { assem_debug("movmi %s,%s\n",regname[rt],regname[rs]); output_w32(0x41a00000|rd_rn_rm(rt,0,rs)); } static void emit_slti32(int rs,int imm,int rt) { if(rs!=rt) emit_zeroreg(rt); emit_cmpimm(rs,imm); if(rs==rt) emit_movimm(0,rt); emit_cmovl_imm(1,rt); } static void emit_sltiu32(int rs,int imm,int rt) { if(rs!=rt) emit_zeroreg(rt); emit_cmpimm(rs,imm); if(rs==rt) emit_movimm(0,rt); emit_cmovb_imm(1,rt); } static void emit_slti64_32(int rsh,int rsl,int imm,int rt) { assert(rsh!=rt); emit_slti32(rsl,imm,rt); if(imm>=0) { emit_test(rsh,rsh); emit_cmovne_imm(0,rt); emit_cmovs_imm(1,rt); } else { emit_cmpimm(rsh,-1); emit_cmovne_imm(0,rt); emit_cmovl_imm(1,rt); } } static void emit_sltiu64_32(int rsh,int rsl,int imm,int rt) { assert(rsh!=rt); emit_sltiu32(rsl,imm,rt); if(imm>=0) { emit_test(rsh,rsh); emit_cmovne_imm(0,rt); } else { emit_cmpimm(rsh,-1); emit_cmovne_imm(1,rt); } } static void emit_cmp(int rs,int rt) { assem_debug("cmp %s,%s\n",regname[rs],regname[rt]); output_w32(0xe1500000|rd_rn_rm(0,rs,rt)); } static void emit_set_gz32(int rs, int rt) { //assem_debug("set_gz32\n"); emit_cmpimm(rs,1); emit_movimm(1,rt); emit_cmovl_imm(0,rt); } static void emit_set_nz32(int rs, int rt) { //assem_debug("set_nz32\n"); if(rs!=rt) emit_movs(rs,rt); else emit_test(rs,rs); emit_cmovne_imm(1,rt); } static void emit_set_gz64_32(int rsh, int rsl, int rt) { //assem_debug("set_gz64\n"); emit_set_gz32(rsl,rt); emit_test(rsh,rsh); emit_cmovne_imm(1,rt); emit_cmovs_imm(0,rt); } static void emit_set_nz64_32(int rsh, int rsl, int rt) { //assem_debug("set_nz64\n"); emit_or_and_set_flags(rsh,rsl,rt); emit_cmovne_imm(1,rt); } static void emit_set_if_less32(int rs1, int rs2, int rt) { //assem_debug("set if less (%%%s,%%%s),%%%s\n",regname[rs1],regname[rs2],regname[rt]); if(rs1!=rt&&rs2!=rt) emit_zeroreg(rt); emit_cmp(rs1,rs2); if(rs1==rt||rs2==rt) emit_movimm(0,rt); emit_cmovl_imm(1,rt); } static void emit_set_if_carry32(int rs1, int rs2, int rt) { //assem_debug("set if carry (%%%s,%%%s),%%%s\n",regname[rs1],regname[rs2],regname[rt]); if(rs1!=rt&&rs2!=rt) emit_zeroreg(rt); emit_cmp(rs1,rs2); if(rs1==rt||rs2==rt) emit_movimm(0,rt); emit_cmovb_imm(1,rt); } static void emit_set_if_less64_32(int u1, int l1, int u2, int l2, int rt) { //assem_debug("set if less64 (%%%s,%%%s,%%%s,%%%s),%%%s\n",regname[u1],regname[l1],regname[u2],regname[l2],regname[rt]); assert(u1!=rt); assert(u2!=rt); emit_cmp(l1,l2); emit_movimm(0,rt); emit_sbcs(u1,u2,HOST_TEMPREG); emit_cmovl_imm(1,rt); } static void emit_set_if_carry64_32(int u1, int l1, int u2, int l2, int rt) { //assem_debug("set if carry64 (%%%s,%%%s,%%%s,%%%s),%%%s\n",regname[u1],regname[l1],regname[u2],regname[l2],regname[rt]); assert(u1!=rt); assert(u2!=rt); emit_cmp(l1,l2); emit_movimm(0,rt); emit_sbcs(u1,u2,HOST_TEMPREG); emit_cmovb_imm(1,rt); } static void emit_call(int a) { assem_debug("bl %x (%x+%x)\n",a,(int)out,a-(int)out-8); u_int offset=genjmp(a); output_w32(0xeb000000|offset); } static void emit_jmp(int a) { assem_debug("b %x (%x+%x)\n",a,(int)out,a-(int)out-8); u_int offset=genjmp(a); output_w32(0xea000000|offset); } static void emit_jne(int a) { assem_debug("bne %x\n",a); u_int offset=genjmp(a); output_w32(0x1a000000|offset); } static void emit_jeq(int a) { assem_debug("beq %x\n",a); u_int offset=genjmp(a); output_w32(0x0a000000|offset); } static void emit_js(int a) { assem_debug("bmi %x\n",a); u_int offset=genjmp(a); output_w32(0x4a000000|offset); } static void emit_jns(int a) { assem_debug("bpl %x\n",a); u_int offset=genjmp(a); output_w32(0x5a000000|offset); } static void emit_jl(int a) { assem_debug("blt %x\n",a); u_int offset=genjmp(a); output_w32(0xba000000|offset); } static void emit_jge(int a) { assem_debug("bge %x\n",a); u_int offset=genjmp(a); output_w32(0xaa000000|offset); } static void emit_jno(int a) { assem_debug("bvc %x\n",a); u_int offset=genjmp(a); output_w32(0x7a000000|offset); } static void emit_jc(int a) { assem_debug("bcs %x\n",a); u_int offset=genjmp(a); output_w32(0x2a000000|offset); } static void emit_jcc(int a) { assem_debug("bcc %x\n",a); u_int offset=genjmp(a); output_w32(0x3a000000|offset); } static void emit_callreg(u_int r) { assert(r<15); assem_debug("blx %s\n",regname[r]); output_w32(0xe12fff30|r); } static void emit_jmpreg(u_int r) { assem_debug("mov pc,%s\n",regname[r]); output_w32(0xe1a00000|rd_rn_rm(15,0,r)); } static void emit_readword_indexed(int offset, int rs, int rt) { assert(offset>-4096&&offset<4096); assem_debug("ldr %s,%s+%d\n",regname[rt],regname[rs],offset); if(offset>=0) { output_w32(0xe5900000|rd_rn_rm(rt,rs,0)|offset); }else{ output_w32(0xe5100000|rd_rn_rm(rt,rs,0)|(-offset)); } } static void emit_readword_dualindexedx4(int rs1, int rs2, int rt) { assem_debug("ldr %s,%s,%s lsl #2\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe7900000|rd_rn_rm(rt,rs1,rs2)|0x100); } static void emit_ldrcc_dualindexed(int rs1, int rs2, int rt) { assem_debug("ldrcc %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x37900000|rd_rn_rm(rt,rs1,rs2)); } static void emit_ldrccb_dualindexed(int rs1, int rs2, int rt) { assem_debug("ldrccb %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x37d00000|rd_rn_rm(rt,rs1,rs2)); } static void emit_ldrccsb_dualindexed(int rs1, int rs2, int rt) { assem_debug("ldrccsb %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x319000d0|rd_rn_rm(rt,rs1,rs2)); } static void emit_ldrcch_dualindexed(int rs1, int rs2, int rt) { assem_debug("ldrcch %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x319000b0|rd_rn_rm(rt,rs1,rs2)); } static void emit_ldrccsh_dualindexed(int rs1, int rs2, int rt) { assem_debug("ldrccsh %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x319000f0|rd_rn_rm(rt,rs1,rs2)); } static void emit_readword_indexed_tlb(int addr, int rs, int map, int rt) { if(map<0) emit_readword_indexed(addr, rs, rt); else { assert(addr==0); emit_readword_dualindexedx4(rs, map, rt); } } static void emit_readdword_indexed_tlb(int addr, int rs, int map, int rh, int rl) { if(map<0) { if(rh>=0) emit_readword_indexed(addr, rs, rh); emit_readword_indexed(addr+4, rs, rl); }else{ assert(rh!