/*************************************************************************** spu.c - description ------------------- begin : Wed May 15 2002 copyright : (C) 2002 by Pete Bernert email : BlackDove@addcom.de Portions (C) GraÅžvydas "notaz" Ignotas, 2010-2012,2014,2015 ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. See also the license.txt file for * * additional informations. * * * ***************************************************************************/ #if !defined(_WIN32) && !defined(NO_OS) #include // gettimeofday in xa.c #define THREAD_ENABLED 1 #endif #include "stdafx.h" #define _IN_SPU #include "externals.h" #include "registers.h" #include "out.h" #include "spu_config.h" #ifdef __arm__ #include "arm_features.h" #endif #ifdef HAVE_ARMV7 #define ssat32_to_16(v) \ asm("ssat %0,#16,%1" : "=r" (v) : "r" (v)) #else #define ssat32_to_16(v) do { \ if (v < -32768) v = -32768; \ else if (v > 32767) v = 32767; \ } while (0) #endif #define PSXCLK 33868800 /* 33.8688 MHz */ // intended to be ~1 frame #define IRQ_NEAR_BLOCKS 32 /* #if defined (USEMACOSX) static char * libraryName = N_("Mac OS X Sound"); #elif defined (USEALSA) static char * libraryName = N_("ALSA Sound"); #elif defined (USEOSS) static char * libraryName = N_("OSS Sound"); #elif defined (USESDL) static char * libraryName = N_("SDL Sound"); #elif defined (USEPULSEAUDIO) static char * libraryName = N_("PulseAudio Sound"); #else static char * libraryName = N_("NULL Sound"); #endif static char * libraryInfo = N_("P.E.Op.S. Sound Driver V1.7\nCoded by Pete Bernert and the P.E.Op.S. team\n"); */ // globals SPUInfo spu; SPUConfig spu_config; static int iFMod[NSSIZE]; static int RVB[NSSIZE * 2]; int ChanBuf[NSSIZE]; #define CDDA_BUFFER_SIZE (16384 * sizeof(uint32_t)) // must be power of 2 //////////////////////////////////////////////////////////////////////// // CODE AREA //////////////////////////////////////////////////////////////////////// // dirty inline func includes #include "reverb.c" #include "adsr.c" //////////////////////////////////////////////////////////////////////// // helpers for simple interpolation // // easy interpolation on upsampling, no special filter, just "Pete's common sense" tm // // instead of having n equal sample values in a row like: // ____ // |____ // // we compare the current delta change with the next delta change. // // if curr_delta is positive, // // - and next delta is smaller (or changing direction): // \. // -__ // // - and next delta significant (at least twice) bigger: // --_ // \. // // - and next delta is nearly same: // \. // \. // // // if curr_delta is negative, // // - and next delta is smaller (or changing direction): // _-- // / // // - and next delta significant (at least twice) bigger: // / // __- // // - and next delta is nearly same: // / // / // static void InterpolateUp(int *SB, int sinc) { if(SB[32]==1) // flag == 1? calc step and set flag... and don't change the value in this pass { const int id1=SB[30]-SB[29]; // curr delta to next val const int id2=SB[31]-SB[30]; // and next delta to next-next val :) SB[32]=0; if(id1>0) // curr delta positive { if(id2>16; else SB[28]=(id1*sinc)>>17; } else // curr