/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Mupen64plus/PCSX - assem_arm.c * * Copyright (C) 2009-2011 Ari64 * * Copyright (C) 2010-2011 GraÅžvydas "notaz" Ignotas * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ #ifdef PCSX #include "../gte_arm.h" #include "../gte_neon.h" #include "pcnt.h" #endif extern int cycle_count; extern int last_count; extern int pcaddr; extern int pending_exception; extern int branch_target; extern uint64_t readmem_dword; #ifdef MUPEN64 extern precomp_instr fake_pc; #endif extern void *dynarec_local; extern u_int memory_map[1048576]; extern u_int mini_ht[32][2]; extern u_int rounding_modes[4]; void indirect_jump_indexed(); void indirect_jump(); void do_interrupt(); void jump_vaddr_r0(); void jump_vaddr_r1(); void jump_vaddr_r2(); void jump_vaddr_r3(); void jump_vaddr_r4(); void jump_vaddr_r5(); void jump_vaddr_r6(); void jump_vaddr_r7(); void jump_vaddr_r8(); void jump_vaddr_r9(); void jump_vaddr_r10(); void jump_vaddr_r12(); const u_int jump_vaddr_reg[16] = { (int)jump_vaddr_r0, (int)jump_vaddr_r1, (int)jump_vaddr_r2, (int)jump_vaddr_r3, (int)jump_vaddr_r4, (int)jump_vaddr_r5, (int)jump_vaddr_r6, (int)jump_vaddr_r7, (int)jump_vaddr_r8, (int)jump_vaddr_r9, (int)jump_vaddr_r10, 0, (int)jump_vaddr_r12, 0, 0, 0}; void invalidate_addr_r0(); void invalidate_addr_r1(); void invalidate_addr_r2(); void invalidate_addr_r3(); void invalidate_addr_r4(); void invalidate_addr_r5(); void invalidate_addr_r6(); void invalidate_addr_r7(); void invalidate_addr_r8(); void invalidate_addr_r9(); void invalidate_addr_r10(); void invalidate_addr_r12(); const u_int invalidate_addr_reg[16] = { (int)invalidate_addr_r0, (int)invalidate_addr_r1, (int)invalidate_addr_r2, (int)invalidate_addr_r3, (int)invalidate_addr_r4, (int)invalidate_addr_r5, (int)invalidate_addr_r6, (int)invalidate_addr_r7, (int)invalidate_addr_r8, (int)invalidate_addr_r9, (int)invalidate_addr_r10, 0, (int)invalidate_addr_r12, 0, 0, 0}; #include "fpu.h" unsigned int needs_clear_cache[1<<(TARGET_SIZE_2-17)]; /* Linker */ void set_jump_target(int addr,u_int target) { u_char *ptr=(u_char *)addr; u_int *ptr2=(u_int *)ptr; if(ptr[3]==0xe2) { assert((target-(u_int)ptr2-8)<1024); assert((addr&3)==0); assert((target&3)==0); *ptr2=(*ptr2&0xFFFFF000)|((target-(u_int)ptr2-8)>>2)|0xF00; //printf("target=%x addr=%x insn=%x\n",target,addr,*ptr2); } else if(ptr[3]==0x72) { // generated by emit_jno_unlikely if((target-(u_int)ptr2-8)<1024) { assert((addr&3)==0); assert((target&3)==0); *ptr2=(*ptr2&0xFFFFF000)|((target-(u_int)ptr2-8)>>2)|0xF00; } else if((target-(u_int)ptr2-8)<4096&&!((target-(u_int)ptr2-8)&15)) { assert((addr&3)==0); assert((target&3)==0); *ptr2=(*ptr2&0xFFFFF000)|((target-(u_int)ptr2-8)>>4)|0xE00; } else *ptr2=(0x7A000000)|(((target-(u_int)ptr2-8)<<6)>>8); } else { assert((ptr[3]&0x0e)==0xa); *ptr2=(*ptr2&0xFF000000)|(((target-(u_int)ptr2-8)<<6)>>8); } } // This optionally copies the instruction from the target of the branch into // the space before the branch. Works, but the difference in speed is // usually insignificant. void set_jump_target_fillslot(int addr,u_int target,int copy) { u_char *ptr=(u_char *)addr; u_int *ptr2=(u_int *)ptr; assert(!copy||ptr2[-1]==0xe28dd000); if(ptr[3]==0xe2) { assert(!copy); assert((target-(u_int)ptr2-8)<4096); *ptr2=(*ptr2&0xFFFFF000)|(target-(u_int)ptr2-8); } else { assert((ptr[3]&0x0e)==0xa); u_int target_insn=*(u_int *)target; if((target_insn&0x0e100000)==0) { // ALU, no immediate, no flags copy=0; } if((target_insn&0x0c100000)==0x04100000) { // Load copy=0; } if(target_insn&0x08000000) { copy=0; } if(copy) { ptr2[-1]=target_insn; target+=4; } *ptr2=(*ptr2&0xFF000000)|(((target-(u_int)ptr2-8)<<6)>>8); } } /* Literal pool */ add_literal(int addr,int val) { assert(literalcount>6)+8; } // Find the "clean" entry point from a "dirty" entry point // by skipping past the call to verify_code u_int get_clean_addr(int addr) { int *ptr=(int *)addr; #ifdef ARMv5_ONLY ptr+=4; #else ptr+=6; #endif if((*ptr&0xFF000000)!=0xeb000000) ptr++; assert((*ptr&0xFF000000)==0xeb000000); // bl instruction ptr++; if((*ptr&0xFF000000)==0xea000000) { return (int)ptr+((*ptr<<8)>>6)+8; // follow jump } return (u_int)ptr; } int verify_dirty(int addr) { u_int *ptr=(u_int *)addr; #ifdef ARMv5_ONLY // get from literal pool assert((*ptr&0xFFFF0000)==0xe59f0000); u_int offset=*ptr&0xfff; u_int *l_ptr=(void *)ptr+offset+8; u_int source=l_ptr[0]; u_int copy=l_ptr[1]; u_int len=l_ptr[2]; ptr+=4; #else // ARMv7 movw/movt assert((*ptr&0xFFF00000)==0xe3000000); u_int source=(ptr[0]&0xFFF)+((ptr[0]>>4)&0xF000)+((ptr[2]<<16)&0xFFF0000)+((ptr[2]<<12)&0xF0000000); u_int copy=(ptr[1]&0xFFF)+((ptr[1]>>4)&0xF000)+((ptr[3]<<16)&0xFFF0000)+((ptr[3]<<12)&0xF0000000); u_int len=(ptr[4]&0xFFF)+((ptr[4]>>4)&0xF000); ptr+=6; #endif if((*ptr&0xFF000000)!=0xeb000000) ptr++; assert((*ptr&0xFF000000)==0xeb000000); // bl instruction #ifndef DISABLE_TLB u_int verifier=(int)ptr+((signed int)(*ptr<<8)>>6)+8; // get target of bl if(verifier==(u_int)verify_code_vm||verifier==(u_int)verify_code_ds) { unsigned int page=source>>12; unsigned int map_value=memory_map[page]; if(map_value>=0x80000000) return 0; while(page<((source+len-1)>>12)) { if((memory_map[++page]<<2)!=(map_value<<2)) return 0; } source = source+(map_value<<2); } #endif //printf("verify_dirty: %x %x %x\n",source,copy,len); return !memcmp((void *)source,(void *)copy,len); } // This doesn't necessarily find all clean entry points, just // guarantees that it's not dirty int isclean(int addr) { #ifdef ARMv5_ONLY int *ptr=((u_int *)addr)+4; #else int *ptr=((u_int *)addr)+6; #endif if((*ptr&0xFF000000)!=0xeb000000) ptr++; if((*ptr&0xFF000000)!=0xeb000000) return 1; // bl instruction if((int)ptr+((*ptr<<8)>>6)+8==(int)verify_code) return 0; if((int)ptr+((*ptr<<8)>>6)+8==(int)verify_code_vm) return 0; if((int)ptr+((*ptr<<8)>>6)+8==(int)verify_code_ds) return 0; return 1; } void get_bounds(int addr,u_int *start,u_int *end) { u_int *ptr=(u_int *)addr; #ifdef ARMv5_ONLY // get from literal pool assert((*ptr&0xFFFF0000)==0xe59f0000); u_int offset=*ptr&0xfff; u_int *l_ptr=(void *)ptr+offset+8; u_int source=l_ptr[0]; //u_int copy=l_ptr[1]; u_int len=l_ptr[2]; ptr+=4; #else // ARMv7 movw/movt assert((*ptr&0xFFF00000)==0xe3000000); u_int source=(ptr[0]&0xFFF)+((ptr[0]>>4)&0xF000)+((ptr[2]<<16)&0xFFF0000)+((ptr[2]<<12)&0xF0000000); //u_int copy=(ptr[1]&0xFFF)+((ptr[1]>>4)&0xF000)+((ptr[3]<<16)&0xFFF0000)+((ptr[3]<<12)&0xF0000000); u_int len=(ptr[4]&0xFFF)+((ptr[4]>>4)&0xF000); ptr+=6; #endif if((*ptr&0xFF000000)!=0xeb000000) ptr++; assert((*ptr&0xFF000000)==0xeb000000); // bl instruction #ifndef DISABLE_TLB u_int verifier=(int)ptr+((signed int)(*ptr<<8)>>6)+8; // get target of bl if(verifier==(u_int)verify_code_vm||verifier==(u_int)verify_code_ds) { if(memory_map[source>>12]>=0x80000000) source = 0; else source = source+(memory_map[source>>12]<<2); } #endif *start=source; *end=source+len; } /* Register allocation */ // Note: registers are allocated clean (unmodified state) // if you intend to modify the register, you must call dirty_reg(). void alloc_reg(struct regstat *cur,int i,signed char reg) { int r,hr; int preferred_reg = (reg&7); if(reg==CCREG) preferred_reg=HOST_CCREG; if(reg==PTEMP||reg==FTEMP) preferred_reg=12; // Don't allocate unused registers if((cur->u>>reg)&1) return; // see if it's already allocated for(hr=0;hrregmap[hr]==reg) return; } // Keep the same mapping if the register was already allocated in a loop preferred_reg = loop_reg(i,reg,preferred_reg); // Try to allocate the preferred register if(cur->regmap[preferred_reg]==-1) { cur->regmap[preferred_reg]=reg; cur->dirty&=~(1<isconst&=~(1<regmap[preferred_reg]; if(r<64&&((cur->u>>r)&1)) { cur->regmap[preferred_reg]=reg; cur->dirty&=~(1<isconst&=~(1<=64&&((cur->uu>>(r&63))&1)) { cur->regmap[preferred_reg]=reg; cur->dirty&=~(1<isconst&=~(1<regmap[hr]; if(r>=0) { if(r<64) { if((cur->u>>r)&1) {cur->regmap[hr]=-1;break;} } else { if((cur->uu>>(r&63))&1) {cur->regmap[hr]=-1;break;} } } } // Try to allocate any available register, but prefer // registers that have not been used recently. if(i>0) { for(hr=0;hrregmap[hr]==-1) { if(regs[i-1].regmap[hr]!=rs1[i-1]&®s[i-1].regmap[hr]!=rs2[i-1]&®s[i-1].regmap[hr]!=rt1[i-1]&®s[i-1].regmap[hr]!=rt2[i-1]) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<regmap[hr]==-1) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<regmap[0],cur->regmap[1],cur->regmap[2],cur->regmap[3],cur->regmap[5],cur->regmap[6],cur->regmap[7]); //printf("hsn(%x): %d %d %d %d %d %d %d\n",start+i*4,hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]); if(i>0) { // Don't evict the cycle count at entry points, otherwise the entry // stub will have to write it. if(bt[i]&&hsn[CCREG]>2) hsn[CCREG]=2; if(i>1&&hsn[CCREG]>2&&(itype[i-2]==RJUMP||itype[i-2]==UJUMP||itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP)) hsn[CCREG]=2; for(j=10;j>=3;j--) { // Alloc preferred register if available if(hsn[r=cur->regmap[preferred_reg]&63]==j) { for(hr=0;hrregmap[hr]&63)==r) { cur->regmap[hr]=-1; cur->dirty&=~(1<isconst&=~(1<regmap[preferred_reg]=reg; return; } for(r=1;r<=MAXREG;r++) { if(hsn[r]==j&&r!=rs1[i-1]&&r!=rs2[i-1]&&r!=rt1[i-1]&&r!=rt2[i-1]) { for(hr=0;hrregmap[hr]==r+64) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<regmap[hr]==r) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<=0;j--) { for(r=1;r<=MAXREG;r++) { if(hsn[r]==j) { for(hr=0;hrregmap[hr]==r+64) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<regmap[hr]==r) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<uu>>reg)&1) return; // see if the upper half is already allocated for(hr=0;hrregmap[hr]==reg+64) return; } // Keep the same mapping if the register was already allocated in a loop preferred_reg = loop_reg(i,reg,preferred_reg); // Try to allocate the preferred register if(cur->regmap[preferred_reg]==-1) { cur->regmap[preferred_reg]=reg|64; cur->dirty&=~(1<isconst&=~(1<regmap[preferred_reg]; if(r<64&&((cur->u>>r)&1)) { cur->regmap[preferred_reg]=reg|64; cur->dirty&=~(1<isconst&=~(1<=64&&((cur->uu>>(r&63))&1)) { cur->regmap[preferred_reg]=reg|64; cur->dirty&=~(1<isconst&=~(1<=0;hr--) { r=cur->regmap[hr]; if(r>=0) { if(r<64) { if((cur->u>>r)&1) {cur->regmap[hr]=-1;break;} } else { if((cur->uu>>(r&63))&1) {cur->regmap[hr]=-1;break;} } } } // Try to allocate any available register, but prefer // registers that have not been used recently. if(i>0) { for(hr=0;hrregmap[hr]==-1) { if(regs[i-1].regmap[hr]!=rs1[i-1]&®s[i-1].regmap[hr]!=rs2[i-1]&®s[i-1].regmap[hr]!=rt1[i-1]&®s[i-1].regmap[hr]!=rt2[i-1]) { cur->regmap[hr]=reg|64; cur->dirty&=~(1<isconst&=~(1<regmap[hr]==-1) { cur->regmap[hr]=reg|64; cur->dirty&=~(1<isconst&=~(1<regmap[0],cur->regmap[1],cur->regmap[2],cur->regmap[3],cur->regmap[5],cur->regmap[6],cur->regmap[7]); //printf("hsn(%x): %d %d %d %d %d %d %d\n",start+i*4,hsn[cur->regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]); if(i>0) { // Don't evict the cycle count at entry points, otherwise the entry // stub will have to write it. if(bt[i]&&hsn[CCREG]>2) hsn[CCREG]=2; if(i>1&&hsn[CCREG]>2&&(itype[i-2]==RJUMP||itype[i-2]==UJUMP||itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP)) hsn[CCREG]=2; for(j=10;j>=3;j--) { // Alloc preferred register if available if(hsn[r=cur->regmap[preferred_reg]&63]==j) { for(hr=0;hrregmap[hr]&63)==r) { cur->regmap[hr]=-1; cur->dirty&=~(1<isconst&=~(1<regmap[preferred_reg]=reg|64; return; } for(r=1;r<=MAXREG;r++) { if(hsn[r]==j&&r!=rs1[i-1]&&r!=rs2[i-1]&&r!=rt1[i-1]&&r!=rt2[i-1]) { for(hr=0;hrregmap[hr]==r+64) { cur->regmap[hr]=reg|64; cur->dirty&=~(1<isconst&=~(1<regmap[hr]==r) { cur->regmap[hr]=reg|64; cur->dirty&=~(1<isconst&=~(1<=0;j--) { for(r=1;r<=MAXREG;r++) { if(hsn[r]==j) { for(hr=0;hrregmap[hr]==r+64) { cur->regmap[hr]=reg|64; cur->dirty&=~(1<isconst&=~(1<regmap[hr]==r) { cur->regmap[hr]=reg|64; cur->dirty&=~(1<isconst&=~(1<regmap[hr]==reg) return; } // Try to allocate any available register for(hr=HOST_REGS-1;hr>=0;hr--) { if(hr!=EXCLUDE_REG&&cur->regmap[hr]==-1) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<=0;hr--) { r=cur->regmap[hr]; if(r>=0) { if(r<64) { if((cur->u>>r)&1) { if(i==0||((unneeded_reg[i-1]>>r)&1)) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<uu>>(r&63))&1) { if(i==0||((unneeded_reg_upper[i-1]>>(r&63))&1)) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<regmap[0]&63],hsn[cur->regmap[1]&63],hsn[cur->regmap[2]&63],hsn[cur->regmap[3]&63],hsn[cur->regmap[5]&63],hsn[cur->regmap[6]&63],hsn[cur->regmap[7]&63]); if(i>0) { // Don't evict the cycle count at entry points, otherwise the entry // stub will have to write it. if(bt[i]&&hsn[CCREG]>2) hsn[CCREG]=2; if(i>1&&hsn[CCREG]>2&&(itype[i-2]==RJUMP||itype[i-2]==UJUMP||itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP)) hsn[CCREG]=2; for(j=10;j>=3;j--) { for(r=1;r<=MAXREG;r++) { if(hsn[r]==j&&r!=rs1[i-1]&&r!=rs2[i-1]&&r!=rt1[i-1]&&r!=rt2[i-1]) { for(hr=0;hr2) { if(cur->regmap[hr]==r+64) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<2) { if(cur->regmap[hr]==r) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<=0;j--) { for(r=1;r<=MAXREG;r++) { if(hsn[r]==j) { for(hr=0;hrregmap[hr]==r+64) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<regmap[hr]==r) { cur->regmap[hr]=reg; cur->dirty&=~(1<isconst&=~(1<regmap[n]==reg) { dirty=(cur->dirty>>n)&1; cur->regmap[n]=-1; } } cur->regmap[hr]=reg; cur->dirty&=~(1<dirty|=dirty<isconst&=~(1<0) { if(imm<256) { *encoded=((i&30)<<7)|imm; return 1; } imm=(imm>>2)|(imm<<30);i-=2; } return 0; } void genimm_checked(u_int imm,u_int *encoded) { u_int ret=genimm(imm,encoded); assert(ret); } u_int genjmp(u_int addr) { int offset=addr-(int)out-8; if(offset<-33554432||offset>=33554432) { if (addr>2) { printf("genjmp: out of range: %08x\n", offset); exit(1); } return 0; } return ((u_int)offset>>2)&0xffffff; } void emit_mov(int rs,int rt) { assem_debug("mov %s,%s\n",regname[rt],regname[rs]); output_w32(0xe1a00000|rd_rn_rm(rt,0,rs)); } void emit_movs(int rs,int rt) { assem_debug("movs %s,%s\n",regname[rt],regname[rs]); output_w32(0xe1b00000|rd_rn_rm(rt,0,rs)); } void emit_add(int rs1,int rs2,int rt) { assem_debug("add %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe0800000|rd_rn_rm(rt,rs1,rs2)); } void emit_adds(int rs1,int rs2,int rt) { assem_debug("adds %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe0900000|rd_rn_rm(rt,rs1,rs2)); } void emit_adcs(int rs1,int rs2,int rt) { assem_debug("adcs %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe0b00000|rd_rn_rm(rt,rs1,rs2)); } void emit_sbc(int rs1,int rs2,int rt) { assem_debug("sbc %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe0c00000|rd_rn_rm(rt,rs1,rs2)); } void emit_sbcs(int rs1,int rs2,int rt) { assem_debug("sbcs %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe0d00000|rd_rn_rm(rt,rs1,rs2)); } void emit_neg(int rs, int rt) { assem_debug("rsb %s,%s,#0\n",regname[rt],regname[rs]); output_w32(0xe2600000|rd_rn_rm(rt,rs,0)); } void emit_negs(int rs, int rt) { assem_debug("rsbs %s,%s,#0\n",regname[rt],regname[rs]); output_w32(0xe2700000|rd_rn_rm(rt,rs,0)); } void emit_sub(int rs1,int rs2,int rt) { assem_debug("sub %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe0400000|rd_rn_rm(rt,rs1,rs2)); } void emit_subs(int rs1,int rs2,int rt) { assem_debug("subs %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe0500000|rd_rn_rm(rt,rs1,rs2)); } void emit_zeroreg(int rt) { assem_debug("mov %s,#0\n",regname[rt]); output_w32(0xe3a00000|rd_rn_rm(rt,0,0)); } void emit_loadlp(u_int imm,u_int rt) { add_literal((int)out,imm); assem_debug("ldr %s,pc+? [=%x]\n",regname[rt],imm); output_w32(0xe5900000|rd_rn_rm(rt,15,0)); } void emit_movw(u_int imm,u_int rt) { assert(imm<65536); assem_debug("movw %s,#%d (0x%x)\n",regname[rt],imm,imm); output_w32(0xe3000000|rd_rn_rm(rt,0,0)|(imm&0xfff)|((imm<<4)&0xf0000)); } void emit_movt(u_int imm,u_int rt) { assem_debug("movt %s,#%d (0x%x)\n",regname[rt],imm&0xffff0000,imm&0xffff0000); output_w32(0xe3400000|rd_rn_rm(rt,0,0)|((imm>>16)&0xfff)|((imm>>12)&0xf0000)); } void emit_movimm(u_int imm,u_int rt) { u_int armval; if(genimm(imm,&armval)) { assem_debug("mov %s,#%d\n",regname[rt],imm); output_w32(0xe3a00000|rd_rn_rm(rt,0,0)|armval); }else if(genimm(~imm,&armval)) { assem_debug("mvn %s,#%d\n",regname[rt],imm); output_w32(0xe3e00000|rd_rn_rm(rt,0,0)|armval); }else if(imm<65536) { #ifdef ARMv5_ONLY assem_debug("mov %s,#%d\n",regname[rt],imm&0xFF00); output_w32(0xe3a00000|rd_rn_imm_shift(rt,0,imm>>8,8)); assem_debug("add %s,%s,#%d\n",regname[rt],regname[rt],imm&0xFF); output_w32(0xe2800000|rd_rn_imm_shift(rt,rt,imm&0xff,0)); #else emit_movw(imm,rt); #endif }else{ #ifdef ARMv5_ONLY emit_loadlp(imm,rt); #else emit_movw(imm&0x0000FFFF,rt); emit_movt(imm&0xFFFF0000,rt); #endif } } void emit_pcreladdr(u_int rt) { assem_debug("add %s,pc,#?