=rs); if(rh>=0) emit_readword_indexed_tlb(addr, rs, map, rh); emit_addimm(map,1,map); emit_readword_indexed_tlb(addr, rs, map, rl); } } static void emit_movsbl_indexed(int offset, int rs, int rt) { assert(offset>-256&&offset<256); assem_debug("ldrsb %s,%s+%d\n",regname[rt],regname[rs],offset); if(offset>=0) { output_w32(0xe1d000d0|rd_rn_rm(rt,rs,0)|((offset<<4)&0xf00)|(offset&0xf)); }else{ output_w32(0xe15000d0|rd_rn_rm(rt,rs,0)|(((-offset)<<4)&0xf00)|((-offset)&0xf)); } } static void emit_movsbl_indexed_tlb(int addr, int rs, int map, int rt) { if(map<0) emit_movsbl_indexed(addr, rs, rt); else { if(addr==0) { emit_shlimm(map,2,map); assem_debug("ldrsb %s,%s+%s\n",regname[rt],regname[rs],regname[map]); output_w32(0xe19000d0|rd_rn_rm(rt,rs,map)); }else{ assert(addr>-256&&addr<256); assem_debug("add %s,%s,%s,lsl #2\n",regname[rt],regname[rs],regname[map]); output_w32(0xe0800000|rd_rn_rm(rt,rs,map)|(2<<7)); emit_movsbl_indexed(addr, rt, rt); } } } static void emit_movswl_indexed(int offset, int rs, int rt) { assert(offset>-256&&offset<256); assem_debug("ldrsh %s,%s+%d\n",regname[rt],regname[rs],offset); if(offset>=0) { output_w32(0xe1d000f0|rd_rn_rm(rt,rs,0)|((offset<<4)&0xf00)|(offset&0xf)); }else{ output_w32(0xe15000f0|rd_rn_rm(rt,rs,0)|(((-offset)<<4)&0xf00)|((-offset)&0xf)); } } static void emit_movzbl_indexed(int offset, int rs, int rt) { assert(offset>-4096&&offset<4096); assem_debug("ldrb %s,%s+%d\n",regname[rt],regname[rs],offset); if(offset>=0) { output_w32(0xe5d00000|rd_rn_rm(rt,rs,0)|offset); }else{ output_w32(0xe5500000|rd_rn_rm(rt,rs,0)|(-offset)); } } static void emit_movzbl_dualindexedx4(int rs1, int rs2, int rt) { assem_debug("ldrb %s,%s,%s lsl #2\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe7d00000|rd_rn_rm(rt,rs1,rs2)|0x100); } static void emit_movzbl_indexed_tlb(int addr, int rs, int map, int rt) { if(map<0) emit_movzbl_indexed(addr, rs, rt); else { if(addr==0) { emit_movzbl_dualindexedx4(rs, map, rt); }else{ emit_addimm(rs,addr,rt); emit_movzbl_dualindexedx4(rt, map, rt); } } } static void emit_movzwl_indexed(int offset, int rs, int rt) { assert(offset>-256&&offset<256); assem_debug("ldrh %s,%s+%d\n",regname[rt],regname[rs],offset); if(offset>=0) { output_w32(0xe1d000b0|rd_rn_rm(rt,rs,0)|((offset<<4)&0xf00)|(offset&0xf)); }else{ output_w32(0xe15000b0|rd_rn_rm(rt,rs,0)|(((-offset)<<4)&0xf00)|((-offset)&0xf)); } } static void emit_ldrd(int offset, int rs, int rt) { assert(offset>-256&&offset<256); assem_debug("ldrd %s,%s+%d\n",regname[rt],regname[rs],offset); if(offset>=0) { output_w32(0xe1c000d0|rd_rn_rm(rt,rs,0)|((offset<<4)&0xf00)|(offset&0xf)); }else{ output_w32(0xe14000d0|rd_rn_rm(rt,rs,0)|(((-offset)<<4)&0xf00)|((-offset)&0xf)); } } static void emit_readword(int addr, int rt) { u_int offset = addr-(u_int)&dynarec_local; assert(offset<4096); assem_debug("ldr %s,fp+%d\n",regname[rt],offset); output_w32(0xe5900000|rd_rn_rm(rt,FP,0)|offset); } static unused void emit_movsbl(int addr, int rt) { u_int offset = addr-(u_int)&dynarec_local; assert(offset<256); assem_debug("ldrsb %s,fp+%d\n",regname[rt],offset); output_w32(0xe1d000d0|rd_rn_rm(rt,FP,0)|((offset<<4)&0xf00)|(offset&0xf)); } static unused void emit_movswl(int addr, int rt) { u_int offset = addr-(u_int)&dynarec_local; assert(offset<256); assem_debug("ldrsh %s,fp+%d\n",regname[rt],offset); output_w32(0xe1d000f0|rd_rn_rm(rt,FP,0)|((offset<<4)&0xf00)|(offset&0xf)); } static unused void emit_movzbl(int addr, int rt) { u_int offset = addr-(u_int)&dynarec_local; assert(offset<4096); assem_debug("ldrb %s,fp+%d\n",regname[rt],offset); output_w32(0xe5d00000|rd_rn_rm(rt,FP,0)|offset); } static unused void emit_movzwl(int addr, int rt) { u_int offset = addr-(u_int)&dynarec_local; assert(offset<256); assem_debug("ldrh %s,fp+%d\n",regname[rt],offset); output_w32(0xe1d000b0|rd_rn_rm(rt,FP,0)|((offset<<4)&0xf00)|(offset&0xf)); } static void emit_writeword_indexed(int rt, int offset, int rs) { assert(offset>-4096&&offset<4096); assem_debug("str %s,%s+%d\n",regname[rt],regname[rs],offset); if(offset>=0) { output_w32(0xe5800000|rd_rn_rm(rt,rs,0)|offset); }else{ output_w32(0xe5000000|rd_rn_rm(rt,rs,0)|(-offset)); } } static void emit_writeword_dualindexedx4(int rt, int rs1, int rs2) { assem_debug("str %s,%s,%s lsl #2\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe7800000|rd_rn_rm(rt,rs1,rs2)|0x100); } static void emit_writeword_indexed_tlb(int rt, int addr, int rs, int map, int temp) { if(map<0) emit_writeword_indexed(rt, addr, rs); else { assert(addr==0); emit_writeword_dualindexedx4(rt, rs, map); } } static void emit_writedword_indexed_tlb(int rh, int rl, int addr, int rs, int map, int temp) { if(map<0) { if(rh>=0) emit_writeword_indexed(rh, addr, rs); emit_writeword_indexed(rl, addr+4, rs); }else{ assert(rh>=0); if(temp!=rs) emit_addimm(map,1,temp); emit_writeword_indexed_tlb(rh, addr, rs, map, temp); if(temp!=rs) emit_writeword_indexed_tlb(rl, addr, rs, temp, temp); else { emit_addimm(rs,4,rs); emit_writeword_indexed_tlb(rl, addr, rs, map, temp); } } } static void emit_writehword_indexed(int rt, int offset, int rs) { assert(offset>-256&&offset<256); assem_debug("strh %s,%s+%d\n",regname[rt],regname[rs],offset); if(offset>=0) { output_w32(0xe1c000b0|rd_rn_rm(rt,rs,0)|((offset<<4)&0xf00)|(offset&0xf)); }else{ output_w32(0xe14000b0|rd_rn_rm(rt,rs,0)|(((-offset)<<4)&0xf00)|((-offset)&0xf)); } } static void emit_writebyte_indexed(int rt, int offset, int rs) { assert(offset>-4096&&offset<4096); assem_debug("strb %s,%s+%d\n",regname[rt],regname[rs],offset); if(offset>=0) { output_w32(0xe5c00000|rd_rn_rm(rt,rs,0)|offset); }else{ output_w32(0xe5400000|rd_rn_rm(rt,rs,0)|(-offset)); } } static void emit_writebyte_dualindexedx4(int rt, int rs1, int rs2) { assem_debug("strb %s,%s,%s lsl #2\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe7c00000|rd_rn_rm(rt,rs1,rs2)|0x100); } static void emit_writebyte_indexed_tlb(int rt, int addr, int rs, int map, int temp) { if(map<0) emit_writebyte_indexed(rt, addr, rs); else { if(addr==0) { emit_writebyte_dualindexedx4(rt, rs, map); }else{ emit_addimm(rs,addr,temp); emit_writebyte_dualindexedx4(rt, temp, map); } } } static void emit_strcc_dualindexed(int rs1, int rs2, int rt) { assem_debug("strcc %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x37800000|rd_rn_rm(rt,rs1,rs2)); } static void emit_strccb_dualindexed(int rs1, int rs2, int rt) { assem_debug("strccb %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x37c00000|rd_rn_rm(rt,rs1,rs2)); } static void emit_strcch_dualindexed(int rs1, int rs2, int rt) { assem_debug("strcch %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x318000b0|rd_rn_rm(rt,rs1,rs2)); } static void emit_writeword(int rt, int addr) { u_int offset = addr-(u_int)&dynarec_local; assert(offset<4096); assem_debug("str %s,fp+%d\n",regname[rt],offset); output_w32(0xe5800000|rd_rn_rm(rt,FP,0)|offset); } static unused void emit_writehword(int rt, int addr) { u_int offset = addr-(u_int)&dynarec_local; assert(offset<256); assem_debug("strh %s,fp+%d\n",regname[rt],offset); output_w32(0xe1c000b0|rd_rn_rm(rt,FP,0)|((offset<<4)&0xf00)|(offset&0xf)); } static unused void emit_writebyte(int rt, int addr) { u_int offset = addr-(u_int)&dynarec_local; assert(offset<4096); assem_debug("strb %s,fp+%d\n",regname[rt],offset); output_w32(0xe5c00000|rd_rn_rm(rt,FP,0)|offset); } static void emit_umull(u_int rs1, u_int rs2, u_int hi, u_int lo) { assem_debug("umull %s, %s, %s, %s\n",regname[lo],regname[hi],regname[rs1],regname[rs2]); assert(rs1<16); assert(rs2<16); assert(hi<16); assert(lo<16); output_w32(0xe0800090|(hi<<16)|(lo<<12)|(rs2<<8)|rs1); } static void emit_smull(u_int rs1, u_int rs2, u_int hi, u_int lo) { assem_debug("smull %s, %s, %s, %s\n",regname[lo],regname[hi],regname[rs1],regname[rs2]); assert(rs1<16); assert(rs2<16); assert(hi<16); assert(lo<16); output_w32(0xe0c00090|(hi<<16)|(lo<<12)|(rs2<<8)|rs1); } static void emit_clz(int rs,int rt) { assem_debug("clz %s,%s\n",regname[rt],regname[rs]); output_w32(0xe16f0f10|rd_rn_rm(rt,0,rs)); } static