delta negative { if(id2>id1) {SB[28]=id1;SB[32]=2;} else if(id2>(id1<<1)) SB[28]=(id1*sinc)>>16; else SB[28]=(id1*sinc)>>17; } } else if(SB[32]==2) // flag 1: calc step and set flag... and don't change the value in this pass { SB[32]=0; SB[28]=(SB[28]*sinc)>>17; //if(sinc<=0x8000) // SB[29]=SB[30]-(SB[28]*((0x10000/sinc)-1)); //else SB[29]+=SB[28]; } else // no flags? add bigger val (if possible), calc smaller step, set flag1 SB[29]+=SB[28]; } // // even easier interpolation on downsampling, also no special filter, again just "Pete's common sense" tm // static void InterpolateDown(int *SB, int sinc) { if(sinc>=0x20000L) // we would skip at least one val? { SB[29]+=(SB[30]-SB[29])/2; // add easy weight if(sinc>=0x30000L) // we would skip even more vals? SB[29]+=(SB[31]-SB[30])/2; // add additional next weight } } //////////////////////////////////////////////////////////////////////// // helpers for gauss interpolation #define gval0 (((short*)(&SB[29]))[gpos&3]) #define gval(x) ((int)((short*)(&SB[29]))[(gpos+x)&3]) #include "gauss_i.h" //////////////////////////////////////////////////////////////////////// #include "xa.c" static void do_irq(void) { //if(!(spu.spuStat & STAT_IRQ)) { spu.spuStat |= STAT_IRQ; // asserted status? if(spu.irqCallback) spu.irqCallback(); } } static int check_irq(int ch, unsigned char *pos) { if((spu.spuCtrl & CTRL_IRQ) && pos == spu.pSpuIrq) { //printf("ch%d irq %04x\n", ch, pos - spu.spuMemC); do_irq(); return 1; } return 0; } //////////////////////////////////////////////////////////////////////// // START SOUND... called by main thread to setup a new sound on a channel //////////////////////////////////////////////////////////////////////// static void StartSoundSB(int *SB) { SB[26]=0; // init mixing vars SB[27]=0; SB[28]=0; SB[29]=0; // init our interpolation helpers SB[30]=0; SB[31]=0; } static void StartSoundMain(int ch) { SPUCHAN *s_chan = &spu.s_chan[ch]; StartADSR(ch); StartREVERB(ch); s_chan->prevflags=2; s_chan->iSBPos=27; s_chan->spos=0; spu.dwNewChannel&=~(1<>15; if(NP>0x3fff) NP=0x3fff; if(NP<0x1) NP=0x1; sinc=NP<<4; // calc frequency if(spu_config.iUseInterpolation==1) // freq change in simple interpolation mode SB[32]=1; iFMod[ns]=0; return sinc; } //////////////////////////////////////////////////////////////////////// INLINE void StoreInterpolationVal(int *SB, int sinc, int fa, int fmod_freq) { if(fmod_freq) // fmod freq channel SB[29]=fa; else { ssat32_to_16(fa); if(spu_config.iUseInterpolation>=2) // gauss/cubic interpolation { int gpos = SB[28]; gval0 = fa; gpos = (gpos+1) & 3; SB[28] = gpos; } else if(spu_config.iUseInterpolation==1) // simple interpolation { SB[28] = 0; SB[29] = SB[30]; // -> helpers for simple linear interpolation: delay real val for two slots, and calc the two deltas, for a 'look at the future behaviour' SB[30] = SB[31]; SB[31] = fa; SB[32] = 1; // -> flag: calc new interolation } else SB[29]=fa; // no interpolation } } //////////////////////////////////////////////////////////////////////// INLINE int iGetInterpolationVal(int *SB, int sinc, int spos, int fmod_freq) { int fa; if(fmod_freq) return