\n",regname[rt]); output_w32(0xe2800000|rd_rn_rm(rt,15,0)); } void emit_loadreg(int r, int hr) { #ifdef FORCE32 if(r&64) { printf("64bit load in 32bit mode!\n"); assert(0); return; } #endif if((r&63)==0) emit_zeroreg(hr); else { int addr=((int)reg)+((r&63)<>4); if((r&63)==HIREG) addr=(int)&hi+((r&64)>>4); if((r&63)==LOREG) addr=(int)&lo+((r&64)>>4); if(r==CCREG) addr=(int)&cycle_count; if(r==CSREG) addr=(int)&Status; if(r==FSREG) addr=(int)&FCR31; if(r==INVCP) addr=(int)&invc_ptr; u_int offset = addr-(u_int)&dynarec_local; assert(offset<4096); assem_debug("ldr %s,fp+%d\n",regname[hr],offset); output_w32(0xe5900000|rd_rn_rm(hr,FP,0)|offset); } } void emit_storereg(int r, int hr) { #ifdef FORCE32 if(r&64) { printf("64bit store in 32bit mode!\n"); assert(0); return; } #endif int addr=((int)reg)+((r&63)<>4); if((r&63)==HIREG) addr=(int)&hi+((r&64)>>4); if((r&63)==LOREG) addr=(int)&lo+((r&64)>>4); if(r==CCREG) addr=(int)&cycle_count; if(r==FSREG) addr=(int)&FCR31; u_int offset = addr-(u_int)&dynarec_local; assert(offset<4096); assem_debug("str %s,fp+%d\n",regname[hr],offset); output_w32(0xe5800000|rd_rn_rm(hr,FP,0)|offset); } void emit_test(int rs, int rt) { assem_debug("tst %s,%s\n",regname[rs],regname[rt]); output_w32(0xe1100000|rd_rn_rm(0,rs,rt)); } void emit_testimm(int rs,int imm) { u_int armval; assem_debug("tst %s,#%d\n",regname[rs],imm); genimm_checked(imm,&armval); output_w32(0xe3100000|rd_rn_rm(0,rs,0)|armval); } void emit_testeqimm(int rs,int imm) { u_int armval; assem_debug("tsteq %s,$%d\n",regname[rs],imm); genimm_checked(imm,&armval); output_w32(0x03100000|rd_rn_rm(0,rs,0)|armval); } void emit_not(int rs,int rt) { assem_debug("mvn %s,%s\n",regname[rt],regname[rs]); output_w32(0xe1e00000|rd_rn_rm(rt,0,rs)); } void emit_mvnmi(int rs,int rt) { assem_debug("mvnmi %s,%s\n",regname[rt],regname[rs]); output_w32(0x41e00000|rd_rn_rm(rt,0,rs)); } void emit_and(u_int rs1,u_int rs2,u_int rt) { assem_debug("and %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe0000000|rd_rn_rm(rt,rs1,rs2)); } void emit_or(u_int rs1,u_int rs2,u_int rt) { assem_debug("orr %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe1800000|rd_rn_rm(rt,rs1,rs2)); } void emit_or_and_set_flags(int rs1,int rs2,int rt) { assem_debug("orrs %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe1900000|rd_rn_rm(rt,rs1,rs2)); } void emit_orrshl_imm(u_int rs,u_int imm,u_int rt) { assert(rs<16); assert(rt<16); assert(imm<32); assem_debug("orr %s,%s,%s,lsl #%d\n",regname[rt],regname[rt],regname[rs],imm); output_w32(0xe1800000|rd_rn_rm(rt,rt,rs)|(imm<<7)); } void emit_orrshr_imm(u_int rs,u_int imm,u_int rt) { assert(rs<16); assert(rt<16); assert(imm<32); assem_debug("orr %s,%s,%s,lsr #%d\n",regname[rt],regname[rt],regname[rs],imm); output_w32(0xe1800020|rd_rn_rm(rt,rt,rs)|(imm<<7)); } void emit_xor(u_int rs1,u_int rs2,u_int rt) { assem_debug("eor %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe0200000|rd_rn_rm(rt,rs1,rs2)); } void emit_addimm(u_int rs,int imm,u_int rt) { assert(rs<16); assert(rt<16); if(imm!=0) { u_int armval; if(genimm(imm,&armval)) { assem_debug("add %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe2800000|rd_rn_rm(rt,rs,0)|armval); }else if(genimm(-imm,&armval)) { assem_debug("sub %s,%s,#%d\n",regname[rt],regname[rs],-imm); output_w32(0xe2400000|rd_rn_rm(rt,rs,0)|armval); }else if(imm<0) { assert(imm>-65536); assem_debug("sub %s,%s,#%d\n",regname[rt],regname[rs],(-imm)&0xFF00); assem_debug("sub %s,%s,#%d\n",regname[rt],regname[rt],(-imm)&0xFF); output_w32(0xe2400000|rd_rn_imm_shift(rt,rs,(-imm)>>8,8)); output_w32(0xe2400000|rd_rn_imm_shift(rt,rt,(-imm)&0xff,0)); }else{ assert(imm<65536); assem_debug("add %s,%s,#%d\n",regname[rt],regname[rs],imm&0xFF00); assem_debug("add %s,%s,#%d\n",regname[rt],regname[rt],imm&0xFF); output_w32(0xe2800000|rd_rn_imm_shift(rt,rs,imm>>8,8)); output_w32(0xe2800000|rd_rn_imm_shift(rt,rt,imm&0xff,0)); } } else if(rs!=rt) emit_mov(rs,rt); } void emit_addimm_and_set_flags(int imm,int rt) { assert(imm>-65536&&imm<65536); u_int armval; if(genimm(imm,&armval)) { assem_debug("adds %s,%s,#%d\n",regname[rt],regname[rt],imm); output_w32(0xe2900000|rd_rn_rm(rt,rt,0)|armval); }else if(genimm(-imm,&armval)) { assem_debug("subs %s,%s,#%d\n",regname[rt],regname[rt],imm); output_w32(0xe2500000|rd_rn_rm(rt,rt,0)|armval); }else if(imm<0) { assem_debug("sub %s,%s,#%d\n",regname[rt],regname[rt],(-imm)&0xFF00); assem_debug("subs %s,%s,#%d\n",regname[rt],regname[rt],(-imm)&0xFF); output_w32(0xe2400000|rd_rn_imm_shift(rt,rt,(-imm)>>8,8)); output_w32(0xe2500000|rd_rn_imm_shift(rt,rt,(-imm)&0xff,0)); }else{ assem_debug("add %s,%s,#%d\n",regname[rt],regname[rt],imm&0xFF00); assem_debug("adds %s,%s,#%d\n",regname[rt],regname[rt],imm&0xFF); output_w32(0xe2800000|rd_rn_imm_shift(rt,rt,imm>>8,8)); output_w32(0xe2900000|rd_rn_imm_shift(rt,rt,imm&0xff,0)); } } void emit_addimm_no_flags(u_int imm,u_int rt) { emit_addimm(rt,imm,rt); } void emit_addnop(u_int r) { assert(r<16); assem_debug("add %s,%s,#0 (nop)\n",regname[r],regname[r]); output_w32(0xe2800000|rd_rn_rm(r,r,0)); } void emit_adcimm(u_int rs,int imm,u_int rt) { u_int armval; genimm_checked(imm,&armval); assem_debug("adc %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe2a00000|rd_rn_rm(rt,rs,0)|armval); } /*void emit_sbcimm(int imm,u_int rt) { u_int armval; genimm_checked(imm,&armval); assem_debug("sbc %s,%s,#%d\n",regname[rt],regname[rt],imm); output_w32(0xe2c00000|rd_rn_rm(rt,rt,0)|armval); }*/ void emit_sbbimm(int imm,u_int rt) { assem_debug("sbb $%d,%%%s\n",imm,regname[rt]); assert(rt<8); if(imm<128&&imm>=-128) { output_byte(0x83); output_modrm(3,rt,3); output_byte(imm); } else { output_byte(0x81); output_modrm(3,rt,3); output_w32(imm); } } void emit_rscimm(int rs,int imm,u_int rt) { assert(0); u_int armval; genimm_checked(imm,&armval); assem_debug("rsc %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe2e00000|rd_rn_rm(rt,rs,0)|armval); } void emit_addimm64_32(int rsh,int rsl,int imm,int rth,int rtl) { // TODO: if(genimm(imm,&armval)) ... // else emit_movimm(imm,HOST_TEMPREG); emit_adds(HOST_TEMPREG,rsl,rtl); emit_adcimm(rsh,0,rth); } void emit_sbb(int rs1,int rs2) { assem_debug("sbb %%%s,%%%s\n",regname[rs2],regname[rs1]); output_byte(0x19); output_modrm(3,rs1,rs2); } void emit_andimm(int rs,int imm,int rt) { u_int armval; if(imm==0) { emit_zeroreg(rt); }else if(genimm(imm,&armval)) { assem_debug("and %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe2000000|rd_rn_rm(rt,rs,0)|armval); }else if(genimm(~imm,&armval)) { assem_debug("bic %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe3c00000|rd_rn_rm(rt,rs,0)|armval); }else if(imm==65535) { #ifdef ARMv5_ONLY assem_debug("bic %s,%s,#FF000000\n",regname[rt],regname[rs]); output_w32(0xe3c00000|rd_rn_rm(rt,rs,0)|0x4FF); assem_debug("bic %s,%s,#00FF0000\n",regname[rt],regname[rt]); output_w32(0xe3c00000|rd_rn_rm(rt,rt,0)|0x8FF); #else assem_debug("uxth %s,%s\n",regname[rt],regname[rs]); output_w32(0xe6ff0070|rd_rn_rm(rt,0,rs)); #endif }else{ assert(imm>0&&imm<65535); #ifdef ARMv5_ONLY assem_debug("mov r14,#%d\n",imm&0xFF00); output_w32(0xe3a00000|rd_rn_imm_shift(HOST_TEMPREG,0,imm>>8,8)); assem_debug("add r14,r14,#%d\n",imm&0xFF); output_w32(0xe2800000|rd_rn_imm_shift(HOST_TEMPREG,HOST_TEMPREG,imm&0xff,0)); #else emit_movw(imm,HOST_TEMPREG); #endif assem_debug("and %s,%s,r14\n",regname[rt],regname[rs]); output_w32(0xe0000000|rd_rn_rm(rt,rs,HOST_TEMPREG)); } } void emit_orimm(int rs,int imm,int rt) { u_int armval; if(imm==0) { if(rs!=rt) emit_mov(rs,rt); }else if(genimm(imm,&armval)) { assem_debug("orr %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe3800000|rd_rn_rm(rt,rs,0)|armval); }else{ assert(imm>0&&imm<65536); assem_debug("orr %s,%s,#%d\n",regname[rt],regname[rs],imm&0xFF00); assem_debug("orr %s,%s,#%d\n",regname[rt],regname[rs],imm&0xFF); output_w32(0xe3800000|rd_rn_imm_shift(rt,rs,imm>>8,8)); output_w32(0xe3800000|rd_rn_imm_shift(rt,rt,imm&0xff,0)); } } void emit_xorimm(int rs,int imm,int rt) { u_int armval; if(imm==0) { if(rs!=rt) emit_mov(rs,rt); }else if(genimm(imm,&armval)) { assem_debug("eor %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe2200000|rd_rn_rm(rt,rs,0)|armval); }else{ assert(imm>0&&imm<65536); assem_debug("eor %s,%s,#%d\n",regname[rt],regname[rs],imm&0xFF00); assem_debug("eor %s,%s,#%d\n",regname[rt],regname[rs],imm&0xFF); output_w32(0xe2200000|rd_rn_imm_shift(rt,rs,imm>>8,8)); output_w32(0xe2200000|rd_rn_imm_shift(rt,rt,imm&0xff,0)); } } void emit_shlimm(int rs,u_int imm,int rt) { assert(imm>0); assert(imm<32); //if(imm==1) ... assem_debug("lsl %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe1a00000|rd_rn_rm(rt,0,rs)|(imm<<7)); } void emit_lsls_imm(int rs,int imm,int rt) { assert(imm>0); assert(imm<32); assem_debug("lsls %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe1b00000|rd_rn_rm(rt,0,rs)|(imm<<7)); } void emit_shrimm(int rs,u_int imm,int rt) { assert(imm>0); assert(imm<32); assem_debug("lsr %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe1a00000|rd_rn_rm(rt,0,rs)|0x20|(imm<<7)); } void emit_sarimm(int rs,u_int imm,int rt) { assert(imm>0); assert(imm<32); assem_debug("asr %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe1a00000|rd_rn_rm(rt,0,rs)|0x40|(imm<<7)); } void emit_rorimm(int rs,u_int imm,int rt) { assert(imm>0); assert(imm<32); assem_debug("ror %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe1a00000|rd_rn_rm(rt,0,rs)|0x60|(imm<<7)); } void emit_shldimm(int rs,int rs2,u_int imm,int rt) { assem_debug("shld %%%s,%%%s,%d\n",regname[rt],regname[rs2],imm); assert(imm>0); assert(imm<32); //if(imm==1) ... assem_debug("lsl %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe1a00000|rd_rn_rm(rt,0,rs)|(imm<<7)); assem_debug("orr %s,%s,%s,lsr #%d\n",regname[rt],regname[rt],regname[rs2],32-imm); output_w32(0xe1800020|rd_rn_rm(rt,rt,rs2)|((32-imm)<<7)); } void emit_shrdimm(int rs,int rs2,u_int imm,int rt) { assem_debug("shrd %%%s,%%%s,%d\n",regname[rt],regname[rs2],imm); assert(imm>0); assert(imm<32); //if(imm==1) ... assem_debug("lsr %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe1a00020|rd_rn_rm(rt,0,rs)|(imm<<7)); assem_debug("orr %s,%s,%s,lsl #%d\n",regname[rt],regname[rt],regname[rs2],32-imm); output_w32(0xe1800000|rd_rn_rm(rt,rt,rs2)|((32-imm)<<7)); } void emit_signextend16(int rs,int rt) { #ifdef ARMv5_ONLY emit_shlimm(rs,16,rt); emit_sarimm(rt,16,rt); #else assem_debug("sxth %s,%s\n",regname[rt],regname[rs]); output_w32(0xe6bf0070|rd_rn_rm(rt,0,rs)); #endif } void emit_signextend8(int rs,int rt) { #ifdef ARMv5_ONLY emit_shlimm(rs,24,rt); emit_sarimm(rt,24,rt); #else assem_debug("sxtb %s,%s\n",regname[rt],regname[rs]); output_w32(0xe6af0070|rd_rn_rm(rt,0,rs)); #endif } void emit_shl(u_int rs,u_int shift,u_int rt) { assert(rs<16); assert(rt<16); assert(shift<16); //if(imm==1) ... assem_debug("lsl %s,%s,%s\n",regname[rt],regname[rs],regname[shift]); output_w32(0xe1a00000|rd_rn_rm(rt,0,rs)|0x10|(shift<<8)); } void emit_shr(u_int rs,u_int shift,u_int rt) { assert(rs<16); assert(rt<16); assert(shift<16); assem_debug("lsr %s,%s,%s\n",regname[rt],regname[rs],regname[shift]); output_w32(0xe1a00000|rd_rn_rm(rt,0,rs)|0x30|(shift<<8)); } void emit_sar(u_int rs,u_int shift,u_int rt) { assert(rs<16); assert(rt<16); assert(shift<16); assem_debug("asr %s,%s,%s\n",regname[rt],regname[rs],regname[shift]); output_w32(0xe1a00000|rd_rn_rm(rt,0,rs)|0x50|(shift<<8)); } void emit_shlcl(int r) { assem_debug("shl %%%s,%%cl\n",regname[r]); assert(0); } void emit_shrcl(int r) { assem_debug("shr %%%s,%%cl\n",regname[r]); assert(0); } void emit_sarcl(int r) { assem_debug("sar %%%s,%%cl\n",regname[r]); assert(0); } void emit_shldcl(int r1,int r2) { assem_debug("shld %%%s,%%%s,%%cl\n",regname[r1],regname[r2]); assert(0); } void emit_shrdcl(int r1,int r2) { assem_debug("shrd %%%s,%%%s,%%cl\n",regname[r1],regname[r2]); assert(0); } void emit_orrshl(u_int rs,u_int shift,u_int rt) { assert(rs<16); assert(rt<16); assert(shift<16); assem_debug("orr %s,%s,%s,lsl %s\n",regname[rt],regname[rt],regname[rs],regname[shift]); output_w32(0xe1800000|rd_rn_rm(rt,rt,rs)|0x10|(shift<<8)); } void emit_orrshr(u_int rs,u_int shift,u_int rt) { assert(rs<16); assert(rt<16); assert(shift<16); assem_debug("orr %s,%s,%s,lsr %s\n",regname[rt],regname[rt],regname[rs],regname[shift]); output_w32(0xe1800000|rd_rn_rm(rt,rt,rs)|0x30|(shift<<8)); } void emit_cmpimm(int rs,int imm) { u_int armval; if(genimm(imm,&armval)) { assem_debug("cmp %s,#%d\n",regname[rs],imm); output_w32(0xe3500000|rd_rn_rm(0,rs,0)|armval); }else if(genimm(-imm,&armval)) { assem_debug("cmn %s,#%d\n",regname[rs],imm); output_w32(0xe3700000|rd_rn_rm(0,rs,0)|armval); }else if(imm>0) { assert(imm<65536); #ifdef ARMv5_ONLY emit_movimm(imm,HOST_TEMPREG); #else emit_movw(imm,HOST_TEMPREG); #endif assem_debug("cmp %s,r14\n",regname[rs]); output_w32(0xe1500000|rd_rn_rm(0,rs,HOST_TEMPREG)); }else{ assert(imm>-65536); #ifdef ARMv5_ONLY emit_movimm(-imm,HOST_TEMPREG); #else emit_movw(-imm,HOST_TEMPREG); #endif assem_debug("cmn %s,r14\n",regname[rs]); output_w32(0xe1700000|rd_rn_rm(0,rs,HOST_TEMPREG)); } } void emit_cmovne(u_int *addr,int rt) { assem_debug("cmovne %x,%%%s",(int)addr,regname[rt]); assert(0); } void emit_cmovl(u_int *addr,int rt) { assem_debug("cmovl %x,%%%s",(int)addr,regname[rt]); assert(0); } void emit_cmovs(u_int *addr,int rt) { assem_debug("cmovs %x,%%%s",(int)addr,regname[rt]); assert(0); } void emit_cmovne_imm(int imm,int rt) { assem_debug("movne %s,#%d\n",regname[rt],imm); u_int armval; genimm_checked(imm,&armval); output_w32(0x13a00000|rd_rn_rm(rt,0,0)|armval); } void emit_cmovl_imm(int imm,int rt) { assem_debug("movlt %s,#%d\n",regname[rt],imm); u_int armval; genimm_checked(imm,&armval); output_w32(0xb3a00000|rd_rn_rm(rt,0,0)|armval); } void emit_cmovb_imm(int imm,int rt) { assem_debug("movcc %s,#%d\n",regname[rt],imm); u_int armval; genimm_checked(imm,&armval); output_w32(0x33a00000|rd_rn_rm(rt,0,0)|armval); } void emit_cmovs_imm(int imm,int rt) { assem_debug("movmi %s,#%d\n",regname[rt],imm); u_int armval; genimm_checked(imm,&armval); output_w32(0x43a00000|rd_rn_rm(rt,0,0)|armval); } void emit_cmove_reg(int rs,int rt) { assem_debug("moveq %s,%s\n",regname[rt],regname[rs]); output_w32(0x01a00000|rd_rn_rm(rt,0,rs)); } void emit_cmovne_reg(int rs,int rt) { assem_debug("movne %s,%s\n",regname[rt],regname[rs]); output_w32(0x11a00000|rd_rn_rm(rt,0,rs)); } void emit_cmovl_reg(int rs,int rt) { assem_debug("movlt %s,%s\n",regname[rt],regname[rs]); output_w32(0xb1a00000|rd_rn_rm(rt,0,rs)); } void emit_cmovs_reg(int rs,int rt) { assem_debug("movmi %s,%s\n",regname[rt],regname[rs]); output_w32(0x41a00000|rd_rn_rm(rt,0,rs)); } void emit_slti32(int rs,int imm,int rt) { if(rs!=rt) emit_zeroreg(rt); emit_cmpimm(rs,imm); if(rs==rt) emit_movimm(0,rt); emit_cmovl_imm(1,rt); } void emit_sltiu32(int rs,int imm,int rt) { if(rs!=rt) emit_zeroreg(rt); emit_cmpimm(rs,imm); if(rs==rt) emit_movimm(0,rt); emit_cmovb_imm(1,rt); } void emit_slti64_32(int rsh,int rsl,int imm,int rt) { assert(rsh!=rt); emit_slti32(rsl,imm,rt); if(imm>=0) { emit_test(rsh,rsh); emit_cmovne_imm(0,rt); emit_cmovs_imm(1,rt); } else { emit_cmpimm(rsh,-1); emit_cmovne_imm(0,rt); emit_cmovl_imm(1,rt); } } void emit_sltiu64_32(int rsh,int rsl,int imm,int rt) { assert(rsh!=rt); emit_sltiu32(rsl,imm,rt); if(imm>=0) { emit_test(rsh,rsh); emit_cmovne_imm(0,rt); } else { emit_cmpimm(rsh,-1); emit_cmovne_imm(1,rt); } } void emit_cmp(int rs,int rt) { assem_debug("cmp %s,%s\n",regname[rs],regname[rt]); output_w32(0xe1500000|rd_rn_rm(0,rs,rt)); } void emit_set_gz32(int rs, int rt) { //assem_debug("set_gz32\n"); emit_cmpimm(rs,1); emit_movimm(1,rt); emit_cmovl_imm(0,rt); } void emit_set_nz32(int rs, int rt) { //assem_debug("set_nz32\n"); if(rs!