void emit_subcs(int rs1,int rs2,int rt) { assem_debug("subcs %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x20400000|rd_rn_rm(rt,rs1,rs2)); } static void emit_shrcc_imm(int rs,u_int imm,int rt) { assert(imm>0); assert(imm<32); assem_debug("lsrcc %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0x31a00000|rd_rn_rm(rt,0,rs)|0x20|(imm<<7)); } static void emit_shrne_imm(int rs,u_int imm,int rt) { assert(imm>0); assert(imm<32); assem_debug("lsrne %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0x11a00000|rd_rn_rm(rt,0,rs)|0x20|(imm<<7)); } static void emit_negmi(int rs, int rt) { assem_debug("rsbmi %s,%s,#0\n",regname[rt],regname[rs]); output_w32(0x42600000|rd_rn_rm(rt,rs,0)); } static void emit_negsmi(int rs, int rt) { assem_debug("rsbsmi %s,%s,#0\n",regname[rt],regname[rs]); output_w32(0x42700000|rd_rn_rm(rt,rs,0)); } static void emit_orreq(u_int rs1,u_int rs2,u_int rt) { assem_debug("orreq %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x01800000|rd_rn_rm(rt,rs1,rs2)); } static void emit_orrne(u_int rs1,u_int rs2,u_int rt) { assem_debug("orrne %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x11800000|rd_rn_rm(rt,rs1,rs2)); } static void emit_bic_lsl(u_int rs1,u_int rs2,u_int shift,u_int rt) { assem_debug("bic %s,%s,%s lsl %s\n",regname[rt],regname[rs1],regname[rs2],regname[shift]); output_w32(0xe1C00000|rd_rn_rm(rt,rs1,rs2)|0x10|(shift<<8)); } static void emit_biceq_lsl(u_int rs1,u_int rs2,u_int shift,u_int rt) { assem_debug("biceq %s,%s,%s lsl %s\n",regname[rt],regname[rs1],regname[rs2],regname[shift]); output_w32(0x01C00000|rd_rn_rm(rt,rs1,rs2)|0x10|(shift<<8)); } static void emit_bicne_lsl(u_int rs1,u_int rs2,u_int shift,u_int rt) { assem_debug("bicne %s,%s,%s lsl %s\n",regname[rt],regname[rs1],regname[rs2],regname[shift]); output_w32(0x11C00000|rd_rn_rm(rt,rs1,rs2)|0x10|(shift<<8)); } static void emit_bic_lsr(u_int rs1,u_int rs2,u_int shift,u_int rt) { assem_debug("bic %s,%s,%s lsr %s\n",regname[rt],regname[rs1],regname[rs2],regname[shift]); output_w32(0xe1C00000|rd_rn_rm(rt,rs1,rs2)|0x30|(shift<<8)); } static void emit_biceq_lsr(u_int rs1,u_int rs2,u_int shift,u_int rt) { assem_debug("biceq %s,%s,%s lsr %s\n",regname[rt],regname[rs1],regname[rs2],regname[shift]); output_w32(0x01C00000|rd_rn_rm(rt,rs1,rs2)|0x30|(shift<<8)); } static void emit_bicne_lsr(u_int rs1,u_int rs2,u_int shift,u_int rt) { assem_debug("bicne %s,%s,%s lsr %s\n",regname[rt],regname[rs1],regname[rs2],regname[shift]); output_w32(0x11C00000|rd_rn_rm(rt,rs1,rs2)|0x30|(shift<<8)); } static void emit_teq(int rs, int rt) { assem_debug("teq %s,%s\n",regname[rs],regname[rt]); output_w32(0xe1300000|rd_rn_rm(0,rs,rt)); } static void emit_rsbimm(int rs, int imm, int rt) { u_int armval; genimm_checked(imm,&armval); assem_debug("rsb %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe2600000|rd_rn_rm(rt,rs,0)|armval); } // Load 2 immediates optimizing for small code size static void emit_mov2imm_compact(int imm1,u_int rt1,int imm2,u_int rt2) { emit_movimm(imm1,rt1); u_int armval; if(genimm(imm2-imm1,&armval)) { assem_debug("add %s,%s,#%d\n",regname[rt2],regname[rt1],imm2-imm1); output_w32(0xe2800000|rd_rn_rm(rt2,rt1,0)|armval); }else if(genimm(imm1-imm2,&armval)) { assem_debug("sub %s,%s,#%d\n",regname[rt2],regname[rt1],imm1-imm2); output_w32(0xe2400000|rd_rn_rm(rt2,rt1,0)|armval); } else emit_movimm(imm2,rt2); } // Conditionally select one of two immediates, optimizing for small code size // This will only be called if HAVE_CMOV_IMM is defined static void emit_cmov2imm_e_ne_compact(int imm1,int imm2,u_int rt) { u_int armval; if(genimm(imm2-imm1,&armval)) { emit_movimm(imm1,rt); assem_debug("addne %s,%s,#%d\n",regname[rt],regname[rt],imm2-imm1); output_w32(0x12800000|rd_rn_rm(rt,rt,0)|armval); }else if(genimm(imm1-imm2,&armval)) { emit_movimm(imm1,rt); assem_debug("subne %s,%s,#%d\n",regname[rt],regname[rt],imm1-imm2); output_w32(0x12400000|rd_rn_rm(rt,rt,0)|armval); } else { #ifndef HAVE_ARMV7 emit_movimm(imm1,rt); add_literal((int)out,imm2); assem_debug("ldrne %s,pc+? [=%x]\n",regname[rt],imm2); output_w32(0x15900000|rd_rn_rm(rt,15,0)); #else emit_movw(imm1&0x0000FFFF,rt); if((imm1&0xFFFF)!=(imm2&0xFFFF)) { assem_debug("movwne %s,#%d (0x%x)\n",regname[rt],imm2&0xFFFF,imm2&0xFFFF); output_w32(0x13000000|rd_rn_rm(rt,0,0)|(imm2&0xfff)|((imm2<<4)&0xf0000)); } emit_movt(imm1&0xFFFF0000,rt); if((imm1&0xFFFF0000)!=(imm2&0xFFFF0000)) { assem_debug("movtne %s,#%d (0x%x)\n",regname[rt],imm2&0xffff0000,imm2&0xffff0000); output_w32(0x13400000|rd_rn_rm(rt,0,0)|((imm2>>16)&0xfff)|((imm2>>12)&0xf0000)); } #endif } } // special case for checking invalid_code static void emit_cmpmem_indexedsr12_reg(int base,int r,int imm) { assert(imm<128&&imm>=0); assert(r>=0&&r<16); assem_debug("ldrb lr,%s,%s lsr #12\n",regname[base],regname[r]); output_w32(0xe7d00000|rd_rn_rm(HOST_TEMPREG,base,r)|0x620); emit_cmpimm(HOST_TEMPREG,imm); } static void emit_callne(int a) { assem_debug("blne %x\n",a); u_int offset=genjmp(a); output_w32(0x1b000000|offset); } // Used to preload hash table entries static unused void emit_prefetchreg(int r) { assem_debug("pld %s\n",regname[r]); output_w32(0xf5d0f000|rd_rn_rm(0,r,0)); } // Special case for mini_ht static void emit_ldreq_indexed(int rs, u_int offset, int rt) { assert(offset<4096); assem_debug("ldreq %s,[%s, #%d]\n",regname[rt],regname[rs],offset); output_w32(0x05900000|rd_rn_rm(rt,rs,0)|offset); } static unused void emit_bicne_imm(int rs,int imm,int rt) { u_int armval; genimm_checked(imm,&armval); assem_debug("bicne %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0x13c00000|rd_rn_rm(rt,rs,0)|armval); } static unused void emit_biccs_imm(int rs,int imm,int rt) { u_int armval; genimm_checked(imm,&armval); assem_debug("biccs %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0x23c00000|rd_rn_rm(rt,rs,0)|armval); } static unused void emit_bicvc_imm(int rs,int imm,int rt) { u_int armval; genimm_checked(imm,&armval); assem_debug("bicvc %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0x73c00000|rd_rn_rm(rt,rs,0)|armval); } static unused void emit_bichi_imm(int rs,int imm,int rt) { u_int armval; genimm_checked(imm,&armval); assem_debug("bichi %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0x83c00000|rd_rn_rm(rt,rs,0)|armval); } static unused void emit_orrvs_imm(int rs,int imm,int rt) { u_int armval; genimm_checked(imm,&armval); assem_debug("orrvs %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0x63800000|rd_rn_rm(rt,rs,0)|armval); } static void emit_orrne_imm(int rs,int imm,int rt) { u_int armval; genimm_checked(imm,&armval); assem_debug("orrne %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0x13800000|rd_rn_rm(rt,rs,0)|armval); } static void emit_andne_imm(int rs,int imm,int rt) { u_int armval; genimm_checked(imm,&armval); assem_debug("andne %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0x12000000|rd_rn_rm(rt,rs,0)|armval); } static unused void emit_addpl_imm(int rs,int imm,int rt) { u_int armval; genimm_checked(imm,&armval); assem_debug("addpl %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0x52800000|rd_rn_rm(rt,rs,0)|armval); } static void emit_jno_unlikely(int a) { //emit_jno(a); assem_debug("addvc pc,pc,#? (%x)\n",/*a-(int)out-8,*/a); output_w32(0x72800000|rd_rn_rm(15,15,0)); } static void save_regs_all(u_int reglist) { int i; if(!reglist) return; assem_debug("stmia fp,{"); for(i=0;i<16;i++) if(reglist&(1<=BASE_ADDR&&addr<(BASE_ADDR+(1<=0x80000000&&target<0x80800000)||(target>0xA4000000&&target<0xA4001000)); //DEBUG > #ifdef DEBUG_CYCLE_COUNT emit_readword((int)&last_count,ECX); emit_add(HOST_CCREG,ECX,HOST_CCREG); emit_readword((int)&next_interupt,ECX); emit_writeword(HOST_CCREG,(int)&Count); emit_sub(HOST_CCREG,ECX,HOST_CCREG); emit_writeword(ECX,(int)&last_count); #endif //DEBUG < emit_jmp(linker); } static void emit_extjump(int addr, int target) { emit_extjump2(addr, target, (int)dyna_linker); } static void emit_extjump_ds(int addr, int target) { emit_extjump2(addr, target, (int)dyna_linker_ds); } // put rt_val into rt, potentially making use of rs with value rs_val static void emit_movimm_from(u_int rs_val,int rs,u_int rt_val,int rt) { u_int armval; int diff; if(genimm(rt_val,&armval)) { assem_debug("mov %s,#%d\n",regname[rt],rt_val); output_w32(0xe3a00000|rd_rn_rm(rt,0,0)|armval); return; } if(genimm(~rt_val,&armval)) { assem_debug("mvn %s,#%d\n",regname[rt],rt_val); output_w32(0xe3e00000|rd_rn_rm(rt,0,0)|armval); return; } diff=rt_val-rs_val; if(genimm(diff,&armval)) { assem_debug("add %s,%s,#%d\n",regname[rt],regname[rs],diff); output_w32(0xe2800000|rd_rn_rm(rt,rs,0)|armval); return; }else if(genimm(-diff,&armval)) { assem_debug("sub %s,%s,#%d\n",regname[rt],regname[rs],-diff); output_w32(0xe2400000|rd_rn_rm(rt,rs,0)|armval); return; } emit_movimm(rt_val,rt); } // return 1 if above function can do it's job cheaply static int is_similar_value(u_int v1,u_int v2) { u_int xs; int diff; if(v1==v2) return 1; diff=v2-v1; for(xs=diff;xs!=0&&(xs&3)==0;xs>>=2) ; if(xs<0x100) return 1; for(xs=-diff;xs!=0&&(xs&3)==0;xs>>=2) ; if(xs<0x100) return 1; return 0; } // trashes r2 static void pass_args(int a0, int a1) { if(a0==1&&a1==0) { // must swap emit_mov(a0,2); emit_mov(a1,1); emit_mov(2,0); } else if(a0!=0&&a1==0) { emit_mov(a1,1); if (a0>=0) emit_mov(a0,0); } else { if(a0>=0&&a0!=0) emit_mov(a0,0); if(a1>=0&&a1!=1) emit_mov(a1,1); } } static void mov_loadtype_adj(int type,int rs,int rt) { switch(type) { case LOADB_STUB: emit_signextend8(rs,rt); break; case LOADBU_STUB: emit_andimm(rs,0xff,rt); break; case LOADH_STUB: emit_signextend16(rs,rt); break; case LOADHU_STUB: emit_andimm(rs,0xffff,rt); break; case LOADW_STUB: if(rs!=rt) emit_mov(rs,rt); break; default: assert(0); } } #include "../backends/psx/pcsxmem.h" #include "../backends/psx/pcsxmem_inline.c" static void do_readstub(int n) { assem_debug("do_readstub %x\n",start+stubs[n][3]*4); literal_pool(256); set_jump_target(stubs[n][1],(int)out); int type=stubs[n][0]; int i=stubs[n][3]; int rs=stubs[n][4]; struct regstat *i_regs=(struct regstat *)stubs[n][5]; u_int reglist=stubs[n][7]; signed char *i_regmap=i_regs->regmap; int rt; if(itype[i]==C1LS||itype[i]==C2LS||itype[i]==LOADLR) { rt=get_reg(i_regmap,FTEMP); }else{ rt=get_reg(i_regmap,rt1[i]); } assert(rs>=0); int r,temp=-1,temp2=HOST_TEMPREG,regs_saved=0,restore_jump=0; reglist|=(1<=0&&rt1[i]!=0) reglist&=~(1<=0&&rt1[i]!=0)) { switch(type) { case LOADB_STUB: emit_ldrccsb_dualindexed(temp2,rs,rt); break; case LOADBU_STUB: emit_ldrccb_dualindexed(temp2,rs,rt); break; case LOADH_STUB: emit_ldrccsh_dualindexed(temp2,rs,rt); break; case LOADHU_STUB: emit_ldrcch_dualindexed(temp2,rs,rt); break; case LOADW_STUB: emit_ldrcc_dualindexed(temp2,rs,rt); break; } } if(regs_saved) { restore_jump=(int)out; emit_jcc(0); // jump to reg restore } else emit_jcc(stubs[n][2]); // return address if(!regs_saved) save_regs(reglist); int handler=0; if(type==LOADB_STUB||type==LOADBU_STUB) handler=(int)jump_handler_read8; if(type==LOADH_STUB||type==LOADHU_STUB) handler=(int)jump_handler_read16; if(type==LOADW_STUB) handler=(int)jump_handler_read32; assert(handler!=0); pass_args(rs,temp2); int cc=get_reg(i_regmap,CCREG); if(cc<0) emit_loadreg(CCREG,2); emit_addimm(cc<0?2:cc,CLOCK_ADJUST((int)stubs[n][6]+1),2); emit_call(handler); if(itype[i]==C1LS||itype[i]==C2LS||(rt>=0&&rt1[i]!=0)) { mov_loadtype_adj(type,0,rt); } if(restore_jump) set_jump_target(restore_jump,(int)out); restore_regs(reglist); emit_jmp(stubs[n][2]); // return address } // return memhandler, or get directly accessable address and return 0 static u_int get_direct_memhandler(void *table,u_int addr,int type,u_int *addr_host) { u_int l1,l2=0; l1=((u_int *)table)[addr>>12]; if((l1&(1<<31))==0) { u_int v=l1<<1; *addr_host=v+addr; return 0; } else { l1<<=1; if(type==LOADB_STUB||type==LOADBU_STUB||type==STOREB_STUB) l2=((u_int *)l1)[0x1000/4 + 0x1000/2 + (addr&0xfff)]; else if(type==LOADH_STUB||type==LOADHU_STUB||type==STOREH_STUB) l2=((u_int *)l1)[0x1000/4 + (addr&0xfff)/2]; else l2=((u_int *)l1)[(addr&0xfff)/4]; if((l2&(1<<31))==0) { u_int v=l2<<1; *addr_host=v+(addr&0xfff); return 0; } return l2<<1; } } static void inline_readstub(int type, int i, u_int addr, signed char regmap[], int target, int adj, u_int reglist) { int rs=get_reg(regmap,target); int rt=get_reg(regmap,target); if(rs<0) rs=get_reg(regmap,-1); assert(rs>=0); u_int handler,host_addr=0,is_dynamic,far_call=0; int cc=get_reg(regmap,CCREG); if(pcsx_direct_read(type,addr,CLOCK_ADJUST(adj+1),cc,target?rs:-1,rt)) return; handler=get_direct_memhandler(mem_rtab,addr,type,&host_addr); if (handler==0) { if(rt<0||rt1[i]==0) return; if(addr!=host_addr) emit_movimm_from(addr,rs,host_addr,rs); switch(type) { case LOADB_STUB: emit_movsbl_indexed(0,rs,rt); break; case LOADBU_STUB: emit_movzbl_indexed(0,rs,rt); break; case LOADH_STUB: emit_movswl_indexed(0,rs,rt); break; case LOADHU_STUB: emit_movzwl_indexed(0,rs,rt); break; case LOADW_STUB: emit_readword_indexed(0,rs,rt); break; default: assert(0); } return; } is_dynamic=pcsxmem_is_handler_dynamic(addr); if(is_dynamic) { if(type==LOADB_STUB||type==LOADBU_STUB) handler=(int)jump_handler_read8; if(type==LOADH_STUB||type==LOADHU_STUB) handler=(int)jump_handler_read16; if(type==LOADW_STUB) handler=(int)jump_handler_read32; } // call a memhandler if(rt>=0&&rt1[i]!=0) reglist&=~(1<=33554432) { // unreachable memhandler, a plugin func perhaps emit_movimm(handler,12); far_call=1; } if(cc<0) emit_loadreg(CCREG,2); if(is_dynamic) { emit_movimm(((u_int *)mem_rtab)[addr>>12]<<1,1); emit_addimm(cc<0?2:cc,CLOCK_ADJUST(adj+1),2); } else { emit_readword((int)&last_count,3); emit_addimm(cc<0?2:cc,CLOCK_ADJUST(adj+1),2); emit_add(2,3,2); emit_writeword(2,(int)&Count); } if(far_call) emit_callreg(12); else emit_call(handler); if(rt>=0&&rt1[i]!=0) { switch(type) { case LOADB_STUB: emit_signextend8(0,rt); break; case LOADBU_STUB: emit_andimm(0,0xff,rt); break; case LOADH_STUB: emit_signextend16(0,rt); break; case LOADHU_STUB: emit_andimm(0,0xffff,rt); break; case LOADW_STUB: if(rt!