SB[29]; switch(spu_config.iUseInterpolation) { //--------------------------------------------------// case 3: // cubic interpolation { long xd;int gpos; xd = (spos >> 1)+1; gpos = SB[28]; fa = gval(3) - 3*gval(2) + 3*gval(1) - gval0; fa *= (xd - (2<<15)) / 6; fa >>= 15; fa += gval(2) - gval(1) - gval(1) + gval0; fa *= (xd - (1<<15)) >> 1; fa >>= 15; fa += gval(1) - gval0; fa *= xd; fa >>= 15; fa = fa + gval0; } break; //--------------------------------------------------// case 2: // gauss interpolation { int vl, vr;int gpos; vl = (spos >> 6) & ~3; gpos = SB[28]; vr=(gauss[vl]*(int)gval0) >> 15; vr+=(gauss[vl+1]*gval(1)) >> 15; vr+=(gauss[vl+2]*gval(2)) >> 15; vr+=(gauss[vl+3]*gval(3)) >> 15; fa = vr; } break; //--------------------------------------------------// case 1: // simple interpolation { if(sinc<0x10000L) // -> upsampling? InterpolateUp(SB, sinc); // --> interpolate up else InterpolateDown(SB, sinc); // --> else down fa=SB[29]; } break; //--------------------------------------------------// default: // no interpolation { fa=SB[29]; } break; //--------------------------------------------------// } return fa; } static void decode_block_data(int *dest, const unsigned char *src, int predict_nr, int shift_factor) { static const int f[16][2] = { { 0, 0 }, { 60, 0 }, { 115, -52 }, { 98, -55 }, { 122, -60 } }; int nSample; int fa, s_1, s_2, d, s; s_1 = dest[27]; s_2 = dest[26]; for (nSample = 0; nSample < 28; src++) { d = (int)*src; s = (int)(signed short)((d & 0x0f) << 12); fa = s >> shift_factor; fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6); s_2=s_1;s_1=fa; dest[nSample++] = fa; s = (int)(signed short)((d & 0xf0) << 8); fa = s >> shift_factor; fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6); s_2=s_1;s_1=fa; dest[nSample++] = fa; } } static int decode_block(void *unused, int ch, int *SB) { SPUCHAN *s_chan = &spu.s_chan[ch]; unsigned char *start; int predict_nr, shift_factor, flags; int ret = 0; start = s_chan->pCurr; // set up the current pos if (start == spu.spuMemC) // ? ret = 1; if (s_chan->prevflags & 1) // 1: stop/loop { if (!(s_chan->prevflags & 2)) ret = 1; start = s_chan->pLoop; } else check_irq(ch, start); // hack, see check_irq below.. predict_nr = start[0]; shift_factor = predict_nr & 0xf; predict_nr >>= 4; decode_block_data(SB, start + 2, predict_nr, shift_factor); flags = start[1]; if (flags & 4) s_chan->pLoop = start; // loop adress start += 16; if (flags & 1) { // 1: stop/loop start = s_chan->pLoop; check_irq(ch, start); // hack.. :( } if (start - spu.spuMemC >= 0x80000) start = spu.spuMemC; s_chan->pCurr = start; // store values for next cycle s_chan->prevflags = flags; return ret; } // do block, but ignore sample data static int skip_block(int ch) { SPUCHAN *s_chan = &spu.s_chan[ch]; unsigned char *start = s_chan->pCurr; int flags; int ret = 0; if (s_chan->prevflags & 1) { if (!