=rt) emit_movs(rs,rt); else emit_test(rs,rs); emit_cmovne_imm(1,rt); } void emit_set_gz64_32(int rsh, int rsl, int rt) { //assem_debug("set_gz64\n"); emit_set_gz32(rsl,rt); emit_test(rsh,rsh); emit_cmovne_imm(1,rt); emit_cmovs_imm(0,rt); } void emit_set_nz64_32(int rsh, int rsl, int rt) { //assem_debug("set_nz64\n"); emit_or_and_set_flags(rsh,rsl,rt); emit_cmovne_imm(1,rt); } void emit_set_if_less32(int rs1, int rs2, int rt) { //assem_debug("set if less (%%%s,%%%s),%%%s\n",regname[rs1],regname[rs2],regname[rt]); if(rs1!=rt&&rs2!=rt) emit_zeroreg(rt); emit_cmp(rs1,rs2); if(rs1==rt||rs2==rt) emit_movimm(0,rt); emit_cmovl_imm(1,rt); } void emit_set_if_carry32(int rs1, int rs2, int rt) { //assem_debug("set if carry (%%%s,%%%s),%%%s\n",regname[rs1],regname[rs2],regname[rt]); if(rs1!=rt&&rs2!=rt) emit_zeroreg(rt); emit_cmp(rs1,rs2); if(rs1==rt||rs2==rt) emit_movimm(0,rt); emit_cmovb_imm(1,rt); } void emit_set_if_less64_32(int u1, int l1, int u2, int l2, int rt) { //assem_debug("set if less64 (%%%s,%%%s,%%%s,%%%s),%%%s\n",regname[u1],regname[l1],regname[u2],regname[l2],regname[rt]); assert(u1!=rt); assert(u2!=rt); emit_cmp(l1,l2); emit_movimm(0,rt); emit_sbcs(u1,u2,HOST_TEMPREG); emit_cmovl_imm(1,rt); } void emit_set_if_carry64_32(int u1, int l1, int u2, int l2, int rt) { //assem_debug("set if carry64 (%%%s,%%%s,%%%s,%%%s),%%%s\n",regname[u1],regname[l1],regname[u2],regname[l2],regname[rt]); assert(u1!=rt); assert(u2!=rt); emit_cmp(l1,l2); emit_movimm(0,rt); emit_sbcs(u1,u2,HOST_TEMPREG); emit_cmovb_imm(1,rt); } void emit_call(int a) { assem_debug("bl %x (%x+%x)\n",a,(int)out,a-(int)out-8); u_int offset=genjmp(a); output_w32(0xeb000000|offset); } void emit_jmp(int a) { assem_debug("b %x (%x+%x)\n",a,(int)out,a-(int)out-8); u_int offset=genjmp(a); output_w32(0xea000000|offset); } void emit_jne(int a) { assem_debug("bne %x\n",a); u_int offset=genjmp(a); output_w32(0x1a000000|offset); } void emit_jeq(int a) { assem_debug("beq %x\n",a); u_int offset=genjmp(a); output_w32(0x0a000000|offset); } void emit_js(int a) { assem_debug("bmi %x\n",a); u_int offset=genjmp(a); output_w32(0x4a000000|offset); } void emit_jns(int a) { assem_debug("bpl %x\n",a); u_int offset=genjmp(a); output_w32(0x5a000000|offset); } void emit_jl(int a) { assem_debug("blt %x\n",a); u_int offset=genjmp(a); output_w32(0xba000000|offset); } void emit_jge(int a) { assem_debug("bge %x\n",a); u_int offset=genjmp(a); output_w32(0xaa000000|offset); } void emit_jno(int a) { assem_debug("bvc %x\n",a); u_int offset=genjmp(a); output_w32(0x7a000000|offset); } void emit_jc(int a) { assem_debug("bcs %x\n",a); u_int offset=genjmp(a); output_w32(0x2a000000|offset); } void emit_jcc(int a) { assem_debug("bcc %x\n",a); u_int offset=genjmp(a); output_w32(0x3a000000|offset); } void emit_pushimm(int imm) { assem_debug("push $%x\n",imm); assert(0); } void emit_pusha() { assem_debug("pusha\n"); assert(0); } void emit_popa() { assem_debug("popa\n"); assert(0); } void emit_pushreg(u_int r) { assem_debug("push %%%s\n",regname[r]); assert(0); } void emit_popreg(u_int r) { assem_debug("pop %%%s\n",regname[r]); assert(0); } void emit_callreg(u_int r) { assert(r<15); assem_debug("blx %s\n",regname[r]); output_w32(0xe12fff30|r); } void emit_jmpreg(u_int r) { assem_debug("mov pc,%s\n",regname[r]); output_w32(0xe1a00000|rd_rn_rm(15,0,r)); } void emit_readword_indexed(int offset, int rs, int rt) { assert(offset>-4096&&offset<4096); assem_debug("ldr %s,%s+%d\n",regname[rt],regname[rs],offset); if(offset>=0) { output_w32(0xe5900000|rd_rn_rm(rt,rs,0)|offset); }else{ output_w32(0xe5100000|rd_rn_rm(rt,rs,0)|(-offset)); } } void emit_readword_dualindexedx4(int rs1, int rs2, int rt) { assem_debug("ldr %s,%s,%s lsl #2\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe7900000|rd_rn_rm(rt,rs1,rs2)|0x100); } void emit_ldrcc_dualindexed(int rs1, int rs2, int rt) { assem_debug("ldrcc %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x37900000|rd_rn_rm(rt,rs1,rs2)); } void emit_ldrccb_dualindexed(int rs1, int rs2, int rt) { assem_debug("ldrccb %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x37d00000|rd_rn_rm(rt,rs1,rs2)); } void emit_ldrccsb_dualindexed(int rs1, int rs2, int rt) { assem_debug("ldrccsb %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x319000d0|rd_rn_rm(rt,rs1,rs2)); } void emit_ldrcch_dualindexed(int rs1, int rs2, int rt) { assem_debug("ldrcch %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x319000b0|rd_rn_rm(rt,rs1,rs2)); } void emit_ldrccsh_dualindexed(int rs1, int rs2, int rt) { assem_debug("ldrccsh %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x319000f0|rd_rn_rm(rt,rs1,rs2)); } void emit_readword_indexed_tlb(int addr, int rs, int map, int rt) { if(map<0) emit_readword_indexed(addr, rs, rt); else { assert(addr==0); emit_readword_dualindexedx4(rs, map, rt); } } void emit_readdword_indexed_tlb(int addr, int rs, int map, int rh, int rl) { if(map<0) { if(rh>=0) emit_readword_indexed(addr, rs, rh); emit_readword_indexed(addr+4, rs, rl); }else{ assert(rh!=rs); if(rh>=0) emit_readword_indexed_tlb(addr, rs, map, rh); emit_addimm(map,1,map); emit_readword_indexed_tlb(addr, rs, map, rl); } } void emit_movsbl_indexed(int offset, int rs, int rt) { assert(offset>-256&&offset<256); assem_debug("ldrsb %s,%s+%d\n",regname[rt],regname[rs],offset); if(offset>=0) { output_w32(0xe1d000d0|rd_rn_rm(rt,rs,0)|((offset<<4)&0xf00)|(offset&0xf)); }else{ output_w32(0xe15000d0|rd_rn_rm(rt,rs,0)|(((-offset)<<4)&0xf00)|((-offset)&0xf)); } } void emit_movsbl_indexed_tlb(int addr, int rs, int map, int rt) { if(map<0) emit_movsbl_indexed(addr, rs, rt); else { if(addr==0) { emit_shlimm(map,2,map); assem_debug("ldrsb %s,%s+%s\n",regname[rt],regname[rs],regname[map]); output_w32(0xe19000d0|rd_rn_rm(rt,rs,map)); }else{ assert(addr>-256&&addr<256); assem_debug("add %s,%s,%s,lsl #2\n",regname[rt],regname[rs],regname[map]); output_w32(0xe0800000|rd_rn_rm(rt,rs,map)|(2<<7)); emit_movsbl_indexed(addr, rt, rt); } } } void emit_movswl_indexed(int offset, int rs, int rt) { assert(offset>-256&&offset<256); assem_debug("ldrsh %s,%s+%d\n",regname[rt],regname[rs],offset); if(offset>=0) { output_w32(0xe1d000f0|rd_rn_rm(rt,rs,0)|((offset<<4)&0xf00)|(offset&0xf)); }else{ output_w32(0xe15000f0|rd_rn_rm(rt,rs,0)|(((-offset)<<4)&0xf00)|((-offset)&0xf)); } } void emit_movzbl_indexed(int offset, int rs, int rt) { assert(offset>-4096&&offset<4096); assem_debug("ldrb %s,%s+%d\n",regname[rt],regname[rs],offset); if(offset>=0) { output_w32(0xe5d00000|rd_rn_rm(rt,rs,0)|offset); }else{ output_w32(0xe5500000|rd_rn_rm(rt,rs,0)|(-offset)); } } void emit_movzbl_dualindexedx4(int rs1, int rs2, int rt) { assem_debug("ldrb %s,%s,%s lsl #2\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe7d00000|rd_rn_rm(rt,rs1,rs2)|0x100); } void emit_movzbl_indexed_tlb(int addr, int rs, int map, int rt) { if(map<0) emit_movzbl_indexed(addr, rs, rt); else { if(addr==0) { emit_movzbl_dualindexedx4(rs, map, rt); }else{ emit_addimm(rs,addr,rt); emit_movzbl_dualindexedx4(rt, map, rt); } } } void emit_movzwl_indexed(int offset, int rs, int rt) { assert(offset>-256&&offset<256); assem_debug("ldrh %s,%s+%d\n",regname[rt],regname[rs],offset); if(offset>=0) { output_w32(0xe1d000b0|rd_rn_rm(rt,rs,0)|((offset<<4)&0xf00)|(offset&0xf)); }else{ output_w32(0xe15000b0|rd_rn_rm(rt,rs,0)|(((-offset)<<4)&0xf00)|((-offset)&0xf)); } } static void emit_ldrd(int offset, int rs, int rt) { assert(offset>-256&&offset<256); assem_debug("ldrd %s,%s+%d\n",regname[rt],regname[rs],offset); if(offset>=0) { output_w32(0xe1c000d0|rd_rn_rm(rt,rs,0)|((offset<<4)&0xf00)|(offset&0xf)); }else{ output_w32(0xe14000d0|rd_rn_rm(rt,rs,0)|(((-offset)<<4)&0xf00)|((-offset)&0xf)); } } void emit_readword(int addr, int rt) { u_int offset = addr-(u_int)&dynarec_local; assert(offset<4096); assem_debug("ldr %s,fp+%d\n",regname[rt],offset); output_w32(0xe5900000|rd_rn_rm(rt,FP,0)|offset); } void emit_movsbl(int addr, int rt) { u_int offset = addr-(u_int)&dynarec_local; assert(offset<256); assem_debug("ldrsb %s,fp+%d\n",regname[rt],offset); output_w32(0xe1d000d0|rd_rn_rm(rt,FP,0)|((offset<<4)&0xf00)|(offset&0xf)); } void emit_movswl(int addr, int rt) { u_int offset = addr-(u_int)&dynarec_local; assert(offset<256); assem_debug("ldrsh %s,fp+%d\n",regname[rt],offset); output_w32(0xe1d000f0|rd_rn_rm(rt,FP,0)|((offset<<4)&0xf00)|(offset&0xf)); } void emit_movzbl(int addr, int rt) { u_int offset = addr-(u_int)&dynarec_local; assert(offset<4096); assem_debug("ldrb %s,fp+%d\n",regname[rt],offset); output_w32(0xe5d00000|rd_rn_rm(rt,FP,0)|offset); } void emit_movzwl(int addr, int rt) { u_int offset = addr-(u_int)&dynarec_local; assert(offset<256); assem_debug("ldrh %s,fp+%d\n",regname[rt],offset); output_w32(0xe1d000b0|rd_rn_rm(rt,FP,0)|((offset<<4)&0xf00)|(offset&0xf)); } void emit_movzwl_reg(int rs, int rt) { assem_debug("movzwl %%%s,%%%s\n",regname[rs]+1,regname[rt]); assert(0); } void emit_xchg(int rs, int rt) { assem_debug("xchg %%%s,%%%s\n",regname[rs],regname[rt]); assert(0); } void emit_writeword_indexed(int rt, int offset, int rs) { assert(offset>-4096&&offset<4096); assem_debug("str %s,%s+%d\n",regname[rt],regname[rs],offset); if(offset>=0) { output_w32(0xe5800000|rd_rn_rm(rt,rs,0)|offset); }else{ output_w32(0xe5000000|rd_rn_rm(rt,rs,0)|(-offset)); } } void emit_writeword_dualindexedx4(int rt, int rs1, int rs2) { assem_debug("str %s,%s,%s lsl #2\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe7800000|rd_rn_rm(rt,rs1,rs2)|0x100); } void emit_writeword_indexed_tlb(int rt, int addr, int rs, int map, int temp) { if(map<0) emit_writeword_indexed(rt, addr, rs); else { assert(addr==0); emit_writeword_dualindexedx4(rt, rs, map); } } void emit_writedword_indexed_tlb(int rh, int rl, int addr, int rs, int map, int temp) { if(map<0) { if(rh>=0) emit_writeword_indexed(rh, addr, rs); emit_writeword_indexed(rl, addr+4, rs); }else{ assert(rh>=0); if(temp!=rs) emit_addimm(map,1,temp); emit_writeword_indexed_tlb(rh, addr, rs, map, temp); if(temp!=rs) emit_writeword_indexed_tlb(rl, addr, rs, temp, temp); else { emit_addimm(rs,4,rs); emit_writeword_indexed_tlb(rl, addr, rs, map, temp); } } } void emit_writehword_indexed(int rt, int offset, int rs) { assert(offset>-256&&offset<256); assem_debug("strh %s,%s+%d\n",regname[rt],regname[rs],offset); if(offset>=0) { output_w32(0xe1c000b0|rd_rn_rm(rt,rs,0)|((offset<<4)&0xf00)|(offset&0xf)); }else{ output_w32(0xe14000b0|rd_rn_rm(rt,rs,0)|(((-offset)<<4)&0xf00)|((-offset)&0xf)); } } void emit_writebyte_indexed(int rt, int offset, int rs) { assert(offset>-4096&&offset<4096); assem_debug("strb %s,%s+%d\n",regname[rt],regname[rs],offset); if(offset>=0) { output_w32(0xe5c00000|rd_rn_rm(rt,rs,0)|offset); }else{ output_w32(0xe5400000|rd_rn_rm(rt,rs,0)|(-offset)); } } void emit_writebyte_dualindexedx4(int rt, int rs1, int rs2) { assem_debug("strb %s,%s,%s lsl #2\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe7c00000|rd_rn_rm(rt,rs1,rs2)|0x100); } void emit_writebyte_indexed_tlb(int rt, int addr, int rs, int map, int temp) { if(map<0) emit_writebyte_indexed(rt, addr, rs); else { if(addr==0) { emit_writebyte_dualindexedx4(rt, rs, map); }else{ emit_addimm(rs,addr,temp); emit_writebyte_dualindexedx4(rt, temp, map); } } } void emit_strcc_dualindexed(int rs1, int rs2, int rt) { assem_debug("strcc %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x37800000|rd_rn_rm(rt,rs1,rs2)); } void emit_strccb_dualindexed(int rs1, int rs2, int rt) { assem_debug("strccb %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x37c00000|rd_rn_rm(rt,rs1,rs2)); } void emit_strcch_dualindexed(int rs1, int rs2, int rt) { assem_debug("strcch %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x318000b0|rd_rn_rm(rt,rs1,rs2)); } void emit_writeword(int rt, int addr) { u_int offset = addr-(u_int)&dynarec_local; assert(offset<4096); assem_debug("str %s,fp+%d\n",regname[rt],offset); output_w32(0xe5800000|rd_rn_rm(rt,FP,0)|offset); } void emit_writehword(int rt, int addr) { u_int offset = addr-(u_int)&dynarec_local; assert(offset<256); assem_debug("strh %s,fp+%d\n",regname[rt],offset); output_w32(0xe1c000b0|rd_rn_rm(rt,FP,0)|((offset<<4)&0xf00)|(offset&0xf)); } void emit_writebyte(int rt, int addr) { u_int offset = addr-(u_int)&dynarec_local; assert(offset<4096); assem_debug("strb %s,fp+%d\n",regname[rt],offset); output_w32(0xe5c00000|rd_rn_rm(rt,FP,0)|offset); } void emit_writeword_imm(int imm, int addr) { assem_debug("movl $%x,%x\n",imm,addr); assert(0); } void emit_writebyte_imm(int imm, int addr) { assem_debug("movb $%x,%x\n",imm,addr); assert(0); } void emit_mul(int rs) { assem_debug("mul %%%s\n",regname[rs]); assert(0); } void emit_imul(int rs) { assem_debug("imul %%%s\n",regname[rs]); assert(0); } void emit_umull(u_int rs1, u_int rs2, u_int hi, u_int lo) { assem_debug("umull %s, %s, %s, %s\n",regname[lo],regname[hi],regname[rs1],regname[rs2]); assert(rs1<16); assert(rs2<16); assert(hi<16); assert(lo<16); output_w32(0xe0800090|(hi<<16)|(lo<<12)|(rs2<<8)|rs1); } void emit_smull(u_int rs1, u_int rs2, u_int hi, u_int lo) { assem_debug("smull %s, %s, %s, %s\n",regname[lo],regname[hi],regname[rs1],regname[rs2]); assert(rs1<16); assert(rs2<16); assert(hi<16); assert(lo<16); output_w32(0xe0c00090|(hi<<16)|(lo<<12)|(rs2<<8)|rs1); } void emit_div(int rs) { assem_debug("div %%%s\n",regname[rs]); assert(0); } void emit_idiv(int rs) { assem_debug("idiv %%%s\n",regname[rs]); assert(0); } void emit_cdq() { assem_debug("cdq\n"); assert(0); } void emit_clz(int rs,int rt) { assem_debug("clz %s,%s\n",regname[rt],regname[rs]); output_w32(0xe16f0f10|rd_rn_rm(rt,0,rs)); } void emit_subcs(int rs1,int rs2,int rt) { assem_debug("subcs %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x20400000|rd_rn_rm(rt,rs1,rs2)); } void emit_shrcc_imm(int rs,u_int imm,int rt) { assert(imm>0); assert(imm<32); assem_debug("lsrcc %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0x31a00000|rd_rn_rm(rt,0,rs)|0x20|(imm<<7)); } void emit_shrne_imm(int rs,u_int imm,int rt) { assert(imm>0); assert(imm<32); assem_debug("lsrne %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0x11a00000|rd_rn_rm(rt,0,rs)|0x20|(imm<<7)); } void emit_negmi(int rs, int rt) { assem_debug("rsbmi %s,%s,#0\n",regname[rt],regname[rs]); output_w32(0x42600000|rd_rn_rm(rt,rs,0)); } void emit_negsmi(int rs, int rt) { assem_debug("rsbsmi %s,%s,#0\n",regname[rt],regname[rs]); output_w32(0x42700000|rd_rn_rm(rt,rs,0)); } void emit_orreq(u_int rs1,u_int rs2,u_int rt) { assem_debug("orreq %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x01800000|rd_rn_rm(rt,rs1,rs2)); } void emit_orrne(u_int rs1,u_int rs2,u_int rt) { assem_debug("orrne %s,%s,%s\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0x11800000|rd_rn_rm(rt,rs1,rs2)); } void emit_bic_lsl(u_int rs1,u_int rs2,u_int shift,u_int rt) { assem_debug("bic %s,%s,%s lsl %s\n",regname[rt],regname[rs1],regname[rs2],regname[shift]); output_w32(0xe1C00000|rd_rn_rm(rt,rs1,rs2)|0x10|(shift<<8)); } void emit_biceq_lsl(u_int rs1,u_int rs2,u_int shift,u_int rt) { assem_debug("biceq %s,%s,%s lsl %s\n",regname[rt],regname[rs1],regname[rs2],regname[shift]); output_w32(0x01C00000|rd_rn_rm(rt,rs1,rs2)|0x10|(shift<<8)); } void emit_bicne_lsl(u_int rs1,u_int rs2,u_int shift,u_int rt) { assem_debug("bicne %s,%s,%s lsl %s\n",regname[rt],regname[rs1],regname[rs2],regname[shift]); output_w32(0x11C00000|rd_rn_rm(rt,rs1,rs2)|0x10|(shift<<8)); } void emit_bic_lsr(u_int rs1,u_int rs2,u_int shift,u_int rt) { assem_debug("bic %s,%s,%s lsr %s\n",regname[rt],regname[rs1],regname[rs2],regname[shift]); output_w32(0xe1C00000|rd_rn_rm(rt,rs1,rs2)|0x30|(shift<<8)); } void emit_biceq_lsr(u_int rs1,u_int rs2,u_int shift,u_int rt) { assem_debug("biceq %s,%s,%s lsr %s\n",regname[rt],regname[rs1],regname[rs2],regname[shift]); output_w32(0x01C00000|rd_rn_rm(rt,rs1,rs2)|0x30|(shift<<8)); } void emit_bicne_lsr(u_int rs1,u_int rs2,u_int shift,u_int rt) { assem_debug("bicne %s,%s,%s lsr %s\n",regname[rt],regname[rs1],regname[rs2],regname[shift]); output_w32(0x11C00000|rd_rn_rm(rt,rs1,rs2)|0x30|(shift<<8)); } void emit_teq(int rs, int rt) { assem_debug("teq %s,%s\n",regname[rs],regname[rt]); output_w32(0xe1300000|rd_rn_rm(0,rs,rt)); } void emit_rsbimm(int rs, int imm, int rt) { u_int armval; genimm_checked(imm,&armval); assem_debug("rsb %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0xe2600000|rd_rn_rm(rt,rs,0)|armval); } // Load 2 immediates optimizing for small code size void emit_mov2imm_compact(int imm1,u_int rt1,int imm2,u_int rt2) { emit_movimm(imm1,rt1); u_int armval; if(genimm(imm2-imm1,&armval)) { assem_debug("add %s,%s,#%d\n",regname[rt2],regname[rt1],imm2-imm1); output_w32(0xe2800000|rd_rn_rm(rt2,rt1,0)|armval); }else if(genimm(imm1-imm2,&armval)) { assem_debug("sub %s,%s,#%d\n",regname[rt2],regname[rt1],imm1-imm2); output_w32(0xe2400000|rd_rn_rm(rt2,rt1,0)|armval); } else emit_movimm(imm2,rt2); } // Conditionally select one of two immediates, optimizing for small code size // This will only be called if HAVE_CMOV_IMM is defined void emit_cmov2imm_e_ne_compact(int imm1,int imm2,u_int rt) { u_int armval; if(genimm(imm2-imm1,&armval)) { emit_movimm(imm1,rt); assem_debug("addne %s,%s,#%d\n",regname[rt],regname[rt],imm2-imm1); output_w32(0x12800000|rd_rn_rm(rt,rt,0)|armval); }else if(genimm(imm1-imm2,&armval)) { emit_movimm(imm1,rt); assem_debug("subne %s,%s,#%d\n",regname[rt],regname[rt],imm1-imm2); output_w32(0x12400000|rd_rn_rm(rt,rt,0)|armval); } else { #ifdef ARMv5_ONLY emit_movimm(imm1,rt); add_literal((int)out,imm2); assem_debug("ldrne %s,pc+? [=%x]\n",regname[rt],imm2); output_w32(0x15900000|rd_rn_rm(rt,15,0)); #else emit_movw(imm1&0x0000FFFF,rt); if((imm1&0xFFFF)!