=0) emit_mov(0,rt); break; default: assert(0); } } restore_regs(reglist); } static void do_writestub(int n) { assem_debug("do_writestub %x\n",start+stubs[n][3]*4); literal_pool(256); set_jump_target(stubs[n][1],(int)out); int type=stubs[n][0]; int i=stubs[n][3]; int rs=stubs[n][4]; struct regstat *i_regs=(struct regstat *)stubs[n][5]; u_int reglist=stubs[n][7]; signed char *i_regmap=i_regs->regmap; int rt,r; if(itype[i]==C1LS||itype[i]==C2LS) { rt=get_reg(i_regmap,r=FTEMP); }else{ rt=get_reg(i_regmap,r=rs2[i]); } assert(rs>=0); assert(rt>=0); int rtmp,temp=-1,temp2=HOST_TEMPREG,regs_saved=0,restore_jump=0,ra; int reglist2=reglist|(1<=0); assert(rt>=0); u_int handler,host_addr=0; handler=get_direct_memhandler(mem_wtab,addr,type,&host_addr); if (handler==0) { if(addr!=host_addr) emit_movimm_from(addr,rs,host_addr,rs); switch(type) { case STOREB_STUB: emit_writebyte_indexed(rt,0,rs); break; case STOREH_STUB: emit_writehword_indexed(rt,0,rs); break; case STOREW_STUB: emit_writeword_indexed(rt,0,rs); break; default: assert(0); } return; } // call a memhandler save_regs(reglist); pass_args(rs,rt); int cc=get_reg(regmap,CCREG); if(cc<0) emit_loadreg(CCREG,2); emit_addimm(cc<0?2:cc,CLOCK_ADJUST(adj+1),2); emit_movimm(handler,3); // returns new cycle_count emit_call((int)jump_handler_write_h); emit_addimm(0,-CLOCK_ADJUST(adj+1),cc<0?2:cc); if(cc<0) emit_storereg(CCREG,2); restore_regs(reglist); } static void do_unalignedwritestub(int n) { assem_debug("do_unalignedwritestub %x\n",start+stubs[n][3]*4); literal_pool(256); set_jump_target(stubs[n][1],(int)out); int i=stubs[n][3]; struct regstat *i_regs=(struct regstat *)stubs[n][4]; int addr=stubs[n][5]; u_int reglist=stubs[n][7]; signed char *i_regmap=i_regs->regmap; int temp2=get_reg(i_regmap,FTEMP); int rt; rt=get_reg(i_regmap,rs2[i]); assert(rt>=0); assert(addr>=0); assert(opcode[i]==0x2a||opcode[i]==0x2e); // SWL/SWR only implemented reglist|=(1<regmap_entry,i_regs->was32,i_regs->wasdirty); if(regs[i].regmap_entry[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG); emit_movimm(start+(i-ds)*4,EAX); // Get PC emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle... emit_jmp(ds?(int)fp_exception_ds:(int)fp_exception); } /* Special assem */ static void shift_assemble_arm(int i,struct regstat *i_regs) { if(rt1[i]) { if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV { signed char s,t,shift; t=get_reg(i_regs->regmap,rt1[i]); s=get_reg(i_regs->regmap,rs1[i]); shift=get_reg(i_regs->regmap,rs2[i]); if(t>=0){ if(rs1[i]==0) { emit_zeroreg(t); } else if(rs2[i]==0) { assert(s>=0); if(s!=t) emit_mov(s,t); } else { emit_andimm(shift,31,HOST_TEMPREG); if(opcode2[i]==4) // SLLV { emit_shl(s,HOST_TEMPREG,t); } if(opcode2[i]==6) // SRLV { emit_shr(s,HOST_TEMPREG,t); } if(opcode2[i]==7) // SRAV { emit_sar(s,HOST_TEMPREG,t); } } } } else { // DSLLV/DSRLV/DSRAV signed char sh,sl,th,tl,shift; th=get_reg(i_regs->regmap,rt1[i]|64); tl=get_reg(i_regs->regmap,rt1[i]); sh=get_reg(i_regs->regmap,rs1[i]|64); sl=get_reg(i_regs->regmap,rs1[i]); shift=get_reg(i_regs->regmap,rs2[i]); if(tl>=0){ if(rs1[i]==0) { emit_zeroreg(tl); if(th>=0) emit_zeroreg(th); } else if(rs2[i]==0) { assert(sl>=0); if(sl!=tl) emit_mov(sl,tl); if(th>=0&&sh!=th) emit_mov(sh,th); } else { // FIXME: What if shift==tl ? assert(shift!=tl); int temp=get_reg(i_regs->regmap,-1); int real_th=th; if(th<0&&opcode2[i]!=0x14) {th=temp;} // DSLLV doesn't need a temporary register assert(sl>=0); assert(sh>=0); emit_andimm(shift,31,HOST_TEMPREG); if(opcode2[i]==0x14) // DSLLV { if(th>=0) emit_shl(sh,HOST_TEMPREG,th); emit_rsbimm(HOST_TEMPREG,32,HOST_TEMPREG); emit_orrshr(sl,HOST_TEMPREG,th); emit_andimm(shift,31,HOST_TEMPREG); emit_testimm(shift,32); emit_shl(sl,HOST_TEMPREG,tl); if(th>=0) emit_cmovne_reg(tl,th); emit_cmovne_imm(0,tl); } if(opcode2[i]==0x16) // DSRLV { assert(th>=0); emit_shr(sl,HOST_TEMPREG,tl); emit_rsbimm(HOST_TEMPREG,32,HOST_TEMPREG); emit_orrshl(sh,HOST_TEMPREG,tl); emit_andimm(shift,31,HOST_TEMPREG); emit_testimm(shift,32); emit_shr(sh,HOST_TEMPREG,th); emit_cmovne_reg(th,tl); if(real_th>=0) emit_cmovne_imm(0,th); } if(opcode2[i]==0x17) // DSRAV { assert(th>=0); emit_shr(sl,HOST_TEMPREG,tl); emit_rsbimm(HOST_TEMPREG,32,HOST_TEMPREG); if(real_th>=0) { assert(temp>=0); emit_sarimm(th,31,temp); } emit_orrshl(sh,HOST_TEMPREG,tl); emit_andimm(shift,31,HOST_TEMPREG); emit_testimm(shift,32); emit_sar(sh,HOST_TEMPREG,th); emit_cmovne_reg(th,tl); if(real_th>=0) emit_cmovne_reg(temp,th); } } } } } } static void speculate_mov(int rs,int rt) { if(rt!=0) { smrv_strong_next|=1<>rs1[i])&1) speculate_mov(rs1[i],rt1[i]); else if((smrv_strong>>rs2[i])&1) speculate_mov(rs2[i],rt1[i]); else if((smrv_weak>>rs1[i])&1) speculate_mov_weak(rs1[i],rt1[i]); else if((smrv_weak>>rs2[i])&1) speculate_mov_weak(rs2[i],rt1[i]); else { smrv_strong_next&=~(1<=0) { if(get_final_value(hr,i,&value)) smrv[rt1[i]]=value; else smrv[rt1[i]]=constmap[i][hr]; smrv_strong_next|=1<>rs1[i])&1) speculate_mov(rs1[i],rt1[i]); else if((smrv_weak>>rs1[i])&1) speculate_mov_weak(rs1[i],rt1[i]); } break; case LOAD: if(start<0x2000&&(rt1[i]==26||(smrv[rt1[i]]>>24)==0xa0)) { // special case for BIOS smrv[rt1[i]]=0xa0000000; smrv_strong_next|=1<>r)&1),(smrv_weak>>r)&1,regs[i].isconst,regs[i].wasconst); #endif } enum { MTYPE_8000 = 0, MTYPE_8020, MTYPE_0000, MTYPE_A000, MTYPE_1F80, }; static int get_ptr_mem_type(u_int a) { if(a < 0x00200000) { if(a<0x1000&&((start>>20)==0xbfc||(start>>24)==0xa0)) // return wrong, must use memhandler for BIOS self-test to pass // 007 does similar stuff from a00 mirror, weird stuff return MTYPE_8000; return MTYPE_0000; } if(0x1f800000 <= a && a < 0x1f801000) return MTYPE_1F80; if(0x80200000 <= a && a < 0x80800000) return MTYPE_8020; if(0xa0000000 <= a && a < 0xa0200000) return MTYPE_A000; return MTYPE_8000; } static int emit_fastpath_cmp_jump(int i,int addr,int *addr_reg_override) { int jaddr=0,type=0; int mr=rs1[i]; if(((smrv_strong|smrv_weak)>>mr)&1) { type=get_ptr_mem_type(smrv[mr]); //printf("set %08x @%08x r%d %d\n", smrv[mr], start+i*4, mr, type); } else { // use the mirror we are running on type=get_ptr_mem_type(start); //printf("set nospec @%08x r%d %d\n", start+i*4, mr, type); } if(type==MTYPE_8020) { // RAM 80200000+ mirror emit_andimm(addr,~0x00e00000,HOST_TEMPREG); addr=*addr_reg_override=HOST_TEMPREG; type=0; } else if(type==MTYPE_0000) { // RAM 0 mirror emit_orimm(addr,0x80000000,HOST_TEMPREG); addr=*addr_reg_override=HOST_TEMPREG; type=0; } else if(type==MTYPE_A000) { // RAM A mirror emit_andimm(addr,~0x20000000,HOST_TEMPREG); addr=*addr_reg_override=HOST_TEMPREG; type=0; } else if(type==MTYPE_1F80) { // scratchpad if (psxH == (void *)0x1f800000) { emit_addimm(addr,-0x1f800000,HOST_TEMPREG); emit_cmpimm(HOST_TEMPREG,0x1000); jaddr=(int)out; emit_jc(0); } else { // do usual RAM check, jump will go to the right handler type=0; } } if(type==0) { emit_cmpimm(addr,RAM_SIZE); jaddr=(int)out; #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK // Hint to branch predictor that the branch is unlikely to be taken if(rs1[i]>=28) emit_jno_unlikely(0); else #endif emit_jno(0); if(ram_offset!