(s_chan->prevflags & 2)) ret = 1; start = s_chan->pLoop; } else check_irq(ch, start); flags = start[1]; if (flags & 4) s_chan->pLoop = start; start += 16; if (flags & 1) { start = s_chan->pLoop; check_irq(ch, start); } s_chan->pCurr = start; s_chan->prevflags = flags; return ret; } // if irq is going to trigger sooner than in upd_samples, set upd_samples static void scan_for_irq(int ch, unsigned int *upd_samples) { SPUCHAN *s_chan = &spu.s_chan[ch]; int pos, sinc, sinc_inv, end; unsigned char *block; int flags; block = s_chan->pCurr; pos = s_chan->spos; sinc = s_chan->sinc; end = pos + *upd_samples * sinc; pos += (28 - s_chan->iSBPos) << 16; while (pos < end) { if (block == spu.pSpuIrq) break; flags = block[1]; block += 16; if (flags & 1) { // 1: stop/loop block = s_chan->pLoop; if (block == spu.pSpuIrq) // hack.. (see decode_block) break; } pos += 28 << 16; } if (pos < end) { sinc_inv = s_chan->sinc_inv; if (sinc_inv == 0) sinc_inv = s_chan->sinc_inv = (0x80000000u / (uint32_t)sinc) << 1; pos -= s_chan->spos; *upd_samples = (((uint64_t)pos * sinc_inv) >> 32) + 1; //xprintf("ch%02d: irq sched: %3d %03d\n", // ch, *upd_samples, *upd_samples * 60 * 263 / 44100); } } #define make_do_samples(name, fmod_code, interp_start, interp1_code, interp2_code, interp_end) \ static noinline int do_samples_##name( \ int (*decode_f)(void *context, int ch, int *SB), void *ctx, \ int ch, int ns_to, int *SB, int sinc, int *spos, int *sbpos) \ { \ int ns, d, fa; \ int ret = ns_to; \ interp_start; \ \ for (ns = 0; ns < ns_to; ns++) \ { \ fmod_code; \ \ *spos += sinc; \ while (*spos >= 0x10000) \ { \ fa = SB[(*sbpos)++]; \ if (*sbpos >= 28) \ { \ *sbpos = 0; \ d = decode_f(ctx, ch, SB); \ if (d && ns < ret) \ ret = ns; \ } \ \ interp1_code; \ *spos -= 0x10000; \ } \ \ interp2_code; \ } \ \ interp_end; \ \ return ret; \ } #define fmod_recv_check \ if(spu.s_chan[ch].bFMod==1 && iFMod[ns]) \ sinc = FModChangeFrequency(SB, spu.s_chan[ch].iRawPitch, ns) make_do_samples(default, fmod_recv_check, , StoreInterpolationVal(SB, sinc, fa, spu.s_chan[ch].bFMod==2), ChanBuf[ns] = iGetInterpolationVal(SB, sinc, *spos, spu.s_chan[ch].bFMod==2), ) make_do_samples(noint, , fa = SB[29], , ChanBuf[ns] = fa, SB[29] = fa) #define simple_interp_store \ SB[28] = 0; \ SB[29] = SB[30]; \ SB[30] = SB[31]; \ SB[31] = fa; \ SB[32] = 1 #define simple_interp_get \ if(sinc<0x10000) /* -> upsampling? */ \ InterpolateUp(SB, sinc); /* --> interpolate up */ \ else InterpolateDown(SB, sinc); /* --> else down */ \ ChanBuf[ns] = SB[29] make_do_samples(simple, , , simple_interp_store, simple_interp_get, ) static int do_samples_skip(int ch, int ns_to) { SPUCHAN *s_chan = &spu.s_chan[ch]; int spos = s_chan->spos; int sinc = s_chan->sinc; int ret = ns_to, ns, d; spos += s_chan->iSBPos << 16; for (ns = 0; ns < ns_to; ns++) { spos += sinc; while (spos >= 28*0x10000) { d = skip_block(ch); if (d && ns < ret) ret = ns; spos -= 28*0x10000; } } s_chan->iSBPos = spos >> 16; s_chan->spos = spos & 0xffff; return ret; } static void do_lsfr_samples(int ns_to, int ctrl, unsigned int *dwNoiseCount, unsigned int *dwNoiseVal) { unsigned int counter = *dwNoiseCount; unsigned int val = *dwNoiseVal; unsigned int level, shift, bit; int ns; // modified from DrHell/shalma, no fraction level = (ctrl >> 10) & 0x0f; level = 0x8000 >> level; for (ns = 0; ns < ns_to; ns++) { counter += 2; if (counter >= level) { counter -= level; shift = (val >> 10) & 0x1f; bit = (0x69696969 >> shift) & 1; bit ^= (val >> 15) & 1; val = (val << 1) | bit; } ChanBuf[ns] = (signed