=(imm2&0xFFFF)) { assem_debug("movwne %s,#%d (0x%x)\n",regname[rt],imm2&0xFFFF,imm2&0xFFFF); output_w32(0x13000000|rd_rn_rm(rt,0,0)|(imm2&0xfff)|((imm2<<4)&0xf0000)); } emit_movt(imm1&0xFFFF0000,rt); if((imm1&0xFFFF0000)!=(imm2&0xFFFF0000)) { assem_debug("movtne %s,#%d (0x%x)\n",regname[rt],imm2&0xffff0000,imm2&0xffff0000); output_w32(0x13400000|rd_rn_rm(rt,0,0)|((imm2>>16)&0xfff)|((imm2>>12)&0xf0000)); } #endif } } // special case for checking invalid_code void emit_cmpmem_indexedsr12_imm(int addr,int r,int imm) { assert(0); } // special case for checking invalid_code void emit_cmpmem_indexedsr12_reg(int base,int r,int imm) { assert(imm<128&&imm>=0); assert(r>=0&&r<16); assem_debug("ldrb lr,%s,%s lsr #12\n",regname[base],regname[r]); output_w32(0xe7d00000|rd_rn_rm(HOST_TEMPREG,base,r)|0x620); emit_cmpimm(HOST_TEMPREG,imm); } // special case for tlb mapping void emit_addsr12(int rs1,int rs2,int rt) { assem_debug("add %s,%s,%s lsr #12\n",regname[rt],regname[rs1],regname[rs2]); output_w32(0xe0800620|rd_rn_rm(rt,rs1,rs2)); } void emit_callne(int a) { assem_debug("blne %x\n",a); u_int offset=genjmp(a); output_w32(0x1b000000|offset); } // Used to preload hash table entries void emit_prefetch(void *addr) { assem_debug("prefetch %x\n",(int)addr); output_byte(0x0F); output_byte(0x18); output_modrm(0,5,1); output_w32((int)addr); } void emit_prefetchreg(int r) { assem_debug("pld %s\n",regname[r]); output_w32(0xf5d0f000|rd_rn_rm(0,r,0)); } // Special case for mini_ht void emit_ldreq_indexed(int rs, u_int offset, int rt) { assert(offset<4096); assem_debug("ldreq %s,[%s, #%d]\n",regname[rt],regname[rs],offset); output_w32(0x05900000|rd_rn_rm(rt,rs,0)|offset); } void emit_flds(int r,int sr) { assem_debug("flds s%d,[%s]\n",sr,regname[r]); output_w32(0xed900a00|((sr&14)<<11)|((sr&1)<<22)|(r<<16)); } void emit_vldr(int r,int vr) { assem_debug("vldr d%d,[%s]\n",vr,regname[r]); output_w32(0xed900b00|(vr<<12)|(r<<16)); } void emit_fsts(int sr,int r) { assem_debug("fsts s%d,[%s]\n",sr,regname[r]); output_w32(0xed800a00|((sr&14)<<11)|((sr&1)<<22)|(r<<16)); } void emit_vstr(int vr,int r) { assem_debug("vstr d%d,[%s]\n",vr,regname[r]); output_w32(0xed800b00|(vr<<12)|(r<<16)); } void emit_ftosizs(int s,int d) { assem_debug("ftosizs s%d,s%d\n",d,s); output_w32(0xeebd0ac0|((d&14)<<11)|((d&1)<<22)|((s&14)>>1)|((s&1)<<5)); } void emit_ftosizd(int s,int d) { assem_debug("ftosizd s%d,d%d\n",d,s); output_w32(0xeebd0bc0|((d&14)<<11)|((d&1)<<22)|(s&7)); } void emit_fsitos(int s,int d) { assem_debug("fsitos s%d,s%d\n",d,s); output_w32(0xeeb80ac0|((d&14)<<11)|((d&1)<<22)|((s&14)>>1)|((s&1)<<5)); } void emit_fsitod(int s,int d) { assem_debug("fsitod d%d,s%d\n",d,s); output_w32(0xeeb80bc0|((d&7)<<12)|((s&14)>>1)|((s&1)<<5)); } void emit_fcvtds(int s,int d) { assem_debug("fcvtds d%d,s%d\n",d,s); output_w32(0xeeb70ac0|((d&7)<<12)|((s&14)>>1)|((s&1)<<5)); } void emit_fcvtsd(int s,int d) { assem_debug("fcvtsd s%d,d%d\n",d,s); output_w32(0xeeb70bc0|((d&14)<<11)|((d&1)<<22)|(s&7)); } void emit_fsqrts(int s,int d) { assem_debug("fsqrts d%d,s%d\n",d,s); output_w32(0xeeb10ac0|((d&14)<<11)|((d&1)<<22)|((s&14)>>1)|((s&1)<<5)); } void emit_fsqrtd(int s,int d) { assem_debug("fsqrtd s%d,d%d\n",d,s); output_w32(0xeeb10bc0|((d&7)<<12)|(s&7)); } void emit_fabss(int s,int d) { assem_debug("fabss d%d,s%d\n",d,s); output_w32(0xeeb00ac0|((d&14)<<11)|((d&1)<<22)|((s&14)>>1)|((s&1)<<5)); } void emit_fabsd(int s,int d) { assem_debug("fabsd s%d,d%d\n",d,s); output_w32(0xeeb00bc0|((d&7)<<12)|(s&7)); } void emit_fnegs(int s,int d) { assem_debug("fnegs d%d,s%d\n",d,s); output_w32(0xeeb10a40|((d&14)<<11)|((d&1)<<22)|((s&14)>>1)|((s&1)<<5)); } void emit_fnegd(int s,int d) { assem_debug("fnegd s%d,d%d\n",d,s); output_w32(0xeeb10b40|((d&7)<<12)|(s&7)); } void emit_fadds(int s1,int s2,int d) { assem_debug("fadds s%d,s%d,s%d\n",d,s1,s2); output_w32(0xee300a00|((d&14)<<11)|((d&1)<<22)|((s1&14)<<15)|((s1&1)<<7)|((s2&14)>>1)|((s2&1)<<5)); } void emit_faddd(int s1,int s2,int d) { assem_debug("faddd d%d,d%d,d%d\n",d,s1,s2); output_w32(0xee300b00|((d&7)<<12)|((s1&7)<<16)|(s2&7)); } void emit_fsubs(int s1,int s2,int d) { assem_debug("fsubs s%d,s%d,s%d\n",d,s1,s2); output_w32(0xee300a40|((d&14)<<11)|((d&1)<<22)|((s1&14)<<15)|((s1&1)<<7)|((s2&14)>>1)|((s2&1)<<5)); } void emit_fsubd(int s1,int s2,int d) { assem_debug("fsubd d%d,d%d,d%d\n",d,s1,s2); output_w32(0xee300b40|((d&7)<<12)|((s1&7)<<16)|(s2&7)); } void emit_fmuls(int s1,int s2,int d) { assem_debug("fmuls s%d,s%d,s%d\n",d,s1,s2); output_w32(0xee200a00|((d&14)<<11)|((d&1)<<22)|((s1&14)<<15)|((s1&1)<<7)|((s2&14)>>1)|((s2&1)<<5)); } void emit_fmuld(int s1,int s2,int d) { assem_debug("fmuld d%d,d%d,d%d\n",d,s1,s2); output_w32(0xee200b00|((d&7)<<12)|((s1&7)<<16)|(s2&7)); } void emit_fdivs(int s1,int s2,int d) { assem_debug("fdivs s%d,s%d,s%d\n",d,s1,s2); output_w32(0xee800a00|((d&14)<<11)|((d&1)<<22)|((s1&14)<<15)|((s1&1)<<7)|((s2&14)>>1)|((s2&1)<<5)); } void emit_fdivd(int s1,int s2,int d) { assem_debug("fdivd d%d,d%d,d%d\n",d,s1,s2); output_w32(0xee800b00|((d&7)<<12)|((s1&7)<<16)|(s2&7)); } void emit_fcmps(int x,int y) { assem_debug("fcmps s14, s15\n"); output_w32(0xeeb47a67); } void emit_fcmpd(int x,int y) { assem_debug("fcmpd d6, d7\n"); output_w32(0xeeb46b47); } void emit_fmstat() { assem_debug("fmstat\n"); output_w32(0xeef1fa10); } void emit_bicne_imm(int rs,int imm,int rt) { u_int armval; genimm_checked(imm,&armval); assem_debug("bicne %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0x13c00000|rd_rn_rm(rt,rs,0)|armval); } void emit_biccs_imm(int rs,int imm,int rt) { u_int armval; genimm_checked(imm,&armval); assem_debug("biccs %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0x23c00000|rd_rn_rm(rt,rs,0)|armval); } void emit_bicvc_imm(int rs,int imm,int rt) { u_int armval; genimm_checked(imm,&armval); assem_debug("bicvc %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0x73c00000|rd_rn_rm(rt,rs,0)|armval); } void emit_bichi_imm(int rs,int imm,int rt) { u_int armval; genimm_checked(imm,&armval); assem_debug("bichi %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0x83c00000|rd_rn_rm(rt,rs,0)|armval); } void emit_orrvs_imm(int rs,int imm,int rt) { u_int armval; genimm_checked(imm,&armval); assem_debug("orrvs %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0x63800000|rd_rn_rm(rt,rs,0)|armval); } void emit_orrne_imm(int rs,int imm,int rt) { u_int armval; genimm_checked(imm,&armval); assem_debug("orrne %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0x13800000|rd_rn_rm(rt,rs,0)|armval); } void emit_andne_imm(int rs,int imm,int rt) { u_int armval; genimm_checked(imm,&armval); assem_debug("andne %s,%s,#%d\n",regname[rt],regname[rs],imm); output_w32(0x12000000|rd_rn_rm(rt,rs,0)|armval); } void emit_jno_unlikely(int a) { //emit_jno(a); assem_debug("addvc pc,pc,#? (%x)\n",/*a-(int)out-8,*/a); output_w32(0x72800000|rd_rn_rm(15,15,0)); } static void save_regs_all(u_int reglist) { int i; if(!reglist) return; assem_debug("stmia fp,{"); for(i=0;i<16;i++) if(reglist&(1<=0&&((i_dirty>>hr)&1)) { if(((regs[i].isconst>>hr)&1)&&i_regmap[hr]>0) { if(i_regmap[hr]<64 || !((i_is32>>(i_regmap[hr]&63))&1) ) { int value=constmap[i][hr]; if(value==0) { emit_zeroreg(HOST_TEMPREG); } else { emit_movimm(value,HOST_TEMPREG); } emit_storereg(i_regmap[hr],HOST_TEMPREG); #ifndef FORCE32 if((i_is32>>i_regmap[hr])&1) { if(value!=-1&&value!=0) emit_sarimm(HOST_TEMPREG,31,HOST_TEMPREG); emit_storereg(i_regmap[hr]|64,HOST_TEMPREG); } #endif } } } } } /* Stubs/epilogue */ void literal_pool(int n) { if(!literalcount) return; if(n) { if((int)out-literals[0][0]<4096-n) return; } u_int *ptr; int i; for(i=0;i=BASE_ADDR&&addr<(BASE_ADDR+(1<=0x80000000&&target<0x80800000)||(target>0xA4000000&&target<0xA4001000)); //DEBUG > #ifdef DEBUG_CYCLE_COUNT emit_readword((int)&last_count,ECX); emit_add(HOST_CCREG,ECX,HOST_CCREG); emit_readword((int)&next_interupt,ECX); emit_writeword(HOST_CCREG,(int)&Count); emit_sub(HOST_CCREG,ECX,HOST_CCREG); emit_writeword(ECX,(int)&last_count); #endif //DEBUG < emit_jmp(linker); } emit_extjump(int addr, int target) { emit_extjump2(addr, target, (int)dyna_linker); } emit_extjump_ds(int addr, int target) { emit_extjump2(addr, target, (int)dyna_linker_ds); } // put rt_val into rt, potentially making use of rs with value rs_val static void emit_movimm_from(u_int rs_val,int rs,u_int rt_val,int rt) { u_int xor=rs_val^rt_val; u_int xs; for(xs=xor;xs!=0&&(xs&3)==0;xs>>=2) ; if(xs<0x100) emit_xorimm(rs,xor,rt); else emit_movimm(rt_val,rt); } // trashes r2 static void pass_args(int a0, int a1) { if(a0==1&&a1==0) { // must swap emit_mov(a0,2); emit_mov(a1,1); emit_mov(2,0); } else if(a0!=0&&a1==0) { emit_mov(a1,1); if (a0>=0) emit_mov(a0,0); } else { if(a0>=0&&a0!=0) emit_mov(a0,0); if(a1>=0&&a1!=1) emit_mov(a1,1); } } static void mov_loadtype_adj(int type,int rs,int rt) { switch(type) { case LOADB_STUB: emit_signextend8(rs,rt); break; case LOADBU_STUB: emit_andimm(rs,0xff,rt); break; case LOADH_STUB: emit_signextend16(rs,rt); break; case LOADHU_STUB: emit_andimm(rs,0xffff,rt); break; case LOADW_STUB: if(rs!=rt) emit_mov(rs,rt); break; default: assert(0); } } #ifdef PCSX #include "pcsxmem.h" #include "pcsxmem_inline.c" #endif do_readstub(int n) { assem_debug("do_readstub %x\n",start+stubs[n][3]*4); literal_pool(256); set_jump_target(stubs[n][1],(int)out); int type=stubs[n][0]; int i=stubs[n][3]; int rs=stubs[n][4]; struct regstat *i_regs=(struct regstat *)stubs[n][5]; u_int reglist=stubs[n][7]; signed char *i_regmap=i_regs->regmap; int addr=get_reg(i_regmap,AGEN1+(i&1)); int rth,rt; int ds; if(itype[i]==C1LS||itype[i]==C2LS||itype[i]==LOADLR) { rth=get_reg(i_regmap,FTEMP|64); rt=get_reg(i_regmap,FTEMP); }else{ rth=get_reg(i_regmap,rt1[i]|64); rt=get_reg(i_regmap,rt1[i]); } assert(rs>=0); #ifdef PCSX int r,temp=-1,temp2=HOST_TEMPREG,regs_saved=0,restore_jump=0; reglist|=(1<=0) reglist&=~(1<=0&&rt1[i]!=0)) { switch(type) { case LOADB_STUB: emit_ldrccsb_dualindexed(temp2,rs,rt); break; case LOADBU_STUB: emit_ldrccb_dualindexed(temp2,rs,rt); break; case LOADH_STUB: emit_ldrccsh_dualindexed(temp2,rs,rt); break; case LOADHU_STUB: emit_ldrcch_dualindexed(temp2,rs,rt); break; case LOADW_STUB: emit_ldrcc_dualindexed(temp2,rs,rt); break; } } if(regs_saved) { restore_jump=(int)out; emit_jcc(0); // jump to reg restore } else emit_jcc(stubs[n][2]); // return address if(!regs_saved) save_regs(reglist); int handler=0; if(type==LOADB_STUB||type==LOADBU_STUB) handler=(int)jump_handler_read8; if(type==LOADH_STUB||type==LOADHU_STUB) handler=(int)jump_handler_read16; if(type==LOADW_STUB) handler=(int)jump_handler_read32; assert(handler!=0); pass_args(rs,temp2); int cc=get_reg(i_regmap,CCREG); if(cc<0) emit_loadreg(CCREG,2); emit_addimm(cc<0?2:cc,CLOCK_ADJUST((int)stubs[n][6]+1),2); emit_call(handler); if(itype[i]==C1LS||itype[i]==C2LS||(rt>=0&&rt1[i]!=0)) { mov_loadtype_adj(type,0,rt); } if(restore_jump) set_jump_target(restore_jump,(int)out); restore_regs(reglist); emit_jmp(stubs[n][2]); // return address #else // !PCSX if(addr<0) addr=rt; if(addr<0&&itype[i]!=C1LS&&itype[i]!=C2LS&&itype[i]!=LOADLR) addr=get_reg(i_regmap,-1); assert(addr>=0); int ftable=0; if(type==LOADB_STUB||type==LOADBU_STUB) ftable=(int)readmemb; if(type==LOADH_STUB||type==LOADHU_STUB) ftable=(int)readmemh; if(type==LOADW_STUB) ftable=(int)readmem; #ifndef FORCE32 if(type==LOADD_STUB) ftable=(int)readmemd; #endif assert(ftable!=0); emit_writeword(rs,(int)&address); //emit_pusha(); save_regs(reglist); #ifndef PCSX ds=i_regs!=®s[i]; int real_rs=(itype[i]==LOADLR)?-1:get_reg(i_regmap,rs1[i]); u_int cmask=ds?-1:(0x100f|~i_regs->wasconst); if(!ds) load_all_consts(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty&~(1<regmap_entry,i_regs->was32,i_regs->wasdirty&cmask&~(1<>rs1[i])&1)<<1)+ds,3); #endif //emit_readword((int)&last_count,temp); //emit_add(cc,temp,cc); //emit_writeword(cc,(int)&Count); //emit_mov(15,14); emit_call((int)&indirect_jump_indexed); //emit_callreg(rs); //emit_readword_dualindexedx4(rs,HOST_TEMPREG,15); #ifndef PCSX // We really shouldn't need to update the count here, // but not doing so causes random crashes... emit_readword((int)&Count,HOST_TEMPREG); emit_readword((int)&next_interupt,2); emit_addimm(HOST_TEMPREG,-2*stubs[n][6]-2,HOST_TEMPREG); emit_writeword(2,(int)&last_count); emit_sub(HOST_TEMPREG,2,cc<0?HOST_TEMPREG:cc); if(cc<0) { emit_storereg(CCREG,HOST_TEMPREG); } #endif //emit_popa(); restore_regs(reglist); //if((cc=get_reg(regmap,CCREG))>=0) { // emit_loadreg(CCREG,cc); //} if(itype[i]==C1LS||itype[i]==C2LS||(rt>=0&&rt1[i]!=0)) { assert(rt>=0); if(type==LOADB_STUB) emit_movsbl((int)&readmem_dword,rt); if(type==LOADBU_STUB) emit_movzbl((int)&readmem_dword,rt); if(type==LOADH_STUB) emit_movswl((int)&readmem_dword,rt); if(type==LOADHU_STUB) emit_movzwl((int)&readmem_dword,rt); if(type==LOADW_STUB) emit_readword((int)&readmem_dword,rt); if(type==LOADD_STUB) { emit_readword((int)&readmem_dword,rt); if(rth>=0) emit_readword(((int)&readmem_dword)+4,rth); } } emit_jmp(stubs[n][2]); // return address #endif // !PCSX } #ifdef PCSX // return memhandler, or get directly accessable address and return 0 u_int get_direct_memhandler(void *table,u_int addr,int type,u_int *addr_host) { u_int l1,l2=0; l1=((u_int *)table)[addr>>12]; if((l1&(1<<31))==0) { u_int v=l1<<1; *addr_host=v+addr; return 0; } else { l1<<=1; if(type==LOADB_STUB||type==LOADBU_STUB||type==STOREB_STUB) l2=((u_int *)l1)[0x1000/4 + 0x1000/2 + (addr&0xfff)]; else if(type==LOADH_STUB||type==LOADHU_STUB||type==STOREH_STUB) l2=((u_int *)l1)[0x1000/4 + (addr&0xfff)/2]; else l2=((u_int *)l1)[(addr&0xfff)/4]; if((l2&(1<<31))==0) { u_int v=l2<<1; *addr_host=v+(addr&0xfff); return 0; } return l2<<1; } } #endif inline_readstub(int type, int i, u_int addr, signed char regmap[], int target, int adj, u_int reglist) { int rs=get_reg(regmap,target); int rth=get_reg(regmap,target|64); int rt=get_reg(regmap,target); if(rs<0) rs=get_reg(regmap,-1); assert(rs>=0); #ifdef PCSX u_int handler,host_addr=0,is_dynamic,far_call=0; int cc=get_reg(regmap,CCREG); if(pcsx_direct_read(type,addr,CLOCK_ADJUST(adj+1),cc,target?rs:-1,rt)) return; handler=get_direct_memhandler(mem_rtab,addr,type,&host_addr); if (handler==0) { if(rt<0) return; if(addr!