=0) { emit_addimm(addr,ram_offset,HOST_TEMPREG); addr=*addr_reg_override=HOST_TEMPREG; } } return jaddr; } #define shift_assemble shift_assemble_arm static void loadlr_assemble_arm(int i,struct regstat *i_regs) { int s,th,tl,temp,temp2,addr,map=-1; int offset; int jaddr=0; int memtarget=0,c=0; int fastload_reg_override=0; u_int hr,reglist=0; th=get_reg(i_regs->regmap,rt1[i]|64); tl=get_reg(i_regs->regmap,rt1[i]); s=get_reg(i_regs->regmap,rs1[i]); temp=get_reg(i_regs->regmap,-1); temp2=get_reg(i_regs->regmap,FTEMP); addr=get_reg(i_regs->regmap,AGEN1+(i&1)); assert(addr<0); offset=imm[i]; for(hr=0;hrregmap[hr]>=0) reglist|=1<=0) { c=(i_regs->wasconst>>s)&1; if(c) { memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE; } } if(!c) { #ifdef RAM_OFFSET map=get_reg(i_regs->regmap,ROREG); if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG); #endif emit_shlimm(addr,3,temp); if (opcode[i]==0x22||opcode[i]==0x26) { emit_andimm(addr,0xFFFFFFFC,temp2); // LWL/LWR }else{ emit_andimm(addr,0xFFFFFFF8,temp2); // LDL/LDR } jaddr=emit_fastpath_cmp_jump(i,temp2,&fastload_reg_override); } else { if(ram_offset&&memtarget) { emit_addimm(temp2,ram_offset,HOST_TEMPREG); fastload_reg_override=HOST_TEMPREG; } if (opcode[i]==0x22||opcode[i]==0x26) { emit_movimm(((constmap[i][s]+offset)<<3)&24,temp); // LWL/LWR }else{ emit_movimm(((constmap[i][s]+offset)<<3)&56,temp); // LDL/LDR } } if (opcode[i]==0x22||opcode[i]==0x26) { // LWL/LWR if(!c||memtarget) { int a=temp2; if(fastload_reg_override) a=fastload_reg_override; //emit_readword_indexed((int)rdram-0x80000000,temp2,temp2); emit_readword_indexed_tlb(0,a,map,temp2); if(jaddr) add_stub(LOADW_STUB,jaddr,(int)out,i,temp2,(int)i_regs,ccadj[i],reglist); } else inline_readstub(LOADW_STUB,i,(constmap[i][s]+offset)&0xFFFFFFFC,i_regs->regmap,FTEMP,ccadj[i],reglist); if(rt1[i]) { assert(tl>=0); emit_andimm(temp,24,temp); #ifdef BIG_ENDIAN_MIPS if (opcode[i]==0x26) // LWR #else if (opcode[i]==0x22) // LWL #endif emit_xorimm(temp,24,temp); emit_movimm(-1,HOST_TEMPREG); if (opcode[i]==0x26) { emit_shr(temp2,temp,temp2); emit_bic_lsr(tl,HOST_TEMPREG,temp,tl); }else{ emit_shl(temp2,temp,temp2); emit_bic_lsl(tl,HOST_TEMPREG,temp,tl); } emit_or(temp2,tl,tl); } //emit_storereg(rt1[i],tl); // DEBUG } if (opcode[i]==0x1A||opcode[i]==0x1B) { // LDL/LDR // FIXME: little endian, fastload_reg_override int temp2h=get_reg(i_regs->regmap,FTEMP|64); if(!c||memtarget) { //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,temp2,temp2h); //emit_readword_indexed((int)rdram-0x7FFFFFFC,temp2,temp2); emit_readdword_indexed_tlb(0,temp2,map,temp2h,temp2); if(jaddr) add_stub(LOADD_STUB,jaddr,(int)out,i,temp2,(int)i_regs,ccadj[i],reglist); } else inline_readstub(LOADD_STUB,i,(constmap[i][s]+offset)&0xFFFFFFF8,i_regs->regmap,FTEMP,ccadj[i],reglist); if(rt1[i]) { assert(th>=0); assert(tl>=0); emit_testimm(temp,32); emit_andimm(temp,24,temp); if (opcode[i]==0x1A) { // LDL emit_rsbimm(temp,32,HOST_TEMPREG); emit_shl(temp2h,temp,temp2h); emit_orrshr(temp2,HOST_TEMPREG,temp2h); emit_movimm(-1,HOST_TEMPREG); emit_shl(temp2,temp,temp2); emit_cmove_reg(temp2h,th); emit_biceq_lsl(tl,HOST_TEMPREG,temp,tl); emit_bicne_lsl(th,HOST_TEMPREG,temp,th); emit_orreq(temp2,tl,tl); emit_orrne(temp2,th,th); } if (opcode[i]==0x1B) { // LDR emit_xorimm(temp,24,temp); emit_rsbimm(temp,32,HOST_TEMPREG); emit_shr(temp2,temp,temp2); emit_orrshl(temp2h,HOST_TEMPREG,temp2); emit_movimm(-1,HOST_TEMPREG); emit_shr(temp2h,temp,temp2h); emit_cmovne_reg(temp2,tl); emit_bicne_lsr(th,HOST_TEMPREG,temp,th); emit_biceq_lsr(tl,HOST_TEMPREG,temp,tl); emit_orrne(temp2h,th,th); emit_orreq(temp2h,tl,tl); } } } } #define loadlr_assemble loadlr_assemble_arm static void cop0_assemble(int i,struct regstat *i_regs) { if(opcode2[i]==0) // MFC0 { signed char t=get_reg(i_regs->regmap,rt1[i]); char copr=(source[i]>>11)&0x1f; //assert(t>=0); // Why does this happen? OOT is weird if(t>=0&&rt1[i]!=0) { emit_readword((int)®_cop0+copr*4,t); } } else if(opcode2[i]==4) // MTC0 { signed char s=get_reg(i_regs->regmap,rs1[i]); char copr=(source[i]>>11)&0x1f; assert(s>=0); wb_register(rs1[i],i_regs->regmap,i_regs->dirty,i_regs->is32); if(copr==9||copr==11||copr==12||copr==13) { emit_readword((int)&last_count,HOST_TEMPREG); emit_loadreg(CCREG,HOST_CCREG); // TODO: do proper reg alloc emit_add(HOST_CCREG,HOST_TEMPREG,HOST_CCREG); emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); emit_writeword(HOST_CCREG,(int)&Count); } // What a mess. The status register (12) can enable interrupts, // so needs a special case to handle a pending interrupt. // The interrupt must be taken immediately, because a subsequent // instruction might disable interrupts again. if(copr==12||copr==13) { if (is_delayslot) { // burn cycles to cause cc_interrupt, which will // reschedule next_interupt. Relies on CCREG from above. assem_debug("MTC0 DS %d\n", copr); emit_writeword(HOST_CCREG,(int)&last_count); emit_movimm(0,HOST_CCREG); emit_storereg(CCREG,HOST_CCREG); emit_loadreg(rs1[i],1); emit_movimm(copr,0); emit_call((int)pcsx_mtc0_ds); emit_loadreg(rs1[i],s); return; } emit_movimm(start+i*4+4,HOST_TEMPREG); emit_writeword(HOST_TEMPREG,(int)&pcaddr); emit_movimm(0,HOST_TEMPREG); emit_writeword(HOST_TEMPREG,(int)&pending_exception); } //else if(copr==12&&is_delayslot) emit_call((int)MTC0_R12); //else if(s==HOST_CCREG) emit_loadreg(rs1[i],1); else if(s!=1) emit_mov(s,1); emit_movimm(copr,0); emit_call((int)pcsx_mtc0); if(copr==9||copr==11||copr==12||copr==13) { emit_readword((int)&Count,HOST_CCREG); emit_readword((int)&next_interupt,HOST_TEMPREG); emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[i]),HOST_CCREG); emit_sub(HOST_CCREG,HOST_TEMPREG,HOST_CCREG); emit_writeword(HOST_TEMPREG,(int)&last_count); emit_storereg(CCREG,HOST_CCREG); } if(copr==12||copr==13) { assert(!is_delayslot); emit_readword((int)&pending_exception,14); emit_test(14,14); emit_jne((int)&do_interrupt); } emit_loadreg(rs1[i],s); if(get_reg(i_regs->regmap,rs1[i]|64)>=0) emit_loadreg(rs1[i]|64,get_reg(i_regs->regmap,rs1[i]|64)); cop1_usable=0; } else { assert(opcode2[i]==0x10); if((source[i]&0x3f)==0x10) // RFE { emit_readword((int)&Status,0); emit_andimm(0,0x3c,1); emit_andimm(0,~0xf,0); emit_orrshr_imm(1,2,0); emit_writeword(0,(int)&Status); } } } static void cop2_get_dreg(u_int copr,signed char tl,signed char temp) { switch (copr) { case 1: case 3: case 5: case 8: case 9: case 10: case 11: emit_readword((int)®_cop2d[copr],tl); emit_signextend16(tl,tl); emit_writeword(tl,(int)®_cop2d[copr]); // hmh break; case 7: case 16: case 17: case 18: case 19: emit_readword((int)®_cop2d[copr],tl); emit_andimm(tl,0xffff,tl); emit_writeword(tl,(int)®_cop2d[copr]); break; case 15: emit_readword((int)®_cop2d[14],tl); // SXY2 emit_writeword(tl,(int)®_cop2d[copr]); break; case 28: case 29: emit_readword((int)®_cop2d[9],temp); emit_testimm(temp,0x8000); // do we need this? emit_andimm(temp,0xf80,temp); emit_andne_imm(temp,0,temp); emit_shrimm(temp,7,tl); emit_readword((int)®_cop2d[10],temp); emit_testimm(temp,0x8000); emit_andimm(temp,0xf80,temp); emit_andne_imm(temp,0,temp); emit_orrshr_imm(temp,2,tl); emit_readword((int)®_cop2d[11],temp); emit_testimm(temp,0x8000); emit_andimm(temp,0xf80,temp); emit_andne_imm(temp,0,temp); emit_orrshl_imm(temp,3,tl); emit_writeword(tl,(int)®_cop2d[copr]); break; default: emit_readword((int)®_cop2d[copr],tl); break; } } static void cop2_put_dreg(u_int copr,signed char sl,signed char temp) { switch (copr) { case 15: emit_readword((int)®_cop2d[13],temp); // SXY1 emit_writeword(sl,(int)®_cop2d[copr]); emit_writeword(temp,(int)®_cop2d[12]); // SXY0 emit_readword((int)®_cop2d[14],temp); // SXY2 emit_writeword(sl,(int)®_cop2d[14]); emit_writeword(temp,(int)®_cop2d[13]); // SXY1 break; case 28: emit_andimm(sl,0x001f,temp); emit_shlimm(temp,7,temp); emit_writeword(temp,(int)®_cop2d[9]); emit_andimm(sl,0x03e0,temp); emit_shlimm(temp,2,temp); emit_writeword(temp,(int)®_cop2d[10]); emit_andimm(sl,0x7c00,temp); emit_shrimm(temp,3,temp); emit_writeword(temp,(int)®_cop2d[11]); emit_writeword(sl,(int)®_cop2d[28]); break; case 30: emit_movs(sl,temp); emit_mvnmi(temp,temp); #ifdef HAVE_ARMV5 emit_clz(temp,temp); #else emit_movs(temp,HOST_TEMPREG); emit_movimm(0,temp); emit_jeq((int)out+4*4); emit_addpl_imm(temp,1,temp); emit_lslpls_imm(HOST_TEMPREG,1,HOST_TEMPREG); emit_jns((int)out-2*4); #endif emit_writeword(sl,(int)®_cop2d[30]); emit_writeword(temp,(int)®_cop2d[31]); break; case 31: break; default: emit_writeword(sl,(int)®_cop2d[copr]); break; } } static void cop2_assemble(int i,struct regstat *i_regs) { u_int copr=(source[i]>>11)&0x1f; signed char temp=get_reg(i_regs->regmap,-1); if (opcode2[i]==0) { // MFC2 signed char tl=get_reg(i_regs->regmap,rt1[i]); if(tl>=0&&rt1[i]!=0) cop2_get_dreg(copr,tl,temp); } else if (opcode2[i]==4) { // MTC2 signed char sl=get_reg(i_regs->regmap,rs1[i]); cop2_put_dreg(copr,sl,temp); } else if (opcode2[i]==2) // CFC2 { signed char tl=get_reg(i_regs->regmap,rt1[i]); if(tl>=0&&rt1[i]!=0) emit_readword((int)®_cop2c[copr],tl); } else if (opcode2[i]==6) // CTC2 { signed char sl=get_reg(i_regs->regmap,rs1[i]); switch(copr) { case 4: case 12: case 20: case 26: case 27: case 29: case 30: emit_signextend16(sl,temp); break; case 31: //value = value & 0x7ffff000; //if (value & 0x7f87e000) value |= 0x80000000; emit_shrimm(sl,12,temp); emit_shlimm(temp,12,temp); emit_testimm(temp,0x7f000000); emit_testeqimm(temp,0x00870000); emit_testeqimm(temp,0x0000e000); emit_orrne_imm(temp,0x80000000,temp); break; default: temp=sl; break; } emit_writeword(temp,(int)®_cop2c[copr]); assert(sl>=0); } } static void c2op_prologue(u_int op,u_int reglist) { save_regs_all(reglist); #ifdef PCNT emit_movimm(op,0); emit_call((int)pcnt_gte_start); #endif emit_addimm(FP,(int)&psxRegs.CP2D.r[0]-(int)&dynarec_local,0); // cop2 regs } static void c2op_epilogue(u_int op,u_int reglist) { #ifdef PCNT emit_movimm(op,0); emit_call((int)pcnt_gte_end); #endif restore_regs_all(reglist); } static void c2op_call_MACtoIR(int lm,int need_flags) { if(need_flags) emit_call((int)(lm?gteMACtoIR_lm1:gteMACtoIR_lm0)); else emit_call((int)(lm?gteMACtoIR_lm1_nf:gteMACtoIR_lm0_nf)); } static void c2op_call_rgb_func(void *func,int lm,int need_ir,int need_flags) { emit_call((int)func); // func is C code and trashes r0 emit_addimm(FP,(int)&psxRegs.CP2D.r[0]-(int)&dynarec_local,0); if(need_flags||need_ir) c2op_call_MACtoIR(lm,need_flags); emit_call((int)(need_flags?gteMACtoRGB:gteMACtoRGB_nf)); } static void c2op_assemble(int i,struct regstat *i_regs) { u_int c2op=source[i]&0x3f; u_int hr,reglist_full=0,reglist; int need_flags,need_ir; for(hr=0;hrregmap[hr]>=0) reglist_full|=1<>63); // +1 because of how liveness detection works need_ir=(gte_unneeded[i+1]&0xe00)!=0xe00; assem_debug("gte op %08x, unneeded %016llx, need_flags %d, need_ir %d\n", source[i],gte_unneeded[i+1],need_flags,need_ir); if(new_dynarec_hacks&NDHACK_GTE_NO_FLAGS) need_flags=0; int shift = (source[i] >> 19) & 1; int lm = (source[i] >> 10) & 1; switch(c2op) { #ifndef DRC_DBG case GTE_MVMVA: { #ifdef HAVE_ARMV5 int v = (source[i] >> 15) & 3; int cv = (source[i] >> 13) & 3; int mx = (source[i] >> 17) & 3; reglist=reglist_full&(CALLER_SAVE_REGS|0xf0); // +{r4-r7} c2op_prologue(c2op,reglist); /* r4,r5 = VXYZ(v) packed; r6 = &MX11(mx); r7 = &CV1(cv) */ if(v<3) emit_ldrd(v*8,0,4); else { emit_movzwl_indexed(9*4,0,4); // gteIR emit_movzwl_indexed(10*4,0,6); emit_movzwl_indexed(11*4,0,5); emit_orrshl_imm(6,16,4); } if(mx<3) emit_addimm(0,32*4+mx*8*4,6); else emit_readword((int)&zeromem_ptr,6); if(cv<3) emit_addimm(0,32*4+(cv*8+5)*4,7); else emit_readword((int)&zeromem_ptr,7); #ifdef __ARM_NEON__ emit_movimm(source[i],1); // opcode emit_call((int)gteMVMVA_part_neon); if(need_flags) { emit_movimm(lm,1); emit_call((int)gteMACtoIR_flags_neon); } #else if(cv==3&&shift) emit_call((int)gteMVMVA_part_cv3sh12_arm); else { emit_movimm(shift,1); emit_call((int)(need_flags?gteMVMVA_part_arm:gteMVMVA_part_nf_arm)); } if(need_flags||need_ir) c2op_call_MACtoIR(lm,need_flags); #endif #else /* if not HAVE_ARMV5 */ c2op_prologue(c2op,reglist); emit_movimm(source[i],1); // opcode emit_writeword(1,(int)&psxRegs.code); emit_call((int)(need_flags?gte_handlers[c2op]:gte_handlers_nf[c2op])); #endif break; } case GTE_OP: c2op_prologue(c2op,reglist); emit_call((int)(shift?gteOP_part_shift:gteOP_part_noshift)); if(need_flags||need_ir) { emit_addimm(FP,(int)&psxRegs.CP2D.r[0]-(int)&dynarec_local,0); c2op_call_MACtoIR(lm,need_flags); } break; case GTE_DPCS: c2op_prologue(c2op,reglist); c2op_call_rgb_func(shift?gteDPCS_part_shift:gteDPCS_part_noshift,lm,need_ir,need_flags); break; case GTE_INTPL: c2op_prologue(c2op,reglist); c2op_call_rgb_func(shift?gteINTPL_part_shift:gteINTPL_part_noshift,lm,need_ir,need_flags); break; case GTE_SQR: c2op_prologue(c2op,reglist); emit_call((int)(shift?gteSQR_part_shift:gteSQR_part_noshift)); if(need_flags||need_ir) { emit_addimm(FP,(int)&psxRegs.CP2D.r[0]-(int)&dynarec_local,0); c2op_call_MACtoIR(lm,need_flags); } break; case GTE_DCPL: c2op_prologue(c2op,reglist); c2op_call_rgb_func(gteDCPL_part,lm,need_ir,need_flags); break; case GTE_GPF: c2op_prologue(c2op,reglist); c2op_call_rgb_func(shift?gteGPF_part_shift:gteGPF_part_noshift,lm,need_ir,need_flags); break; case GTE_GPL: c2op_prologue(c2op,reglist); c2op_call_rgb_func(shift?gteGPL_part_shift:gteGPL_part_noshift,lm,need_ir,need_flags); break; #endif default: c2op_prologue(c2op,reglist); #ifdef DRC_DBG emit_movimm(source[i],1); // opcode emit_writeword(1,(int)&psxRegs.code); #endif emit_call((int)(need_flags?gte_handlers[c2op]:gte_handlers_nf[c2op])); break; } c2op_epilogue(c2op,reglist); } } static void cop1_unusable(int i,struct regstat *i_regs) { // XXX: should just just do the exception instead if(!cop1_usable) { int jaddr=(int)out; emit_jmp(0); add_stub(FP_STUB,jaddr,(int)out,i,0,(int)i_regs,is_delayslot,0); cop1_usable=1; } } static void cop1_assemble(int i,struct regstat *i_regs) { cop1_unusable(i, i_regs); } static void fconv_assemble_arm(int i,struct regstat *i_regs) { cop1_unusable(i, i_regs); } #define fconv_assemble