=host_addr) emit_movimm_from(addr,rs,host_addr,rs); switch(type) { case LOADB_STUB: emit_movsbl_indexed(0,rs,rt); break; case LOADBU_STUB: emit_movzbl_indexed(0,rs,rt); break; case LOADH_STUB: emit_movswl_indexed(0,rs,rt); break; case LOADHU_STUB: emit_movzwl_indexed(0,rs,rt); break; case LOADW_STUB: emit_readword_indexed(0,rs,rt); break; default: assert(0); } return; } is_dynamic=pcsxmem_is_handler_dynamic(addr); if(is_dynamic) { if(type==LOADB_STUB||type==LOADBU_STUB) handler=(int)jump_handler_read8; if(type==LOADH_STUB||type==LOADHU_STUB) handler=(int)jump_handler_read16; if(type==LOADW_STUB) handler=(int)jump_handler_read32; } // call a memhandler if(rt>=0) reglist&=~(1<=33554432) { // unreachable memhandler, a plugin func perhaps emit_movimm(handler,12); far_call=1; } if(cc<0) emit_loadreg(CCREG,2); if(is_dynamic) { emit_movimm(((u_int *)mem_rtab)[addr>>12]<<1,1); emit_addimm(cc<0?2:cc,CLOCK_ADJUST(adj+1),2); } else { emit_readword((int)&last_count,3); emit_addimm(cc<0?2:cc,CLOCK_ADJUST(adj+1),2); emit_add(2,3,2); emit_writeword(2,(int)&Count); } if(far_call) emit_callreg(12); else emit_call(handler); if(rt>=0) { switch(type) { case LOADB_STUB: emit_signextend8(0,rt); break; case LOADBU_STUB: emit_andimm(0,0xff,rt); break; case LOADH_STUB: emit_signextend16(0,rt); break; case LOADHU_STUB: emit_andimm(0,0xffff,rt); break; case LOADW_STUB: if(rt!=0) emit_mov(0,rt); break; default: assert(0); } } restore_regs(reglist); #else // if !PCSX int ftable=0; if(type==LOADB_STUB||type==LOADBU_STUB) ftable=(int)readmemb; if(type==LOADH_STUB||type==LOADHU_STUB) ftable=(int)readmemh; if(type==LOADW_STUB) ftable=(int)readmem; #ifndef FORCE32 if(type==LOADD_STUB) ftable=(int)readmemd; #endif assert(ftable!=0); if(target==0) emit_movimm(addr,rs); emit_writeword(rs,(int)&address); //emit_pusha(); save_regs(reglist); #ifndef PCSX if((signed int)addr>=(signed int)0xC0000000) { // Theoretically we can have a pagefault here, if the TLB has never // been enabled and the address is outside the range 80000000..BFFFFFFF // Write out the registers so the pagefault can be handled. This is // a very rare case and likely represents a bug. int ds=regmap!=regs[i].regmap; if(!ds) load_all_consts(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty,i); if(!ds) wb_dirtys(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty); else wb_dirtys(branch_regs[i-1].regmap_entry,branch_regs[i-1].was32,branch_regs[i-1].wasdirty); } #endif //emit_shrimm(rs,16,1); int cc=get_reg(regmap,CCREG); if(cc<0) { emit_loadreg(CCREG,2); } //emit_movimm(ftable,0); emit_movimm(((u_int *)ftable)[addr>>16],0); //emit_readword((int)&last_count,12); emit_addimm(cc<0?2:cc,CLOCK_ADJUST(adj+1),2); #ifndef PCSX if((signed int)addr>=(signed int)0xC0000000) { // Pagefault address int ds=regmap!=regs[i].regmap; emit_movimm(start+i*4+(((regs[i].was32>>rs1[i])&1)<<1)+ds,3); } #endif //emit_add(12,2,2); //emit_writeword(2,(int)&Count); //emit_call(((u_int *)ftable)[addr>>16]); emit_call((int)&indirect_jump); #ifndef PCSX // We really shouldn't need to update the count here, // but not doing so causes random crashes... emit_readword((int)&Count,HOST_TEMPREG); emit_readword((int)&next_interupt,2); emit_addimm(HOST_TEMPREG,-CLOCK_ADJUST(adj+1),HOST_TEMPREG); emit_writeword(2,(int)&last_count); emit_sub(HOST_TEMPREG,2,cc<0?HOST_TEMPREG:cc); if(cc<0) { emit_storereg(CCREG,HOST_TEMPREG); } #endif //emit_popa(); restore_regs(reglist); if(rt>=0) { if(type==LOADB_STUB) emit_movsbl((int)&readmem_dword,rt); if(type==LOADBU_STUB) emit_movzbl((int)&readmem_dword,rt); if(type==LOADH_STUB) emit_movswl((int)&readmem_dword,rt); if(type==LOADHU_STUB) emit_movzwl((int)&readmem_dword,rt); if(type==LOADW_STUB) emit_readword((int)&readmem_dword,rt); if(type==LOADD_STUB) { emit_readword((int)&readmem_dword,rt); if(rth>=0) emit_readword(((int)&readmem_dword)+4,rth); } } #endif // !PCSX } do_writestub(int n) { assem_debug("do_writestub %x\n",start+stubs[n][3]*4); literal_pool(256); set_jump_target(stubs[n][1],(int)out); int type=stubs[n][0]; int i=stubs[n][3]; int rs=stubs[n][4]; struct regstat *i_regs=(struct regstat *)stubs[n][5]; u_int reglist=stubs[n][7]; signed char *i_regmap=i_regs->regmap; int addr=get_reg(i_regmap,AGEN1+(i&1)); int rth,rt,r; int ds; if(itype[i]==C1LS||itype[i]==C2LS) { rth=get_reg(i_regmap,FTEMP|64); rt=get_reg(i_regmap,r=FTEMP); }else{ rth=get_reg(i_regmap,rs2[i]|64); rt=get_reg(i_regmap,r=rs2[i]); } assert(rs>=0); assert(rt>=0); #ifdef PCSX int rtmp,temp=-1,temp2=HOST_TEMPREG,regs_saved=0,restore_jump=0,ra; int reglist2=reglist|(1<=0); int ftable=0; if(type==STOREB_STUB) ftable=(int)writememb; if(type==STOREH_STUB) ftable=(int)writememh; if(type==STOREW_STUB) ftable=(int)writemem; #ifndef FORCE32 if(type==STORED_STUB) ftable=(int)writememd; #endif assert(ftable!=0); emit_writeword(rs,(int)&address); //emit_shrimm(rs,16,rs); //emit_movmem_indexedx4(ftable,rs,rs); if(type==STOREB_STUB) emit_writebyte(rt,(int)&byte); if(type==STOREH_STUB) emit_writehword(rt,(int)&hword); if(type==STOREW_STUB) emit_writeword(rt,(int)&word); if(type==STORED_STUB) { #ifndef FORCE32 emit_writeword(rt,(int)&dword); emit_writeword(r?rth:rt,(int)&dword+4); #else printf("STORED_STUB\n"); #endif } //emit_pusha(); save_regs(reglist); #ifndef PCSX ds=i_regs!=®s[i]; int real_rs=get_reg(i_regmap,rs1[i]); u_int cmask=ds?-1:(0x100f|~i_regs->wasconst); if(!ds) load_all_consts(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty&~(1<regmap_entry,i_regs->was32,i_regs->wasdirty&cmask&~(1<>rs1[i])&1)<<1)+ds,3); #endif //emit_readword((int)&last_count,temp); //emit_addimm(cc,2*stubs[n][5]+2,cc); //emit_add(cc,temp,cc); //emit_writeword(cc,(int)&Count); emit_call((int)&indirect_jump_indexed); //emit_callreg(rs); emit_readword((int)&Count,HOST_TEMPREG); emit_readword((int)&next_interupt,2); emit_addimm(HOST_TEMPREG,-2*stubs[n][6]-2,HOST_TEMPREG); emit_writeword(2,(int)&last_count); emit_sub(HOST_TEMPREG,2,cc<0?HOST_TEMPREG:cc); if(cc<0) { emit_storereg(CCREG,HOST_TEMPREG); } //emit_popa(); restore_regs(reglist); //if((cc=get_reg(regmap,CCREG))>=0) { // emit_loadreg(CCREG,cc); //} emit_jmp(stubs[n][2]); // return address #endif // !PCSX } inline_writestub(int type, int i, u_int addr, signed char regmap[], int target, int adj, u_int reglist) { int rs=get_reg(regmap,-1); int rth=get_reg(regmap,target|64); int rt=get_reg(regmap,target); assert(rs>=0); assert(rt>=0); #ifdef PCSX u_int handler,host_addr=0; handler=get_direct_memhandler(mem_wtab,addr,type,&host_addr); if (handler==0) { if(addr!=host_addr) emit_movimm_from(addr,rs,host_addr,rs); switch(type) { case STOREB_STUB: emit_writebyte_indexed(rt,0,rs); break; case STOREH_STUB: emit_writehword_indexed(rt,0,rs); break; case STOREW_STUB: emit_writeword_indexed(rt,0,rs); break; default: assert(0); } return; } // call a memhandler save_regs(reglist); pass_args(rs,rt); int cc=get_reg(regmap,CCREG); if(cc<0) emit_loadreg(CCREG,2); emit_addimm(cc<0?2:cc,CLOCK_ADJUST(adj+1),2); emit_movimm(handler,3); // returns new cycle_count emit_call((int)jump_handler_write_h); emit_addimm(0,-CLOCK_ADJUST(adj+1),cc<0?2:cc); if(cc<0) emit_storereg(CCREG,2); restore_regs(reglist); #else // if !pcsx int ftable=0; if(type==STOREB_STUB) ftable=(int)writememb; if(type==STOREH_STUB) ftable=(int)writememh; if(type==STOREW_STUB) ftable=(int)writemem; #ifndef FORCE32 if(type==STORED_STUB) ftable=(int)writememd; #endif assert(ftable!=0); emit_writeword(rs,(int)&address); //emit_shrimm(rs,16,rs); //emit_movmem_indexedx4(ftable,rs,rs); if(type==STOREB_STUB) emit_writebyte(rt,(int)&byte); if(type==STOREH_STUB) emit_writehword(rt,(int)&hword); if(type==STOREW_STUB) emit_writeword(rt,(int)&word); if(type==STORED_STUB) { #ifndef FORCE32 emit_writeword(rt,(int)&dword); emit_writeword(target?rth:rt,(int)&dword+4); #else printf("STORED_STUB\n"); #endif } //emit_pusha(); save_regs(reglist); #ifndef PCSX // rearmed note: load_all_consts prevents BIOS boot, some bug? if((signed int)addr>=(signed int)0xC0000000) { // Theoretically we can have a pagefault here, if the TLB has never // been enabled and the address is outside the range 80000000..BFFFFFFF // Write out the registers so the pagefault can be handled. This is // a very rare case and likely represents a bug. int ds=regmap!=regs[i].regmap; if(!ds) load_all_consts(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty,i); if(!ds) wb_dirtys(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty); else wb_dirtys(branch_regs[i-1].regmap_entry,branch_regs[i-1].was32,branch_regs[i-1].wasdirty); } #endif //emit_shrimm(rs,16,1); int cc=get_reg(regmap,CCREG); if(cc<0) { emit_loadreg(CCREG,2); } //emit_movimm(ftable,0); emit_movimm(((u_int *)ftable)[addr>>16],0); //emit_readword((int)&last_count,12); emit_addimm(cc<0?2:cc,CLOCK_ADJUST(adj+1),2); #ifndef PCSX if((signed int)addr>=(signed int)0xC0000000) { // Pagefault address int ds=regmap!=regs[i].regmap; emit_movimm(start+i*4+(((regs[i].was32>>rs1[i])&1)<<1)+ds,3); } #endif //emit_add(12,2,2); //emit_writeword(2,(int)&Count); //emit_call(((u_int *)ftable)[addr>>16]); emit_call((int)&indirect_jump); emit_readword((int)&Count,HOST_TEMPREG); emit_readword((int)&next_interupt,2); emit_addimm(HOST_TEMPREG,-CLOCK_ADJUST(adj+1),HOST_TEMPREG); emit_writeword(2,(int)&last_count); emit_sub(HOST_TEMPREG,2,cc<0?HOST_TEMPREG:cc); if(cc<0) { emit_storereg(CCREG,HOST_TEMPREG); } //emit_popa(); restore_regs(reglist); #endif } do_unalignedwritestub(int n) { assem_debug("do_unalignedwritestub %x\n",start+stubs[n][3]*4); literal_pool(256); set_jump_target(stubs[n][1],(int)out); int i=stubs[n][3]; struct regstat *i_regs=(struct regstat *)stubs[n][4]; int addr=stubs[n][5]; u_int reglist=stubs[n][7]; signed char *i_regmap=i_regs->regmap; int temp2=get_reg(i_regmap,FTEMP); int rt; int ds, real_rs; rt=get_reg(i_regmap,rs2[i]); assert(rt>=0); assert(addr>=0); assert(opcode[i]==0x2a||opcode[i]==0x2e); // SWL/SWR only implemented reglist|=(1<wasconst); if(!ds) load_all_consts(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty&~(1<regmap_entry,i_regs->was32,i_regs->wasdirty&cmask&~(1<>rs1[i])&1)<<1)+ds,3); #endif emit_call((int)&indirect_jump_indexed); restore_regs(reglist); emit_readword((int)&readmem_dword,temp2); int temp=addr; //hmh emit_shlimm(addr,3,temp); emit_andimm(temp,24,temp); #ifdef BIG_ENDIAN_MIPS if (opcode[i]==0x2e) // SWR #else if (opcode[i]==0x2a) // SWL #endif emit_xorimm(temp,24,temp); emit_movimm(-1,HOST_TEMPREG); if (opcode[i]==0x2a) { // SWL emit_bic_lsr(temp2,HOST_TEMPREG,temp,temp2); emit_orrshr(rt,temp,temp2); }else{ emit_bic_lsl(temp2,HOST_TEMPREG,temp,temp2); emit_orrshl(rt,temp,temp2); } emit_readword((int)&address,addr); emit_writeword(temp2,(int)&word); //save_regs(reglist); // don't need to, no state changes emit_shrimm(addr,16,1); emit_movimm((u_int)writemem,0); //emit_call((int)&indirect_jump_indexed); emit_mov(15,14); emit_readword_dualindexedx4(0,1,15); emit_readword((int)&Count,HOST_TEMPREG); emit_readword((int)&next_interupt,2); emit_addimm(HOST_TEMPREG,-2*stubs[n][6]-2,HOST_TEMPREG); emit_writeword(2,(int)&last_count); emit_sub(HOST_TEMPREG,2,cc<0?HOST_TEMPREG:cc); if(cc<0) { emit_storereg(CCREG,HOST_TEMPREG); } restore_regs(reglist); emit_jmp(stubs[n][2]); // return address #endif } void printregs(int edi,int esi,int ebp,int esp,int b,int d,int c,int a) { printf("regs: %x %x %x %x %x %x %x (%x)\n",a,b,c,d,ebp,esi,edi,(&edi)[-1]); } do_invstub(int n) { literal_pool(20); u_int reglist=stubs[n][3]; set_jump_target(stubs[n][1],(int)out); save_regs(reglist); if(stubs[n][4]!=0) emit_mov(stubs[n][4],0); emit_call((int)&invalidate_addr); restore_regs(reglist); emit_jmp(stubs[n][2]); // return address } int do_dirty_stub(int i) { assem_debug("do_dirty_stub %x\n",start+i*4); u_int addr=(int)start<(int)0xC0000000?(u_int)source:(u_int)start; #ifdef PCSX addr=(u_int)source; #endif // Careful about the code output here, verify_dirty needs to parse it. #ifdef ARMv5_ONLY emit_loadlp(addr,1); emit_loadlp((int)copy,2); emit_loadlp(slen*4,3); #else emit_movw(addr&0x0000FFFF,1); emit_movw(((u_int)copy)&0x0000FFFF,2); emit_movt(addr&0xFFFF0000,1); emit_movt(((u_int)copy)&0xFFFF0000,2); emit_movw(slen*4,3); #endif emit_movimm(start+i*4,0); emit_call((int)start<(int)0xC0000000?(int)&verify_code:(int)&verify_code_vm); int entry=(int)out; load_regs_entry(i); if(entry==(int)out) entry=instr_addr[i]; emit_jmp(instr_addr[i]); return entry; } void do_dirty_stub_ds() { // Careful about the code output here, verify_dirty needs to parse it. #ifdef ARMv5_ONLY emit_loadlp((int)start<(int)0xC0000000?(int)source:(int)start,1); emit_loadlp((int)copy,2); emit_loadlp(slen*4,3); #else emit_movw(((int)start<(int)0xC0000000?(u_int)source:(u_int)start)&0x0000FFFF,1); emit_movw(((u_int)copy)&0x0000FFFF,2); emit_movt(((int)start<(int)0xC0000000?(u_int)source:(u_int)start)&0xFFFF0000,1); emit_movt(((u_int)copy)&0xFFFF0000,2); emit_movw(slen*4,3); #endif emit_movimm(start+1,0); emit_call((int)&verify_code_ds); } do_cop1stub(int n) { literal_pool(256); assem_debug("do_cop1stub %x\n",start+stubs[n][3]*4); set_jump_target(stubs[n][1],(int)out); int i=stubs[n][3]; // int rs=stubs[n][4]; struct regstat *i_regs=(struct regstat *)stubs[n][5]; int ds=stubs[n][6]; if(!ds) { load_all_consts(regs[i].regmap_entry,regs[i].was32,regs[i].wasdirty,i); //if(i_regs!=®s[i]) printf("oops: regs[i]=%x i_regs=%x",(int)®s[i],(int)i_regs); } //else {printf("fp exception in delay slot\n");} wb_dirtys(i_regs->regmap_entry,i_regs->was32,i_regs->wasdirty); if(regs[i].regmap_entry[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG); emit_movimm(start+(i-ds)*4,EAX); // Get PC emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle... emit_jmp(ds?(int)fp_exception_ds:(int)fp_exception); } #ifndef DISABLE_TLB /* TLB */ int do_tlb_r(int s,int ar,int map,int x,int a,int shift,int c,u_int addr) { if(c) { if((signed int)addr>=(signed int)0xC0000000) { // address_generation already loaded the const emit_readword_dualindexedx4(FP,map,map); } else return -1; // No mapping } else { assert(s!=map); emit_movimm(((int)memory_map-(int)&dynarec_local)>>2,map); emit_addsr12(map,s,map); // Schedule this while we wait on the load //if(x) emit_xorimm(s,x,ar); if(shift>=0) emit_shlimm(s,3,shift); if(~a) emit_andimm(s,a,ar); emit_readword_dualindexedx4(FP,map,map); } return map; } int do_tlb_r_branch(int map, int c, u_int addr, int *jaddr) { if(!c||(signed int)addr>=(signed int)0xC0000000) { emit_test(map,map); *jaddr=(int)out; emit_js(0); } return map; } int gen_tlb_addr_r(int ar, int map) { if(map>=0) { assem_debug("add %s,%s,%s lsl #2\n",regname[ar],regname[ar],regname[map]); output_w32(0xe0800100|rd_rn_rm(ar,ar,map)); } } int do_tlb_w(int s,int ar,int map,int x,int c,u_int addr) { if(c) { if(addr<0x80800000||addr>=0xC0000000) { // address_generation already loaded the const emit_readword_dualindexedx4(FP,map,map); } else return -1; // No mapping } else { assert(s!=map); emit_movimm(((int)memory_map-(int)&dynarec_local)>>2,map); emit_addsr12(map,s,map); // Schedule this while we wait on the load //if(x) emit_xorimm(s,x,ar); emit_readword_dualindexedx4(FP,map,map); } return map; } int do_tlb_w_branch(int map, int c, u_int addr, int *jaddr) { if(!c||addr<0x80800000||addr>=0xC0000000) { emit_testimm(map,0x40000000); *jaddr=(int)out; emit_jne(0); } } int gen_tlb_addr_w(int ar, int map) { if(map>=0) { assem_debug("add %s,%s,%s lsl #2\n",regname[ar],regname[ar],regname[map]); output_w32(0xe0800100|rd_rn_rm(ar,ar,map)); } } // Generate the address of the memory_map entry, relative to dynarec_local generate_map_const(u_int addr,int reg) { //printf("generate_map_const(%x,%s)\n",addr,regname[reg]); emit_movimm((addr>>12)+(((u_int)memory_map-(u_int)&dynarec_local)>>2),reg); } #else static int do_tlb_r() { return 0; } static int do_tlb_r_branch() { return 0; } static int gen_tlb_addr_r() { return 0; } static int do_tlb_w() { return 0; } static int do_tlb_w_branch() { return 0; } static int gen_tlb_addr_w() { return 0; } #endif // DISABLE_TLB /* Special assem */ void shift_assemble_arm(int i,struct regstat *i_regs) { if(rt1[i]) { if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV { signed char s,t,shift; t=get_reg(i_regs->regmap,rt1[i]); s=get_reg(i_regs->regmap,rs1[i]); shift=get_reg(i_regs->regmap,rs2[i]); if(t>=0){ if(rs1[i]==0) { emit_zeroreg(t); } else if(rs2[i]==0) { assert(s>=0); if(s!=t) emit_mov(s,t); } else { emit_andimm(shift,31,HOST_TEMPREG); if(opcode2[i]==4) // SLLV { emit_shl(s,HOST_TEMPREG,t); } if(opcode2[i]==6) // SRLV { emit_shr(s,HOST_TEMPREG,t); } if(opcode2[i]==7) // SRAV { emit_sar(s,HOST_TEMPREG,t); } } } } else { // DSLLV/DSRLV/DSRAV signed char sh,sl,th,tl,shift; th=get_reg(i_regs->regmap,rt1[i]|64); tl=get_reg(i_regs->regmap,rt1[i]); sh=get_reg(i_regs->regmap,rs1[i]|64); sl=get_reg(i_regs->regmap,rs1[i]); shift=get_reg(i_regs->regmap,rs2[i]); if(tl>=0){ if(rs1[i]==0) { emit_zeroreg(tl); if(th>=0) emit_zeroreg(th); } else if(rs2[i]==0) { assert(sl>=0); if(sl!