fconv_assemble_arm static void fcomp_assemble(int i,struct regstat *i_regs) { cop1_unusable(i, i_regs); } static void float_assemble(int i,struct regstat *i_regs) { cop1_unusable(i, i_regs); } static void multdiv_assemble_arm(int i,struct regstat *i_regs) { // case 0x18: MULT // case 0x19: MULTU // case 0x1A: DIV // case 0x1B: DIVU // case 0x1C: DMULT // case 0x1D: DMULTU // case 0x1E: DDIV // case 0x1F: DDIVU if(rs1[i]&&rs2[i]) { if((opcode2[i]&4)==0) // 32-bit { if(opcode2[i]==0x18) // MULT { signed char m1=get_reg(i_regs->regmap,rs1[i]); signed char m2=get_reg(i_regs->regmap,rs2[i]); signed char hi=get_reg(i_regs->regmap,HIREG); signed char lo=get_reg(i_regs->regmap,LOREG); assert(m1>=0); assert(m2>=0); assert(hi>=0); assert(lo>=0); emit_smull(m1,m2,hi,lo); } if(opcode2[i]==0x19) // MULTU { signed char m1=get_reg(i_regs->regmap,rs1[i]); signed char m2=get_reg(i_regs->regmap,rs2[i]); signed char hi=get_reg(i_regs->regmap,HIREG); signed char lo=get_reg(i_regs->regmap,LOREG); assert(m1>=0); assert(m2>=0); assert(hi>=0); assert(lo>=0); emit_umull(m1,m2,hi,lo); } if(opcode2[i]==0x1A) // DIV { signed char d1=get_reg(i_regs->regmap,rs1[i]); signed char d2=get_reg(i_regs->regmap,rs2[i]); assert(d1>=0); assert(d2>=0); signed char quotient=get_reg(i_regs->regmap,LOREG); signed char remainder=get_reg(i_regs->regmap,HIREG); assert(quotient>=0); assert(remainder>=0); emit_movs(d1,remainder); emit_movimm(0xffffffff,quotient); emit_negmi(quotient,quotient); // .. quotient and .. emit_negmi(remainder,remainder); // .. remainder for div0 case (will be negated back after jump) emit_movs(d2,HOST_TEMPREG); emit_jeq((int)out+52); // Division by zero emit_negsmi(HOST_TEMPREG,HOST_TEMPREG); #ifdef HAVE_ARMV5 emit_clz(HOST_TEMPREG,quotient); emit_shl(HOST_TEMPREG,quotient,HOST_TEMPREG); #else emit_movimm(0,quotient); emit_addpl_imm(quotient,1,quotient); emit_lslpls_imm(HOST_TEMPREG,1,HOST_TEMPREG); emit_jns((int)out-2*4); #endif emit_orimm(quotient,1<<31,quotient); emit_shr(quotient,quotient,quotient); emit_cmp(remainder,HOST_TEMPREG); emit_subcs(remainder,HOST_TEMPREG,remainder); emit_adcs(quotient,quotient,quotient); emit_shrimm(HOST_TEMPREG,1,HOST_TEMPREG); emit_jcc((int)out-16); // -4 emit_teq(d1,d2); emit_negmi(quotient,quotient); emit_test(d1,d1); emit_negmi(remainder,remainder); } if(opcode2[i]==0x1B) // DIVU { signed char d1=get_reg(i_regs->regmap,rs1[i]); // dividend signed char d2=get_reg(i_regs->regmap,rs2[i]); // divisor assert(d1>=0); assert(d2>=0); signed char quotient=get_reg(i_regs->regmap,LOREG); signed char remainder=get_reg(i_regs->regmap,HIREG); assert(quotient>=0); assert(remainder>=0); emit_mov(d1,remainder); emit_movimm(0xffffffff,quotient); // div0 case emit_test(d2,d2); emit_jeq((int)out+40); // Division by zero #ifdef HAVE_ARMV5 emit_clz(d2,HOST_TEMPREG); emit_movimm(1<<31,quotient); emit_shl(d2,HOST_TEMPREG,d2); #else emit_movimm(0,HOST_TEMPREG); emit_addpl_imm(HOST_TEMPREG,1,HOST_TEMPREG); emit_lslpls_imm(d2,1,d2); emit_jns((int)out-2*4); emit_movimm(1<<31,quotient); #endif emit_shr(quotient,HOST_TEMPREG,quotient); emit_cmp(remainder,d2); emit_subcs(remainder,d2,remainder); emit_adcs(quotient,quotient,quotient); emit_shrcc_imm(d2,1,d2); emit_jcc((int)out-16); // -4 } } else // 64-bit assert(0); } else { // Multiply by zero is zero. // MIPS does not have a divide by zero exception. // The result is undefined, we return zero. signed char hr=get_reg(i_regs->regmap,HIREG); signed char lr=get_reg(i_regs->regmap,LOREG); if(hr>=0) emit_zeroreg(hr); if(lr>=0) emit_zeroreg(lr); } } #define multdiv_assemble multdiv_assemble_arm static void do_preload_rhash(int r) { // Don't need this for ARM. On x86, this puts the value 0xf8 into the // register. On ARM the hash can be done with a single instruction (below) } static void do_preload_rhtbl(int ht) { emit_addimm(FP,(int)&mini_ht-(int)&dynarec_local,ht); } static void do_rhash(int rs,int rh) { emit_andimm(rs,0xf8,rh); } static void do_miniht_load(int ht,int rh) { assem_debug("ldr %s,[%s,%s]!\n",regname[rh],regname[ht],regname[rh]); output_w32(0xe7b00000|rd_rn_rm(rh,ht,rh)); } static void do_miniht_jump(int rs,int rh,int ht) { emit_cmp(rh,rs); emit_ldreq_indexed(ht,4,15); #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK emit_mov(rs,7); emit_jmp(jump_vaddr_reg[7]); #else emit_jmp(jump_vaddr_reg[rs]); #endif } static void do_miniht_insert(u_int return_address,int rt,int temp) { #ifndef HAVE_ARMV7 emit_movimm(return_address,rt); // PC into link register add_to_linker((int)out,return_address,1); emit_pcreladdr(temp); emit_writeword(rt,(int)&mini_ht[(return_address&0xFF)>>3][0]); emit_writeword(temp,(int)&mini_ht[(return_address&0xFF)>>3][1]); #else emit_movw(return_address&0x0000FFFF,rt); add_to_linker((int)out,return_address,1); emit_pcreladdr(temp); emit_writeword(temp,(int)&mini_ht[(return_address&0xFF)>>3][1]); emit_movt(return_address&0xFFFF0000,rt); emit_writeword(rt,(int)&mini_ht[(return_address&0xFF)>>3][0]); #endif } static void wb_valid(signed char pre[],signed char entry[],u_int dirty_pre,u_int dirty,uint64_t is32_pre,uint64_t u,uint64_t uu) { //if(dirty_pre==dirty) return; int hr,reg; for(hr=0;hr>(reg&63))&1) { if(reg>0) { if(((dirty_pre&~dirty)>>hr)&1) { if(reg>0&®<34) { emit_storereg(reg,hr); if( ((is32_pre&~uu)>>reg)&1 ) { emit_sarimm(hr,31,HOST_TEMPREG); emit_storereg(reg|64,HOST_TEMPREG); } } else if(reg>=64) { emit_storereg(reg,hr); } } } } } } } /* using strd could possibly help but you'd have to allocate registers in pairs static void wb_invalidate_arm(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,uint64_t u,uint64_t uu) { int hr; int wrote=-1; for(hr=HOST_REGS-1;hr>=0;hr--) { if(hr!=EXCLUDE_REG) { if(pre[hr]!=entry[hr]) { if(pre[hr]>=0) { if((dirty>>hr)&1) { if(get_reg(entry,pre[hr])<0) { if(pre[hr]<64) { if(!((u>>pre[hr])&1)) { if(hr<10&&(~hr&1)&&(pre[hr+1]<0||wrote==hr+1)) { if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) { emit_sarimm(hr,31,hr+1); emit_strdreg(pre[hr],hr); } else emit_storereg(pre[hr],hr); }else{ emit_storereg(pre[hr],hr); if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) { emit_sarimm(hr,31,hr); emit_storereg(pre[hr]|64,hr); } } } }else{ if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) { emit_storereg(pre[hr],hr); } } wrote=hr; } } } } } } for(hr=0;hr=0) { int nr; if((nr=get_reg(entry,pre[hr]))>=0) { emit_mov(hr,nr); } } } } } } #define wb_invalidate wb_invalidate_arm */ static void mark_clear_cache(void *target) { u_long offset = (char *)target - (char *)BASE_ADDR; u_int mask = 1u << ((offset >> 12) & 31); if (!(needs_clear_cache[offset >> 17] & mask)) { char *start = (char *)((u_long)target & ~4095ul); start_tcache_write(start, start + 4096); needs_clear_cache[offset >> 17] |= mask; } } // Clearing the cache is rather slow on ARM Linux, so mark the areas // that need to be cleared, and then only clear these areas once. static void do_clear_cache() { int i,j; for (i=0;i<(1<<(TARGET_SIZE_2-17));i++) { u_int bitmap=needs_clear_cache[i]; if(bitmap) { u_int start,end; for(j=0;j<32;j++) { if(bitmap&(1<