=tl) emit_mov(sl,tl); if(th>=0&&sh!=th) emit_mov(sh,th); } else { // FIXME: What if shift==tl ? assert(shift!=tl); int temp=get_reg(i_regs->regmap,-1); int real_th=th; if(th<0&&opcode2[i]!=0x14) {th=temp;} // DSLLV doesn't need a temporary register assert(sl>=0); assert(sh>=0); emit_andimm(shift,31,HOST_TEMPREG); if(opcode2[i]==0x14) // DSLLV { if(th>=0) emit_shl(sh,HOST_TEMPREG,th); emit_rsbimm(HOST_TEMPREG,32,HOST_TEMPREG); emit_orrshr(sl,HOST_TEMPREG,th); emit_andimm(shift,31,HOST_TEMPREG); emit_testimm(shift,32); emit_shl(sl,HOST_TEMPREG,tl); if(th>=0) emit_cmovne_reg(tl,th); emit_cmovne_imm(0,tl); } if(opcode2[i]==0x16) // DSRLV { assert(th>=0); emit_shr(sl,HOST_TEMPREG,tl); emit_rsbimm(HOST_TEMPREG,32,HOST_TEMPREG); emit_orrshl(sh,HOST_TEMPREG,tl); emit_andimm(shift,31,HOST_TEMPREG); emit_testimm(shift,32); emit_shr(sh,HOST_TEMPREG,th); emit_cmovne_reg(th,tl); if(real_th>=0) emit_cmovne_imm(0,th); } if(opcode2[i]==0x17) // DSRAV { assert(th>=0); emit_shr(sl,HOST_TEMPREG,tl); emit_rsbimm(HOST_TEMPREG,32,HOST_TEMPREG); if(real_th>=0) { assert(temp>=0); emit_sarimm(th,31,temp); } emit_orrshl(sh,HOST_TEMPREG,tl); emit_andimm(shift,31,HOST_TEMPREG); emit_testimm(shift,32); emit_sar(sh,HOST_TEMPREG,th); emit_cmovne_reg(th,tl); if(real_th>=0) emit_cmovne_reg(temp,th); } } } } } } #ifdef PCSX static void speculate_mov(int rs,int rt) { if(rt!=0) { smrv_strong_next|=1<>rs1[i])&1) speculate_mov(rs1[i],rt1[i]); else if((smrv_strong>>rs2[i])&1) speculate_mov(rs2[i],rt1[i]); else if((smrv_weak>>rs1[i])&1) speculate_mov_weak(rs1[i],rt1[i]); else if((smrv_weak>>rs2[i])&1) speculate_mov_weak(rs2[i],rt1[i]); else { smrv_strong_next&=~(1<=0) { if(get_final_value(hr,i,&value)) smrv[rt1[i]]=value; else smrv[rt1[i]]=constmap[i][hr]; smrv_strong_next|=1<>rs1[i])&1) speculate_mov(rs1[i],rt1[i]); else if((smrv_weak>>rs1[i])&1) speculate_mov_weak(rs1[i],rt1[i]); } break; case LOAD: if(start<0x2000&&(rt1[i]==26||(smrv[rt1[i]]>>24)==0xa0)) { // special case for BIOS smrv[rt1[i]]=0xa0000000; smrv_strong_next|=1<>r)&1),(smrv_weak>>r)&1,regs[i].isconst,regs[i].wasconst); #endif } enum { MTYPE_8000 = 0, MTYPE_8020, MTYPE_0000, MTYPE_A000, MTYPE_1F80, }; static int get_ptr_mem_type(u_int a) { if(a < 0x00200000) { if(a<0x1000&&((start>>20)==0xbfc||(start>>24)==0xa0)) // return wrong, must use memhandler for BIOS self-test to pass // 007 does similar stuff from a00 mirror, weird stuff return MTYPE_8000; return MTYPE_0000; } if(0x1f800000 <= a && a < 0x1f801000) return MTYPE_1F80; if(0x80200000 <= a && a < 0x80800000) return MTYPE_8020; if(0xa0000000 <= a && a < 0xa0200000) return MTYPE_A000; return MTYPE_8000; } #endif static int emit_fastpath_cmp_jump(int i,int addr,int *addr_reg_override) { int jaddr,type=0; #ifdef PCSX int mr=rs1[i]; if(((smrv_strong|smrv_weak)>>mr)&1) { type=get_ptr_mem_type(smrv[mr]); //printf("set %08x @%08x r%d %d\n", smrv[mr], start+i*4, mr, type); } else { // use the mirror we are running on type=get_ptr_mem_type(start); //printf("set nospec @%08x r%d %d\n", start+i*4, mr, type); } if(type==MTYPE_8020) { // RAM 80200000+ mirror emit_andimm(addr,~0x00e00000,HOST_TEMPREG); addr=*addr_reg_override=HOST_TEMPREG; type=0; } else if(type==MTYPE_0000) { // RAM 0 mirror emit_orimm(addr,0x80000000,HOST_TEMPREG); addr=*addr_reg_override=HOST_TEMPREG; type=0; } else if(type==MTYPE_A000) { // RAM A mirror emit_andimm(addr,~0x20000000,HOST_TEMPREG); addr=*addr_reg_override=HOST_TEMPREG; type=0; } else if(type==MTYPE_1F80) { // scratchpad emit_addimm(addr,-0x1f800000,HOST_TEMPREG); emit_cmpimm(HOST_TEMPREG,0x1000); jaddr=(int)out; emit_jc(0); } #endif if(type==0) { emit_cmpimm(addr,RAM_SIZE); jaddr=(int)out; #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK // Hint to branch predictor that the branch is unlikely to be taken if(rs1[i]>=28) emit_jno_unlikely(0); else #endif emit_jno(0); } return jaddr; } #define shift_assemble shift_assemble_arm void loadlr_assemble_arm(int i,struct regstat *i_regs) { int s,th,tl,temp,temp2,addr,map=-1; int offset; int jaddr=0; int memtarget=0,c=0; int fastload_reg_override=0; u_int hr,reglist=0; th=get_reg(i_regs->regmap,rt1[i]|64); tl=get_reg(i_regs->regmap,rt1[i]); s=get_reg(i_regs->regmap,rs1[i]); temp=get_reg(i_regs->regmap,-1); temp2=get_reg(i_regs->regmap,FTEMP); addr=get_reg(i_regs->regmap,AGEN1+(i&1)); assert(addr<0); offset=imm[i]; for(hr=0;hrregmap[hr]>=0) reglist|=1<=0) { c=(i_regs->wasconst>>s)&1; if(c) { memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80000000+RAM_SIZE; if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1; } } if(!using_tlb) { if(!c) { #ifdef RAM_OFFSET map=get_reg(i_regs->regmap,ROREG); if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG); #endif emit_shlimm(addr,3,temp); if (opcode[i]==0x22||opcode[i]==0x26) { emit_andimm(addr,0xFFFFFFFC,temp2); // LWL/LWR }else{ emit_andimm(addr,0xFFFFFFF8,temp2); // LDL/LDR } jaddr=emit_fastpath_cmp_jump(i,temp2,&fastload_reg_override); } else { if (opcode[i]==0x22||opcode[i]==0x26) { emit_movimm(((constmap[i][s]+offset)<<3)&24,temp); // LWL/LWR }else{ emit_movimm(((constmap[i][s]+offset)<<3)&56,temp); // LDL/LDR } } }else{ // using tlb int a; if(c) { a=-1; }else if (opcode[i]==0x22||opcode[i]==0x26) { a=0xFFFFFFFC; // LWL/LWR }else{ a=0xFFFFFFF8; // LDL/LDR } map=get_reg(i_regs->regmap,TLREG); assert(map>=0); reglist&=~(1<regmap,FTEMP,ccadj[i],reglist); if(rt1[i]) { assert(tl>=0); emit_andimm(temp,24,temp); #ifdef BIG_ENDIAN_MIPS if (opcode[i]==0x26) // LWR #else if (opcode[i]==0x22) // LWL #endif emit_xorimm(temp,24,temp); emit_movimm(-1,HOST_TEMPREG); if (opcode[i]==0x26) { emit_shr(temp2,temp,temp2); emit_bic_lsr(tl,HOST_TEMPREG,temp,tl); }else{ emit_shl(temp2,temp,temp2); emit_bic_lsl(tl,HOST_TEMPREG,temp,tl); } emit_or(temp2,tl,tl); } //emit_storereg(rt1[i],tl); // DEBUG } if (opcode[i]==0x1A||opcode[i]==0x1B) { // LDL/LDR // FIXME: little endian, fastload_reg_override int temp2h=get_reg(i_regs->regmap,FTEMP|64); if(!c||memtarget) { //if(th>=0) emit_readword_indexed((int)rdram-0x80000000,temp2,temp2h); //emit_readword_indexed((int)rdram-0x7FFFFFFC,temp2,temp2); emit_readdword_indexed_tlb(0,temp2,map,temp2h,temp2); if(jaddr) add_stub(LOADD_STUB,jaddr,(int)out,i,temp2,(int)i_regs,ccadj[i],reglist); } else inline_readstub(LOADD_STUB,i,(constmap[i][s]+offset)&0xFFFFFFF8,i_regs->regmap,FTEMP,ccadj[i],reglist); if(rt1[i]) { assert(th>=0); assert(tl>=0); emit_testimm(temp,32); emit_andimm(temp,24,temp); if (opcode[i]==0x1A) { // LDL emit_rsbimm(temp,32,HOST_TEMPREG); emit_shl(temp2h,temp,temp2h); emit_orrshr(temp2,HOST_TEMPREG,temp2h); emit_movimm(-1,HOST_TEMPREG); emit_shl(temp2,temp,temp2); emit_cmove_reg(temp2h,th); emit_biceq_lsl(tl,HOST_TEMPREG,temp,tl); emit_bicne_lsl(th,HOST_TEMPREG,temp,th); emit_orreq(temp2,tl,tl); emit_orrne(temp2,th,th); } if (opcode[i]==0x1B) { // LDR emit_xorimm(temp,24,temp); emit_rsbimm(temp,32,HOST_TEMPREG); emit_shr(temp2,temp,temp2); emit_orrshl(temp2h,HOST_TEMPREG,temp2); emit_movimm(-1,HOST_TEMPREG); emit_shr(temp2h,temp,temp2h); emit_cmovne_reg(temp2,tl); emit_bicne_lsr(th,HOST_TEMPREG,temp,th); emit_biceq_lsr(tl,HOST_TEMPREG,temp,tl); emit_orrne(temp2h,th,th); emit_orreq(temp2h,tl,tl); } } } } #define loadlr_assemble loadlr_assemble_arm void cop0_assemble(int i,struct regstat *i_regs) { if(opcode2[i]==0) // MFC0 { signed char t=get_reg(i_regs->regmap,rt1[i]); char copr=(source[i]>>11)&0x1f; //assert(t>=0); // Why does this happen? OOT is weird if(t>=0&&rt1[i]!=0) { #ifdef MUPEN64 emit_addimm(FP,(int)&fake_pc-(int)&dynarec_local,0); emit_movimm((source[i]>>11)&0x1f,1); emit_writeword(0,(int)&PC); emit_writebyte(1,(int)&(fake_pc.f.r.nrd)); if(copr==9) { emit_readword((int)&last_count,ECX); emit_loadreg(CCREG,HOST_CCREG); // TODO: do proper reg alloc emit_add(HOST_CCREG,ECX,HOST_CCREG); emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); emit_writeword(HOST_CCREG,(int)&Count); } emit_call((int)MFC0); emit_readword((int)&readmem_dword,t); #else emit_readword((int)®_cop0+copr*4,t); #endif } } else if(opcode2[i]==4) // MTC0 { signed char s=get_reg(i_regs->regmap,rs1[i]); char copr=(source[i]>>11)&0x1f; assert(s>=0); #ifdef MUPEN64 emit_writeword(s,(int)&readmem_dword); wb_register(rs1[i],i_regs->regmap,i_regs->dirty,i_regs->is32); emit_addimm(FP,(int)&fake_pc-(int)&dynarec_local,0); emit_movimm((source[i]>>11)&0x1f,1); emit_writeword(0,(int)&PC); emit_writebyte(1,(int)&(fake_pc.f.r.nrd)); #else wb_register(rs1[i],i_regs->regmap,i_regs->dirty,i_regs->is32); #endif if(copr==9||copr==11||copr==12||copr==13) { emit_readword((int)&last_count,HOST_TEMPREG); emit_loadreg(CCREG,HOST_CCREG); // TODO: do proper reg alloc emit_add(HOST_CCREG,HOST_TEMPREG,HOST_CCREG); emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); emit_writeword(HOST_CCREG,(int)&Count); } // What a mess. The status register (12) can enable interrupts, // so needs a special case to handle a pending interrupt. // The interrupt must be taken immediately, because a subsequent // instruction might disable interrupts again. if(copr==12||copr==13) { #ifdef PCSX if (is_delayslot) { // burn cycles to cause cc_interrupt, which will // reschedule next_interupt. Relies on CCREG from above. assem_debug("MTC0 DS %d\n", copr); emit_writeword(HOST_CCREG,(int)&last_count); emit_movimm(0,HOST_CCREG); emit_storereg(CCREG,HOST_CCREG); if(s!=1) emit_mov(s,1); emit_movimm(copr,0); emit_call((int)pcsx_mtc0_ds); return; } #endif emit_movimm(start+i*4+4,HOST_TEMPREG); emit_writeword(HOST_TEMPREG,(int)&pcaddr); emit_movimm(0,HOST_TEMPREG); emit_writeword(HOST_TEMPREG,(int)&pending_exception); } //else if(copr==12&&is_delayslot) emit_call((int)MTC0_R12); //else #ifdef PCSX if(s!=1) emit_mov(s,1); emit_movimm(copr,0); emit_call((int)pcsx_mtc0); #else emit_call((int)MTC0); #endif if(copr==9||copr==11||copr==12||copr==13) { emit_readword((int)&Count,HOST_CCREG); emit_readword((int)&next_interupt,ECX); emit_addimm(HOST_CCREG,-CLOCK_ADJUST(ccadj[i]),HOST_CCREG); emit_sub(HOST_CCREG,ECX,HOST_CCREG); emit_writeword(ECX,(int)&last_count); emit_storereg(CCREG,HOST_CCREG); } if(copr==12||copr==13) { assert(!is_delayslot); emit_readword((int)&pending_exception,14); } emit_loadreg(rs1[i],s); if(get_reg(i_regs->regmap,rs1[i]|64)>=0) emit_loadreg(rs1[i]|64,get_reg(i_regs->regmap,rs1[i]|64)); if(copr==12||copr==13) { emit_test(14,14); emit_jne((int)&do_interrupt); } cop1_usable=0; } else { assert(opcode2[i]==0x10); #ifndef DISABLE_TLB if((source[i]&0x3f)==0x01) // TLBR emit_call((int)TLBR); if((source[i]&0x3f)==0x02) // TLBWI emit_call((int)TLBWI_new); if((source[i]&0x3f)==0x06) { // TLBWR // The TLB entry written by TLBWR is dependent on the count, // so update the cycle count emit_readword((int)&last_count,ECX); if(i_regs->regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG); emit_add(HOST_CCREG,ECX,HOST_CCREG); emit_addimm(HOST_CCREG,CLOCK_ADJUST(ccadj[i]),HOST_CCREG); emit_writeword(HOST_CCREG,(int)&Count); emit_call((int)TLBWR_new); } if((source[i]&0x3f)==0x08) // TLBP emit_call((int)TLBP); #endif #ifdef PCSX if((source[i]&0x3f)==0x10) // RFE { emit_readword((int)&Status,0); emit_andimm(0,0x3c,1); emit_andimm(0,~0xf,0); emit_orrshr_imm(1,2,0); emit_writeword(0,(int)&Status); } #else if((source[i]&0x3f)==0x18) // ERET { int count=ccadj[i]; if(i_regs->regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG); emit_addimm(HOST_CCREG,CLOCK_ADJUST(count),HOST_CCREG); // TODO: Should there be an extra cycle here? emit_jmp((int)jump_eret); } #endif } } static void cop2_get_dreg(u_int copr,signed char tl,signed char temp) { switch (copr) { case 1: case 3: case 5: case 8: case 9: case 10: case 11: emit_readword((int)®_cop2d[copr],tl); emit_signextend16(tl,tl); emit_writeword(tl,(int)®_cop2d[copr]); // hmh break; case 7: case 16: case 17: case 18: case 19: emit_readword((int)®_cop2d[copr],tl); emit_andimm(tl,0xffff,tl); emit_writeword(tl,(int)®_cop2d[copr]); break; case 15: emit_readword((int)®_cop2d[14],tl); // SXY2 emit_writeword(tl,(int)®_cop2d[copr]); break; case 28: case 29: emit_readword((int)®_cop2d[9],temp); emit_testimm(temp,0x8000); // do we need this? emit_andimm(temp,0xf80,temp); emit_andne_imm(temp,0,temp); emit_shrimm(temp,7,tl); emit_readword((int)®_cop2d[10],temp); emit_testimm(temp,0x8000); emit_andimm(temp,0xf80,temp); emit_andne_imm(temp,0,temp); emit_orrshr_imm(temp,2,tl); emit_readword((int)®_cop2d[11],temp); emit_testimm(temp,0x8000); emit_andimm(temp,0xf80,temp); emit_andne_imm(temp,0,temp); emit_orrshl_imm(temp,3,tl); emit_writeword(tl,(int)®_cop2d[copr]); break; default: emit_readword((int)®_cop2d[copr],tl); break; } } static void cop2_put_dreg(u_int copr,signed char sl,signed char temp) { switch (copr) { case 15: emit_readword((int)®_cop2d[13],temp); // SXY1 emit_writeword(sl,(int)®_cop2d[copr]); emit_writeword(temp,(int)®_cop2d[12]); // SXY0 emit_readword((int)®_cop2d[14],temp); // SXY2 emit_writeword(sl,(int)®_cop2d[14]); emit_writeword(temp,(int)®_cop2d[13]); // SXY1 break; case 28: emit_andimm(sl,0x001f,temp); emit_shlimm(temp,7,temp); emit_writeword(temp,(int)®_cop2d[9]); emit_andimm(sl,0x03e0,temp); emit_shlimm(temp,2,temp); emit_writeword(temp,(int)®_cop2d[10]); emit_andimm(sl,0x7c00,temp); emit_shrimm(temp,3,temp); emit_writeword(temp,(int)®_cop2d[11]); emit_writeword(sl,(int)®_cop2d[28]); break; case 30: emit_movs(sl,temp); emit_mvnmi(temp,temp); emit_clz(temp,temp); emit_writeword(sl,(int)®_cop2d[30]); emit_writeword(temp,(int)®_cop2d[31]); break; case 31: break; default: emit_writeword(sl,(int)®_cop2d[copr]); break; } } void cop2_assemble(int i,struct regstat *i_regs) { u_int copr=(source[i]>>11)&0x1f; signed char temp=get_reg(i_regs->regmap,-1); if (opcode2[i]==0) { // MFC2 signed char tl=get_reg(i_regs->regmap,rt1[i]); if(tl>=0&&rt1[i]!=0) cop2_get_dreg(copr,tl,temp); } else if (opcode2[i]==4) { // MTC2 signed char sl=get_reg(i_regs->regmap,rs1[i]); cop2_put_dreg(copr,sl,temp); } else if (opcode2[i]==2) // CFC2 { signed char tl=get_reg(i_regs->regmap,rt1[i]); if(tl>=0&&rt1[i]!=0) emit_readword((int)®_cop2c[copr],tl); } else if (opcode2[i]==6) // CTC2 { signed char sl=get_reg(i_regs->regmap,rs1[i]); switch(copr) { case 4: case 12: case 20: case 26: case 27: case 29: case 30: emit_signextend16(sl,temp); break; case 31: //value = value & 0x7ffff000; //if (value & 0x7f87e000) value |= 0x80000000; emit_shrimm(sl,12,temp); emit_shlimm(temp,12,temp); emit_testimm(temp,0x7f000000); emit_testeqimm(temp,0x00870000); emit_testeqimm(temp,0x0000e000); emit_orrne_imm(temp,0x80000000,temp); break; default: temp=sl; break; } emit_writeword(temp,(int)®_cop2c[copr]); assert(sl>=0); } } static void c2op_prologue(u_int op,u_int reglist) { save_regs_all(reglist); #ifdef PCNT emit_movimm(op,0); emit_call((int)pcnt_gte_start); #endif emit_addimm(FP,(int)&psxRegs.CP2D.r[0]-(int)&dynarec_local,0); // cop2 regs } static void c2op_epilogue(u_int op,u_int reglist) { #ifdef PCNT emit_movimm(op,0); emit_call((int)pcnt_gte_end); #endif restore_regs_all(reglist); } static void c2op_assemble(int i,struct regstat *i_regs) { signed char temp=get_reg(i_regs->regmap,-1); u_int c2op=source[i]&0x3f; u_int hr,reglist=0; int need_flags,need_ir; for(hr=0;hrregmap[hr]>=0) reglist|=1<>63); // +1 because of how liveness detection works need_ir=(gte_unneeded[i+1]&0xe00)!=0xe00; assem_debug("gte unneeded %016llx, need_flags %d, need_ir %d\n", gte_unneeded[i+1],need_flags,need_ir); #ifdef ARMv5_ONLY // let's take more risk here need_flags=need_flags&>e_reads_flags; #endif switch(c2op) { case GTE_MVMVA: { int shift = (source[i] >> 19) & 1; int v = (source[i] >> 15) & 3; int cv = (source[i] >> 13) & 3; int mx = (source[i] >> 17) & 3; int lm = (source[i] >> 10) & 1; reglist&=0x10ff; // +{r4-r7} c2op_prologue(c2op,reglist); /* r4,r5 = VXYZ(v) packed; r6 = &MX11(mx); r7 = &CV1(cv) */ if(v<3) emit_ldrd(v*8,0,4); else { emit_movzwl_indexed(9*4,0,4); // gteIR emit_movzwl_indexed(10*4,0,6); emit_movzwl_indexed(11*4,0,5); emit_orrshl_imm(6,16,4); } if(mx<3) emit_addimm(0,32*4+mx*8*4,6); else emit_readword((int)&zeromem_ptr,6); if(cv<3) emit_addimm(0,32*4+(cv*8+5)*4,7); else emit_readword((int)&zeromem_ptr,7); #ifdef __ARM_NEON__ emit_movimm(source[i],1); // opcode emit_call((int)gteMVMVA_part_neon); if(need_flags) { emit_movimm(lm,1); emit_call((int)gteMACtoIR_flags_neon); } #else if(cv==3&&shift) emit_call((int)gteMVMVA_part_cv3sh12_arm); else { emit_movimm(shift,1); emit_call((int)(need_flags?gteMVMVA_part_arm:gteMVMVA_part_nf_arm)); } if(need_flags||need_ir) { if(need_flags) emit_call((int)(lm?gteMACtoIR_lm1:gteMACtoIR_lm0)); else emit_call((int)(lm?gteMACtoIR_lm1_nf:gteMACtoIR_lm0_nf)); // lm0 borked } #endif break; } default: reglist&=0x100f; c2op_prologue(c2op,reglist); emit_movimm(source[i],1); // opcode emit_writeword(1,(int)&psxRegs.code); emit_call((int)(need_flags?gte_handlers[c2op]:gte_handlers_nf[c2op])); break; } c2op_epilogue(c2op,reglist); } } void cop1_unusable(int i,struct regstat *i_regs) { // XXX: should just just do the exception instead if(!cop1_usable) { int jaddr=(int)out; emit_jmp(0); add_stub(FP_STUB,jaddr,(int)out,i,0,(int)i_regs,is_delayslot,0); cop1_usable=1; } } void cop1_assemble(int i,struct regstat *i_regs) { #ifndef DISABLE_COP1 // Check cop1 unusable if(!cop1_usable) { signed char rs=get_reg(i_regs->regmap,CSREG); assert(rs>=0); emit_testimm(rs,0x20000000); int jaddr=(int)out; emit_jeq(0); add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0); cop1_usable=1; } if (opcode2[i]==0) { // MFC1 signed char tl=get_reg(i_regs->regmap,rt1[i]); if(tl>=0) { emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],tl); emit_readword_indexed(0,tl,tl); } } else if (opcode2[i]==1) { // DMFC1 signed char tl=get_reg(i_regs->regmap,rt1[i]); signed char th=get_reg(i_regs->regmap,rt1[i]|64); if(tl>=0) { emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],tl); if(th>=0) emit_readword_indexed(4,tl,th); emit_readword_indexed(0,tl,tl); } } else if (opcode2[i]==4) { // MTC1 signed char sl=get_reg(i_regs->regmap,rs1[i]); signed char temp=get_reg(i_regs->regmap,-1); emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],temp); emit_writeword_indexed(sl,0,temp); } else if (opcode2[i]==5) { // DMTC1 signed char sl=get_reg(i_regs->regmap,rs1[i]); signed char sh=rs1[i]>0?get_reg(i_regs->regmap,rs1[i]|64):sl; signed char temp=get_reg(i_regs->regmap,-1); emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],temp); emit_writeword_indexed(sh,4,temp); emit_writeword_indexed(sl,0,temp); } else if (opcode2[i]==2) // CFC1 { signed char tl=get_reg(i_regs->regmap,rt1[i]); if(tl>=0) { u_int copr=(source[i]>>11)&0x1f; if(copr==0) emit_readword((int)&FCR0,tl); if(copr==31) emit_readword((int)&FCR31,tl); } } else if (opcode2[i]==6) // CTC1 { signed char sl=get_reg(i_regs->regmap,rs1[i]); u_int copr=(source[i]>>11)&0x1f; assert(sl>=0); if(copr==31) { emit_writeword(sl,(int)&FCR31); // Set the rounding mode //FIXME //char temp=get_reg(i_regs->regmap,-1); //emit_andimm(sl,3,temp); //emit_fldcw_indexed((int)&rounding_modes,temp); } } #else cop1_unusable(i, i_regs); #endif } void fconv_assemble_arm(int i,struct regstat *i_regs) { #ifndef DISABLE_COP1 signed char temp=get_reg(i_regs->regmap,-1); assert(temp>=0); // Check cop1 unusable if(!cop1_usable) { signed char rs=get_reg(i_regs->regmap,CSREG); assert(rs>=0); emit_testimm(rs,0x20000000); int jaddr=(int)out; emit_jeq(0); add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0); cop1_usable=1; } #if(defined(__VFP_FP__) && !defined(__SOFTFP__)) if(opcode2[i]==0x10&&(source[i]&0x3f)==0x0d) { // trunc_w_s emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],temp); emit_flds(temp,15); emit_ftosizs(15,15); // float->int, truncate if(((source[i]>>11)&0x1f)!=((source[i]>>6)&0x1f)) emit_readword((int)®_cop1_simple[(source[i]>>6)&0x1f],temp); emit_fsts(15,temp); return; } if(opcode2[i]==0x11&&(source[i]&0x3f)==0x0d) { // trunc_w_d emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],temp); emit_vldr(temp,7); emit_ftosizd(7,13); // double->int, truncate emit_readword((int)®_cop1_simple[(source[i]>>6)&0x1f],temp); emit_fsts(13,temp); return; } if(opcode2[i]==0x14&&(source[i]&0x3f)==0x20) { // cvt_s_w emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],temp); emit_flds(temp,13); if(((source[i]>>11)&0x1f)!=((source[i]>>6)&0x1f)) emit_readword((int)®_cop1_simple[(source[i]>>6)&0x1f],temp); emit_fsitos(13,15); emit_fsts(15,temp); return; } if(opcode2[i]==0x14&&(source[i]&0x3f)==0x21) { // cvt_d_w emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],temp); emit_flds(temp,13); emit_readword((int)®_cop1_double[(source[i]>>6)&0x1f],temp); emit_fsitod(13,7); emit_vstr(7,temp); return; } if(opcode2[i]==0x10&&(source[i]&0x3f)==0x21) { // cvt_d_s emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],temp); emit_flds(temp,13); emit_readword((int)®_cop1_double[(source[i]>>6)&0x1f],temp); emit_fcvtds(13,7); emit_vstr(7,temp); return; } if(opcode2[i]==0x11&&(source[i]&0x3f)==0x20) { // cvt_s_d emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],temp); emit_vldr(temp,7); emit_readword((int)®_cop1_simple[(source[i]>>6)&0x1f],temp); emit_fcvtsd(7,13); emit_fsts(13,temp); return; } #endif // C emulation code u_int hr,reglist=0; for(hr=0;hrregmap[hr]>=0) reglist|=1<>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_simple[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)cvt_s_w); } if(opcode2[i]==0x14&&(source[i]&0x3f)==0x21) { emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_double[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)cvt_d_w); } if(opcode2[i]==0x15&&(source[i]&0x3f)==0x20) { emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_simple[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)cvt_s_l); } if(opcode2[i]==0x15&&(source[i]&0x3f)==0x21) { emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_double[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)cvt_d_l); } if(opcode2[i]==0x10&&(source[i]&0x3f)==0x21) { emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_double[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)cvt_d_s); } if(opcode2[i]==0x10&&(source[i]&0x3f)==0x24) { emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_simple[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)cvt_w_s); } if(opcode2[i]==0x10&&(source[i]&0x3f)==0x25) { emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_double[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)cvt_l_s); } if(opcode2[i]==0x11&&(source[i]&0x3f)==0x20) { emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_simple[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)cvt_s_d); } if(opcode2[i]==0x11&&(source[i]&0x3f)==0x24) { emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_simple[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)cvt_w_d); } if(opcode2[i]==0x11&&(source[i]&0x3f)==0x25) { emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_double[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)cvt_l_d); } if(opcode2[i]==0x10&&(source[i]&0x3f)==0x08) { emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_double[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)round_l_s); } if(opcode2[i]==0x10&&(source[i]&0x3f)==0x09) { emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_double[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)trunc_l_s); } if(opcode2[i]==0x10&&(source[i]&0x3f)==0x0a) { emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_double[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)ceil_l_s); } if(opcode2[i]==0x10&&(source[i]&0x3f)==0x0b) { emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_double[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)floor_l_s); } if(opcode2[i]==0x10&&(source[i]&0x3f)==0x0c) { emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_simple[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)round_w_s); } if(opcode2[i]==0x10&&(source[i]&0x3f)==0x0d) { emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_simple[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)trunc_w_s); } if(opcode2[i]==0x10&&(source[i]&0x3f)==0x0e) { emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_simple[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)ceil_w_s); } if(opcode2[i]==0x10&&(source[i]&0x3f)==0x0f) { emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_simple[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)floor_w_s); } if(opcode2[i]==0x11&&(source[i]&0x3f)==0x08) { emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_double[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)round_l_d); } if(opcode2[i]==0x11&&(source[i]&0x3f)==0x09) { emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_double[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)trunc_l_d); } if(opcode2[i]==0x11&&(source[i]&0x3f)==0x0a) { emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_double[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)ceil_l_d); } if(opcode2[i]==0x11&&(source[i]&0x3f)==0x0b) { emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_double[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)floor_l_d); } if(opcode2[i]==0x11&&(source[i]&0x3f)==0x0c) { emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_simple[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)round_w_d); } if(opcode2[i]==0x11&&(source[i]&0x3f)==0x0d) { emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_simple[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)trunc_w_d); } if(opcode2[i]==0x11&&(source[i]&0x3f)==0x0e) { emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_simple[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)ceil_w_d); } if(opcode2[i]==0x11&&(source[i]&0x3f)==0x0f) { emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_simple[(source[i]>> 6)&0x1f],ARG2_REG); emit_call((int)floor_w_d); } restore_regs(reglist); #else cop1_unusable(i, i_regs); #endif } #define fconv_assemble fconv_assemble_arm void fcomp_assemble(int i,struct regstat *i_regs) { #ifndef DISABLE_COP1 signed char fs=get_reg(i_regs->regmap,FSREG); signed char temp=get_reg(i_regs->regmap,-1); assert(temp>=0); // Check cop1 unusable if(!cop1_usable) { signed char cs=get_reg(i_regs->regmap,CSREG); assert(cs>=0); emit_testimm(cs,0x20000000); int jaddr=(int)out; emit_jeq(0); add_stub(FP_STUB,jaddr,(int)out,i,cs,(int)i_regs,is_delayslot,0); cop1_usable=1; } if((source[i]&0x3f)==0x30) { emit_andimm(fs,~0x800000,fs); return; } if((source[i]&0x3e)==0x38) { // sf/ngle - these should throw exceptions for NaNs emit_andimm(fs,~0x800000,fs); return; } #if(defined(__VFP_FP__) && !defined(__SOFTFP__)) if(opcode2[i]==0x10) { emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],temp); emit_readword((int)®_cop1_simple[(source[i]>>16)&0x1f],HOST_TEMPREG); emit_orimm(fs,0x800000,fs); emit_flds(temp,14); emit_flds(HOST_TEMPREG,15); emit_fcmps(14,15); emit_fmstat(); if((source[i]&0x3f)==0x31) emit_bicvc_imm(fs,0x800000,fs); // c_un_s if((source[i]&0x3f)==0x32) emit_bicne_imm(fs,0x800000,fs); // c_eq_s if((source[i]&0x3f)==0x33) {emit_bicne_imm(fs,0x800000,fs);emit_orrvs_imm(fs,0x800000,fs);} // c_ueq_s if((source[i]&0x3f)==0x34) emit_biccs_imm(fs,0x800000,fs); // c_olt_s if((source[i]&0x3f)==0x35) {emit_biccs_imm(fs,0x800000,fs);emit_orrvs_imm(fs,0x800000,fs);} // c_ult_s if((source[i]&0x3f)==0x36) emit_bichi_imm(fs,0x800000,fs); // c_ole_s if((source[i]&0x3f)==0x37) {emit_bichi_imm(fs,0x800000,fs);emit_orrvs_imm(fs,0x800000,fs);} // c_ule_s if((source[i]&0x3f)==0x3a) emit_bicne_imm(fs,0x800000,fs); // c_seq_s if((source[i]&0x3f)==0x3b) emit_bicne_imm(fs,0x800000,fs); // c_ngl_s if((source[i]&0x3f)==0x3c) emit_biccs_imm(fs,0x800000,fs); // c_lt_s if((source[i]&0x3f)==0x3d) emit_biccs_imm(fs,0x800000,fs); // c_nge_s if((source[i]&0x3f)==0x3e) emit_bichi_imm(fs,0x800000,fs); // c_le_s if((source[i]&0x3f)==0x3f) emit_bichi_imm(fs,0x800000,fs); // c_ngt_s return; } if(opcode2[i]==0x11) { emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],temp); emit_readword((int)®_cop1_double[(source[i]>>16)&0x1f],HOST_TEMPREG); emit_orimm(fs,0x800000,fs); emit_vldr(temp,6); emit_vldr(HOST_TEMPREG,7); emit_fcmpd(6,7); emit_fmstat(); if((source[i]&0x3f)==0x31) emit_bicvc_imm(fs,0x800000,fs); // c_un_d if((source[i]&0x3f)==0x32) emit_bicne_imm(fs,0x800000,fs); // c_eq_d if((source[i]&0x3f)==0x33) {emit_bicne_imm(fs,0x800000,fs);emit_orrvs_imm(fs,0x800000,fs);} // c_ueq_d if((source[i]&0x3f)==0x34) emit_biccs_imm(fs,0x800000,fs); // c_olt_d if((source[i]&0x3f)==0x35) {emit_biccs_imm(fs,0x800000,fs);emit_orrvs_imm(fs,0x800000,fs);} // c_ult_d if((source[i]&0x3f)==0x36) emit_bichi_imm(fs,0x800000,fs); // c_ole_d if((source[i]&0x3f)==0x37) {emit_bichi_imm(fs,0x800000,fs);emit_orrvs_imm(fs,0x800000,fs);} // c_ule_d if((source[i]&0x3f)==0x3a) emit_bicne_imm(fs,0x800000,fs); // c_seq_d if((source[i]&0x3f)==0x3b) emit_bicne_imm(fs,0x800000,fs); // c_ngl_d if((source[i]&0x3f)==0x3c) emit_biccs_imm(fs,0x800000,fs); // c_lt_d if((source[i]&0x3f)==0x3d) emit_biccs_imm(fs,0x800000,fs); // c_nge_d if((source[i]&0x3f)==0x3e) emit_bichi_imm(fs,0x800000,fs); // c_le_d if((source[i]&0x3f)==0x3f) emit_bichi_imm(fs,0x800000,fs); // c_ngt_d return; } #endif // C only u_int hr,reglist=0; for(hr=0;hrregmap[hr]>=0) reglist|=1<>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_simple[(source[i]>>16)&0x1f],ARG2_REG); if((source[i]&0x3f)==0x30) emit_call((int)c_f_s); if((source[i]&0x3f)==0x31) emit_call((int)c_un_s); if((source[i]&0x3f)==0x32) emit_call((int)c_eq_s); if((source[i]&0x3f)==0x33) emit_call((int)c_ueq_s); if((source[i]&0x3f)==0x34) emit_call((int)c_olt_s); if((source[i]&0x3f)==0x35) emit_call((int)c_ult_s); if((source[i]&0x3f)==0x36) emit_call((int)c_ole_s); if((source[i]&0x3f)==0x37) emit_call((int)c_ule_s); if((source[i]&0x3f)==0x38) emit_call((int)c_sf_s); if((source[i]&0x3f)==0x39) emit_call((int)c_ngle_s); if((source[i]&0x3f)==0x3a) emit_call((int)c_seq_s); if((source[i]&0x3f)==0x3b) emit_call((int)c_ngl_s); if((source[i]&0x3f)==0x3c) emit_call((int)c_lt_s); if((source[i]&0x3f)==0x3d) emit_call((int)c_nge_s); if((source[i]&0x3f)==0x3e) emit_call((int)c_le_s); if((source[i]&0x3f)==0x3f) emit_call((int)c_ngt_s); } if(opcode2[i]==0x11) { emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],ARG1_REG); emit_readword((int)®_cop1_double[(source[i]>>16)&0x1f],ARG2_REG); if((source[i]&0x3f)==0x30) emit_call((int)c_f_d); if((source[i]&0x3f)==0x31) emit_call((int)c_un_d); if((source[i]&0x3f)==0x32) emit_call((int)c_eq_d); if((source[i]&0x3f)==0x33) emit_call((int)c_ueq_d); if((source[i]&0x3f)==0x34) emit_call((int)c_olt_d); if((source[i]&0x3f)==0x35) emit_call((int)c_ult_d); if((source[i]&0x3f)==0x36) emit_call((int)c_ole_d); if((source[i]&0x3f)==0x37) emit_call((int)c_ule_d); if((source[i]&0x3f)==0x38) emit_call((int)c_sf_d); if((source[i]&0x3f)==0x39) emit_call((int)c_ngle_d); if((source[i]&0x3f)==0x3a) emit_call((int)c_seq_d); if((source[i]&0x3f)==0x3b) emit_call((int)c_ngl_d); if((source[i]&0x3f)==0x3c) emit_call((int)c_lt_d); if((source[i]&0x3f)==0x3d) emit_call((int)c_nge_d); if((source[i]&0x3f)==0x3e) emit_call((int)c_le_d); if((source[i]&0x3f)==0x3f) emit_call((int)c_ngt_d); } restore_regs(reglist); emit_loadreg(FSREG,fs); #else cop1_unusable(i, i_regs); #endif } void float_assemble(int i,struct regstat *i_regs) { #ifndef DISABLE_COP1 signed char temp=get_reg(i_regs->regmap,-1); assert(temp>=0); // Check cop1 unusable if(!cop1_usable) { signed char cs=get_reg(i_regs->regmap,CSREG); assert(cs>=0); emit_testimm(cs,0x20000000); int jaddr=(int)out; emit_jeq(0); add_stub(FP_STUB,jaddr,(int)out,i,cs,(int)i_regs,is_delayslot,0); cop1_usable=1; } #if(defined(__VFP_FP__) && !defined(__SOFTFP__)) if((source[i]&0x3f)==6) // mov { if(((source[i]>>11)&0x1f)!=((source[i]>>6)&0x1f)) { if(opcode2[i]==0x10) { emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],temp); emit_readword((int)®_cop1_simple[(source[i]>>6)&0x1f],HOST_TEMPREG); emit_readword_indexed(0,temp,temp); emit_writeword_indexed(temp,0,HOST_TEMPREG); } if(opcode2[i]==0x11) { emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],temp); emit_readword((int)®_cop1_double[(source[i]>>6)&0x1f],HOST_TEMPREG); emit_vldr(temp,7); emit_vstr(7,HOST_TEMPREG); } } return; } if((source[i]&0x3f)>3) { if(opcode2[i]==0x10) { emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],temp); emit_flds(temp,15); if(((source[i]>>11)&0x1f)!=((source[i]>>6)&0x1f)) { emit_readword((int)®_cop1_simple[(source[i]>>6)&0x1f],temp); } if((source[i]&0x3f)==4) // sqrt emit_fsqrts(15,15); if((source[i]&0x3f)==5) // abs emit_fabss(15,15); if((source[i]&0x3f)==7) // neg emit_fnegs(15,15); emit_fsts(15,temp); } if(opcode2[i]==0x11) { emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],temp); emit_vldr(temp,7); if(((source[i]>>11)&0x1f)!=((source[i]>>6)&0x1f)) { emit_readword((int)®_cop1_double[(source[i]>>6)&0x1f],temp); } if((source[i]&0x3f)==4) // sqrt emit_fsqrtd(7,7); if((source[i]&0x3f)==5) // abs emit_fabsd(7,7); if((source[i]&0x3f)==7) // neg emit_fnegd(7,7); emit_vstr(7,temp); } return; } if((source[i]&0x3f)<4) { if(opcode2[i]==0x10) { emit_readword((int)®_cop1_simple[(source[i]>>11)&0x1f],temp); } if(opcode2[i]==0x11) { emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],temp); } if(((source[i]>>11)&0x1f)!=((source[i]>>16)&0x1f)) { if(opcode2[i]==0x10) { emit_readword((int)®_cop1_simple[(source[i]>>16)&0x1f],HOST_TEMPREG); emit_flds(temp,15); emit_flds(HOST_TEMPREG,13); if(((source[i]>>11)&0x1f)!=((source[i]>>6)&0x1f)) { if(((source[i]>>16)&0x1f)!=((source[i]>>6)&0x1f)) { emit_readword((int)®_cop1_simple[(source[i]>>6)&0x1f],temp); } } if((source[i]&0x3f)==0) emit_fadds(15,13,15); if((source[i]&0x3f)==1) emit_fsubs(15,13,15); if((source[i]&0x3f)==2) emit_fmuls(15,13,15); if((source[i]&0x3f)==3) emit_fdivs(15,13,15); if(((source[i]>>16)&0x1f)==((source[i]>>6)&0x1f)) { emit_fsts(15,HOST_TEMPREG); }else{ emit_fsts(15,temp); } } else if(opcode2[i]==0x11) { emit_readword((int)®_cop1_double[(source[i]>>16)&0x1f],HOST_TEMPREG); emit_vldr(temp,7); emit_vldr(HOST_TEMPREG,6); if(((source[i]>>11)&0x1f)!=((source[i]>>6)&0x1f)) { if(((source[i]>>16)&0x1f)!=((source[i]>>6)&0x1f)) { emit_readword((int)®_cop1_double[(source[i]>>6)&0x1f],temp); } } if((source[i]&0x3f)==0) emit_faddd(7,6,7); if((source[i]&0x3f)==1) emit_fsubd(7,6,7); if((source[i]&0x3f)==2) emit_fmuld(7,6,7); if((source[i]&0x3f)==3) emit_fdivd(7,6,7); if(((source[i]>>16)&0x1f)==((source[i]>>6)&0x1f)) { emit_vstr(7,HOST_TEMPREG); }else{ emit_vstr(7,temp); } } } else { if(opcode2[i]==0x10) { emit_flds(temp,15); if(((source[i]>>11)&0x1f)!=((source[i]>>6)&0x1f)) { emit_readword((int)®_cop1_simple[(source[i]>>6)&0x1f],temp); } if((source[i]&0x3f)==0) emit_fadds(15,15,15); if((source[i]&0x3f)==1) emit_fsubs(15,15,15); if((source[i]&0x3f)==2) emit_fmuls(15,15,15); if((source[i]&0x3f)==3) emit_fdivs(15,15,15); emit_fsts(15,temp); } else if(opcode2[i]==0x11) { emit_vldr(temp,7); if(((source[i]>>11)&0x1f)!=((source[i]>>6)&0x1f)) { emit_readword((int)®_cop1_double[(source[i]>>6)&0x1f],temp); } if((source[i]&0x3f)==0) emit_faddd(7,7,7); if((source[i]&0x3f)==1) emit_fsubd(7,7,7); if((source[i]&0x3f)==2) emit_fmuld(7,7,7); if((source[i]&0x3f)==3) emit_fdivd(7,7,7); emit_vstr(7,temp); } } return; } #endif u_int hr,reglist=0; for(hr=0;hrregmap[hr]>=0) reglist|=1<>11)&0x1f],ARG1_REG); if((source[i]&0x3f)<4) { emit_readword((int)®_cop1_simple[(source[i]>>16)&0x1f],ARG2_REG); emit_readword((int)®_cop1_simple[(source[i]>> 6)&0x1f],ARG3_REG); }else{ emit_readword((int)®_cop1_simple[(source[i]>> 6)&0x1f],ARG2_REG); } switch(source[i]&0x3f) { case 0x00: emit_call((int)add_s);break; case 0x01: emit_call((int)sub_s);break; case 0x02: emit_call((int)mul_s);break; case 0x03: emit_call((int)div_s);break; case 0x04: emit_call((int)sqrt_s);break; case 0x05: emit_call((int)abs_s);break; case 0x06: emit_call((int)mov_s);break; case 0x07: emit_call((int)neg_s);break; } restore_regs(reglist); } if(opcode2[i]==0x11) { // Double precision save_regs(reglist); emit_readword((int)®_cop1_double[(source[i]>>11)&0x1f],ARG1_REG); if((source[i]&0x3f)<4) { emit_readword((int)®_cop1_double[(source[i]>>16)&0x1f],ARG2_REG); emit_readword((int)®_cop1_double[(source[i]>> 6)&0x1f],ARG3_REG); }else{ emit_readword((int)®_cop1_double[(source[i]>> 6)&0x1f],ARG2_REG); } switch(source[i]&0x3f) { case 0x00: emit_call((int)add_d);break; case 0x01: emit_call((int)sub_d);break; case 0x02: emit_call((int)mul_d);break; case 0x03: emit_call((int)div_d);break; case 0x04: emit_call((int)sqrt_d);break; case 0x05: emit_call((int)abs_d);break; case 0x06: emit_call((int)mov_d);break; case 0x07: emit_call((int)neg_d);break; } restore_regs(reglist); } #else cop1_unusable(i, i_regs); #endif } void multdiv_assemble_arm(int i,struct regstat *i_regs) { // case 0x18: MULT // case 0x19: MULTU // case 0x1A: DIV // case 0x1B: DIVU // case 0x1C: DMULT // case 0x1D: DMULTU // case 0x1E: DDIV // case 0x1F: DDIVU if(rs1[i]&&rs2[i]) { if((opcode2[i]&4)==0) // 32-bit { if(opcode2[i]==0x18) // MULT { signed char m1=get_reg(i_regs->regmap,rs1[i]); signed char m2=get_reg(i_regs->regmap,rs2[i]); signed char hi=get_reg(i_regs->regmap,HIREG); signed char lo=get_reg(i_regs->regmap,LOREG); assert(m1>=0); assert(m2>=0); assert(hi>=0); assert(lo>=0); emit_smull(m1,m2,hi,lo); } if(opcode2[i]==0x19) // MULTU { signed char m1=get_reg(i_regs->regmap,rs1[i]); signed char m2=get_reg(i_regs->regmap,rs2[i]); signed char hi=get_reg(i_regs->regmap,HIREG); signed char lo=get_reg(i_regs->regmap,LOREG); assert(m1>=0); assert(m2>=0); assert(hi>=0); assert(lo>=0); emit_umull(m1,m2,hi,lo); } if(opcode2[i]==0x1A) // DIV { signed char d1=get_reg(i_regs->regmap,rs1[i]); signed char d2=get_reg(i_regs->regmap,rs2[i]); assert(d1>=0); assert(d2>=0); signed char quotient=get_reg(i_regs->regmap,LOREG); signed char remainder=get_reg(i_regs->regmap,HIREG); assert(quotient>=0); assert(remainder>=0); emit_movs(d1,remainder); emit_movimm(0xffffffff,quotient); emit_negmi(quotient,quotient); // .. quotient and .. emit_negmi(remainder,remainder); // .. remainder for div0 case (will be negated back after jump) emit_movs(d2,HOST_TEMPREG); emit_jeq((int)out+52); // Division by zero emit_negmi(HOST_TEMPREG,HOST_TEMPREG); emit_clz(HOST_TEMPREG,quotient); emit_shl(HOST_TEMPREG,quotient,HOST_TEMPREG); emit_orimm(quotient,1<<31,quotient); emit_shr(quotient,quotient,quotient); emit_cmp(remainder,HOST_TEMPREG); emit_subcs(remainder,HOST_TEMPREG,remainder); emit_adcs(quotient,quotient,quotient); emit_shrimm(HOST_TEMPREG,1,HOST_TEMPREG); emit_jcc((int)out-16); // -4 emit_teq(d1,d2); emit_negmi(quotient,quotient); emit_test(d1,d1); emit_negmi(remainder,remainder); } if(opcode2[i]==0x1B) // DIVU { signed char d1=get_reg(i_regs->regmap,rs1[i]); // dividend signed char d2=get_reg(i_regs->regmap,rs2[i]); // divisor assert(d1>=0); assert(d2>=0); signed char quotient=get_reg(i_regs->regmap,LOREG); signed char remainder=get_reg(i_regs->regmap,HIREG); assert(quotient>=0); assert(remainder>=0); emit_mov(d1,remainder); emit_movimm(0xffffffff,quotient); // div0 case emit_test(d2,d2); emit_jeq((int)out+40); // Division by zero emit_clz(d2,HOST_TEMPREG); emit_movimm(1<<31,quotient); emit_shl(d2,HOST_TEMPREG,d2); emit_shr(quotient,HOST_TEMPREG,quotient); emit_cmp(remainder,d2); emit_subcs(remainder,d2,remainder); emit_adcs(quotient,quotient,quotient); emit_shrcc_imm(d2,1,d2); emit_jcc((int)out-16); // -4 } } else // 64-bit #ifndef FORCE32 { if(opcode2[i]==0x1C) // DMULT { assert(opcode2[i]!=0x1C); signed char m1h=get_reg(i_regs->regmap,rs1[i]|64); signed char m1l=get_reg(i_regs->regmap,rs1[i]); signed char m2h=get_reg(i_regs->regmap,rs2[i]|64); signed char m2l=get_reg(i_regs->regmap,rs2[i]); assert(m1h>=0); assert(m2h>=0); assert(m1l>=0); assert(m2l>=0); emit_pushreg(m2h); emit_pushreg(m2l); emit_pushreg(m1h); emit_pushreg(m1l); emit_call((int)&mult64); emit_popreg(m1l); emit_popreg(m1h); emit_popreg(m2l); emit_popreg(m2h); signed char hih=get_reg(i_regs->regmap,HIREG|64); signed char hil=get_reg(i_regs->regmap,HIREG); if(hih>=0) emit_loadreg(HIREG|64,hih); if(hil>=0) emit_loadreg(HIREG,hil); signed char loh=get_reg(i_regs->regmap,LOREG|64); signed char lol=get_reg(i_regs->regmap,LOREG); if(loh>=0) emit_loadreg(LOREG|64,loh); if(lol>=0) emit_loadreg(LOREG,lol); } if(opcode2[i]==0x1D) // DMULTU { signed char m1h=get_reg(i_regs->regmap,rs1[i]|64); signed char m1l=get_reg(i_regs->regmap,rs1[i]); signed char m2h=get_reg(i_regs->regmap,rs2[i]|64); signed char m2l=get_reg(i_regs->regmap,rs2[i]); assert(m1h>=0); assert(m2h>=0); assert(m1l>=0); assert(m2l>=0); save_regs(0x100f); if(m1l!=0) emit_mov(m1l,0); if(m1h==0) emit_readword((int)&dynarec_local,1); else if(m1h>1) emit_mov(m1h,1); if(m2l<2) emit_readword((int)&dynarec_local+m2l*4,2); else if(m2l>2) emit_mov(m2l,2); if(m2h<3) emit_readword((int)&dynarec_local+m2h*4,3); else if(m2h>3) emit_mov(m2h,3); emit_call((int)&multu64); restore_regs(0x100f); signed char hih=get_reg(i_regs->regmap,HIREG|64); signed char hil=get_reg(i_regs->regmap,HIREG); signed char loh=get_reg(i_regs->regmap,LOREG|64); signed char lol=get_reg(i_regs->regmap,LOREG); /*signed char temp=get_reg(i_regs->regmap,-1); signed char rh=get_reg(i_regs->regmap,HIREG|64); signed char rl=get_reg(i_regs->regmap,HIREG); assert(m1h>=0); assert(m2h>=0); assert(m1l>=0); assert(m2l>=0); assert(temp>=0); //emit_mov(m1l,EAX); //emit_mul(m2l); emit_umull(rl,rh,m1l,m2l); emit_storereg(LOREG,rl); emit_mov(rh,temp); //emit_mov(m1h,EAX); //emit_mul(m2l); emit_umull(rl,rh,m1h,m2l); emit_adds(rl,temp,temp); emit_adcimm(rh,0,rh); emit_storereg(HIREG,rh); //emit_mov(m2h,EAX); //emit_mul(m1l); emit_umull(rl,rh,m1l,m2h); emit_adds(rl,temp,temp); emit_adcimm(rh,0,rh); emit_storereg(LOREG|64,temp); emit_mov(rh,temp); //emit_mov(m2h,EAX); //emit_mul(m1h); emit_umull(rl,rh,m1h,m2h); emit_adds(rl,temp,rl); emit_loadreg(HIREG,temp); emit_adcimm(rh,0,rh); emit_adds(rl,temp,rl); emit_adcimm(rh,0,rh); // DEBUG /* emit_pushreg(m2h); emit_pushreg(m2l); emit_pushreg(m1h); emit_pushreg(m1l); emit_call((int)&multu64); emit_popreg(m1l); emit_popreg(m1h); emit_popreg(m2l); emit_popreg(m2h); signed char hih=get_reg(i_regs->regmap,HIREG|64); signed char hil=get_reg(i_regs->regmap,HIREG); if(hih>=0) emit_loadreg(HIREG|64,hih); // DEBUG if(hil>=0) emit_loadreg(HIREG,hil); // DEBUG */ // Shouldn't be necessary //char loh=get_reg(i_regs->regmap,LOREG|64); //char lol=get_reg(i_regs->regmap,LOREG); //if(loh>=0) emit_loadreg(LOREG|64,loh); //if(lol>=0) emit_loadreg(LOREG,lol); } if(opcode2[i]==0x1E) // DDIV { signed char d1h=get_reg(i_regs->regmap,rs1[i]|64); signed char d1l=get_reg(i_regs->regmap,rs1[i]); signed char d2h=get_reg(i_regs->regmap,rs2[i]|64); signed char d2l=get_reg(i_regs->regmap,rs2[i]); assert(d1h>=0); assert(d2h>=0); assert(d1l>=0); assert(d2l>=0); save_regs(0x100f); if(d1l!=0) emit_mov(d1l,0); if(d1h==0) emit_readword((int)&dynarec_local,1); else if(d1h>1) emit_mov(d1h,1); if(d2l<2) emit_readword((int)&dynarec_local+d2l*4,2); else if(d2l>2) emit_mov(d2l,2); if(d2h<3) emit_readword((int)&dynarec_local+d2h*4,3); else if(d2h>3) emit_mov(d2h,3); emit_call((int)&div64); restore_regs(0x100f); signed char hih=get_reg(i_regs->regmap,HIREG|64); signed char hil=get_reg(i_regs->regmap,HIREG); signed char loh=get_reg(i_regs->regmap,LOREG|64); signed char lol=get_reg(i_regs->regmap,LOREG); if(hih>=0) emit_loadreg(HIREG|64,hih); if(hil>=0) emit_loadreg(HIREG,hil); if(loh>=0) emit_loadreg(LOREG|64,loh); if(lol>=0) emit_loadreg(LOREG,lol); } if(opcode2[i]==0x1F) // DDIVU { //u_int hr,reglist=0; //for(hr=0;hrregmap[hr]>=0 && (i_regs->regmap[hr]&62)!=HIREG) reglist|=1<regmap,rs1[i]|64); signed char d1l=get_reg(i_regs->regmap,rs1[i]); signed char d2h=get_reg(i_regs->regmap,rs2[i]|64); signed char d2l=get_reg(i_regs->regmap,rs2[i]); assert(d1h>=0); assert(d2h>=0); assert(d1l>=0); assert(d2l>=0); save_regs(0x100f); if(d1l!=0) emit_mov(d1l,0); if(d1h==0) emit_readword((int)&dynarec_local,1); else if(d1h>1) emit_mov(d1h,1); if(d2l<2) emit_readword((int)&dynarec_local+d2l*4,2); else if(d2l>2) emit_mov(d2l,2); if(d2h<3) emit_readword((int)&dynarec_local+d2h*4,3); else if(d2h>3) emit_mov(d2h,3); emit_call((int)&divu64); restore_regs(0x100f); signed char hih=get_reg(i_regs->regmap,HIREG|64); signed char hil=get_reg(i_regs->regmap,HIREG); signed char loh=get_reg(i_regs->regmap,LOREG|64); signed char lol=get_reg(i_regs->regmap,LOREG); if(hih>=0) emit_loadreg(HIREG|64,hih); if(hil>=0) emit_loadreg(HIREG,hil); if(loh>=0) emit_loadreg(LOREG|64,loh); if(lol>=0) emit_loadreg(LOREG,lol); } } #else assert(0); #endif } else { // Multiply by zero is zero. // MIPS does not have a divide by zero exception. // The result is undefined, we return zero. signed char hr=get_reg(i_regs->regmap,HIREG); signed char lr=get_reg(i_regs->regmap,LOREG); if(hr>=0) emit_zeroreg(hr); if(lr>=0) emit_zeroreg(lr); } } #define multdiv_assemble multdiv_assemble_arm void do_preload_rhash(int r) { // Don't need this for ARM. On x86, this puts the value 0xf8 into the // register. On ARM the hash can be done with a single instruction (below) } void do_preload_rhtbl(int ht) { emit_addimm(FP,(int)&mini_ht-(int)&dynarec_local,ht); } void do_rhash(int rs,int rh) { emit_andimm(rs,0xf8,rh); } void do_miniht_load(int ht,int rh) { assem_debug("ldr %s,[%s,%s]!\n",regname[rh],regname[ht],regname[rh]); output_w32(0xe7b00000|rd_rn_rm(rh,ht,rh)); } void do_miniht_jump(int rs,int rh,int ht) { emit_cmp(rh,rs); emit_ldreq_indexed(ht,4,15); #ifdef CORTEX_A8_BRANCH_PREDICTION_HACK emit_mov(rs,7); emit_jmp(jump_vaddr_reg[7]); #else emit_jmp(jump_vaddr_reg[rs]); #endif } void do_miniht_insert(u_int return_address,int rt,int temp) { #ifdef ARMv5_ONLY emit_movimm(return_address,rt); // PC into link register add_to_linker((int)out,return_address,1); emit_pcreladdr(temp); emit_writeword(rt,(int)&mini_ht[(return_address&0xFF)>>3][0]); emit_writeword(temp,(int)&mini_ht[(return_address&0xFF)>>3][1]); #else emit_movw(return_address&0x0000FFFF,rt); add_to_linker((int)out,return_address,1); emit_pcreladdr(temp); emit_writeword(temp,(int)&mini_ht[(return_address&0xFF)>>3][1]); emit_movt(return_address&0xFFFF0000,rt); emit_writeword(rt,(int)&mini_ht[(return_address&0xFF)>>3][0]); #endif } // Sign-extend to 64 bits and write out upper half of a register // This is useful where we have a 32-bit value in a register, and want to // keep it in a 32-bit register, but can't guarantee that it won't be read // as a 64-bit value later. void wb_sx(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32_pre,uint64_t is32,uint64_t u,uint64_t uu) { #ifndef FORCE32 if(is32_pre==is32) return; int hr,reg; for(hr=0;hr=0) { if((dirty>>hr)&1) { if( ((is32_pre&~is32&~uu)>>reg)&1 ) { emit_sarimm(hr,31,HOST_TEMPREG); emit_storereg(reg|64,HOST_TEMPREG); } } } //} } } #endif } void wb_valid(signed char pre[],signed char entry[],u_int dirty_pre,u_int dirty,uint64_t is32_pre,uint64_t u,uint64_t uu) { //if(dirty_pre==dirty) return; int hr,reg,new_hr; for(hr=0;hr>(reg&63))&1) { if(reg>0) { if(((dirty_pre&~dirty)>>hr)&1) { if(reg>0&®<34) { emit_storereg(reg,hr); if( ((is32_pre&~uu)>>reg)&1 ) { emit_sarimm(hr,31,HOST_TEMPREG); emit_storereg(reg|64,HOST_TEMPREG); } } else if(reg>=64) { emit_storereg(reg,hr); } } } } } } } /* using strd could possibly help but you'd have to allocate registers in pairs void wb_invalidate_arm(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,uint64_t u,uint64_t uu) { int hr; int wrote=-1; for(hr=HOST_REGS-1;hr>=0;hr--) { if(hr!=EXCLUDE_REG) { if(pre[hr]!=entry[hr]) { if(pre[hr]>=0) { if((dirty>>hr)&1) { if(get_reg(entry,pre[hr])<0) { if(pre[hr]<64) { if(!((u>>pre[hr])&1)) { if(hr<10&&(~hr&1)&&(pre[hr+1]<0||wrote==hr+1)) { if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) { emit_sarimm(hr,31,hr+1); emit_strdreg(pre[hr],hr); } else emit_storereg(pre[hr],hr); }else{ emit_storereg(pre[hr],hr); if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) { emit_sarimm(hr,31,hr); emit_storereg(pre[hr]|64,hr); } } } }else{ if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) { emit_storereg(pre[hr],hr); } } wrote=hr; } } } } } } for(hr=0;hr=0) { int nr; if((nr=get_reg(entry,pre[hr]))>=0) { emit_mov(hr,nr); } } } } } } #define wb_invalidate wb_invalidate_arm */ // Clearing the cache is rather slow on ARM Linux, so mark the areas // that need to be cleared, and then only clear these areas once. void do_clear_cache() { int i,j; for (i=0;i<(1<<(TARGET_SIZE_2-17));i++) { u_int bitmap=needs_clear_cache[i]; if(bitmap) { u_int start,end; for(j=0;j<32;j++) { if(bitmap&(1<