short)val; } *dwNoiseCount = counter; *dwNoiseVal = val; } static int do_samples_noise(int ch, int ns_to) { int ret; ret = do_samples_skip(ch, ns_to); do_lsfr_samples(ns_to, spu.spuCtrl, &spu.dwNoiseCount, &spu.dwNoiseVal); return ret; } #ifdef HAVE_ARMV5 // asm code; lv and rv must be 0-3fff extern void mix_chan(int *SSumLR, int count, int lv, int rv); extern void mix_chan_rvb(int *SSumLR, int count, int lv, int rv, int *rvb); #else static void mix_chan(int *SSumLR, int count, int lv, int rv) { const int *src = ChanBuf; int l, r; while (count--) { int sval = *src++; l = (sval * lv) >> 14; r = (sval * rv) >> 14; *SSumLR++ += l; *SSumLR++ += r; } } static void mix_chan_rvb(int *SSumLR, int count, int lv, int rv, int *rvb) { const int *src = ChanBuf; int *dst = SSumLR; int *drvb = rvb; int l, r; while (count--) { int sval = *src++; l = (sval * lv) >> 14; r = (sval * rv) >> 14; *dst++ += l; *dst++ += r; *drvb++ += l; *drvb++ += r; } } #endif // 0x0800-0x0bff Voice 1 // 0x0c00-0x0fff Voice 3 static noinline void do_decode_bufs(unsigned short *mem, int which, int count, int decode_pos) { unsigned short *dst = &mem[0x800/2 + which*0x400/2]; const int *src = ChanBuf; int cursor = decode_pos; while (count-- > 0) { cursor &= 0x1ff; dst[cursor] = *src++; cursor++; } // decode_pos is updated and irqs are checked later, after voice loop } static void do_silent_chans(int ns_to, int silentch) { unsigned int mask; SPUCHAN *s_chan; int ch; mask = silentch & 0xffffff; for (ch = 0; mask != 0; ch++, mask >>= 1) { if (!(mask & 1)) continue; if (spu.dwChannelDead & (1<pCurr > spu.pSpuIrq && s_chan->pLoop > spu.pSpuIrq) continue; s_chan->spos += s_chan->iSBPos << 16; s_chan->iSBPos = 0; s_chan->spos += s_chan->sinc * ns_to; while (s_chan->spos >= 28 * 0x10000) { unsigned char *start = s_chan->pCurr; skip_block(ch); if (start == s_chan->pCurr || start - spu.spuMemC < 0x1000) { // looping on self or stopped(?) spu.dwChannelDead |= 1<spos = 0; break; } s_chan->spos -= 28 * 0x10000; } } } static void do_channels(int ns_to) { unsigned int mask; int do_rvb, ch, d; SPUCHAN *s_chan; int *SB, sinc; do_rvb = spu.rvb->StartAddr && spu_config.iUseReverb; if (do_rvb) memset(RVB, 0, ns_to * sizeof(RVB[0]) * 2); mask = spu.dwNewChannel & 0xffffff; for (ch = 0; mask != 0; ch++, mask >>= 1) { if (mask & 1) StartSound(ch); } mask = spu.dwChannelOn & 0xffffff; for (ch = 0; mask != 0; ch++, mask >>= 1) // loop em all... { if (!(mask & 1)) continue; // channel not playing? next s_chan = &spu.s_chan[ch]; SB = spu.SB + ch * SB_SIZE; sinc = s_chan->sinc; if (s_chan->bNoise) d = do_samples_noise(ch, ns_to); else if (s_chan->bFMod == 2 || (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 0)) d = do_samples_noint(decode_block, NULL, ch, ns_to, SB, sinc, &s_chan->spos, &s_chan->iSBPos); else if (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 1) d = do_samples_simple(decode_block, NULL, ch, ns_to, SB, sinc, &s_chan->spos, &s_chan->iSBPos); else d = do_samples_default(decode_block, NULL, ch, ns_to, SB, sinc, &s_chan->spos, &s_chan->iSBPos); d = MixADSR(&s_chan->ADSRX, d); if (d < ns_to) { spu.dwChannelOn &= ~(1 << ch); s_chan->ADSRX.EnvelopeVol = 0; memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0])); } if (ch == 1 || ch == 3) { do_decode_bufs(spu.spuMem, ch/2, ns_to, spu.decode_pos); spu.decode_dirty_ch |= 1 << ch; } if (s_chan->bFMod == 2) // fmod freq channel memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0])); if (s_chan->bRVBActive && do_rvb) mix_chan_rvb(spu.SSumLR, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume, RVB); else mix_chan(spu.SSumLR, ns_to, s_chan->iLeftVolume, s_chan->iRightVolume); } if (spu.rvb->StartAddr) { if (do_rvb) REVERBDo(spu.SSumLR, RVB, ns_to, spu.rvb->CurrAddr); spu.rvb->CurrAddr += ns_to / 2; while (spu.rvb->CurrAddr >= 0x40000) spu.rvb->CurrAddr -= 0x40000 - spu.rvb->StartAddr; } } static void do_samples_finish(int *SSumLR, int ns_to, int silentch, int decode_pos); // optional worker thread handling #if defined(THREAD_ENABLED) || defined(WANT_THREAD_CODE) // worker thread state static struct spu_worker { union { struct { unsigned int exit_thread; unsigned int i_ready; unsigned int i_reaped; unsigned int last_boot_cnt; // dsp unsigned int ram_dirty; }; // aligning for C64X_DSP unsigned int _pad0[128/4]; }; union { struct { unsigned int i_done; unsigned int active; // dsp unsigned int boot_cnt; }; unsigned int _pad1[128/4]; }; struct work_item { int ns_to; int ctrl; int decode_pos; int rvb_addr; unsigned int channels_new; unsigned int channels_on; unsigned int channels_silent; struct { int spos; int sbpos; int sinc; int start; int loop; int ns_to; short vol_l; short vol_r; ADSRInfoEx adsr; // might also want to add fmod flags.. } ch[24]; int SSumLR[NSSIZE * 2]; } i[4]; } *worker; #define WORK_MAXCNT (sizeof(worker->i) / sizeof(worker->i[0])) #define WORK_I_MASK (WORK_MAXCNT - 1) static void thread_work_start(void); static void thread_work_wait_sync(struct work_item *work, int force); static void thread_sync_caches(void); static int thread_get_i_done(void); static int decode_block_work(void *context, int ch, int *SB) { const unsigned char *ram = spu.spuMemC; int predict_nr, shift_factor, flags; struct work_item *work = context; int start = work->ch[ch].start; int loop = work->ch[ch].loop; predict_nr = ram[start]; shift_factor = predict_nr & 0xf; predict_nr >>= 4; decode_block_data(SB, ram + start + 2, predict_nr, shift_factor); flags = ram[start + 1]; if (flags & 4) loop = start; // loop adress start += 16; if (flags & 1) // 1: stop/loop start = loop; work->ch[ch].start = start & 0x7ffff; work->ch[ch].loop = loop; return 0; } static void queue_channel_work(int ns_to, unsigned int silentch) { struct work_item *work; SPUCHAN *s_chan; unsigned int mask; int ch, d; work = &worker->i[worker->i_ready & WORK_I_MASK]; work->ns_to = ns_to; work->ctrl = spu.spuCtrl; work->decode_pos = spu.decode_pos; work->channels_silent = silentch; mask = work->channels_new = spu.dwNewChannel & 0xffffff; for (ch = 0; mask != 0; ch++, mask >>= 1) { if (mask & 1) StartSoundMain(ch); } mask = work->channels_on = spu.dwChannelOn & 0xffffff; spu.decode_dirty_ch |= mask & 0x0a; for (ch = 0; mask != 0; ch++, mask >>= 1) { if (!(mask & 1)) continue; s_chan = &spu.s_chan[ch]; work->ch[ch].spos = s_chan->spos; work->ch[ch].sbpos = s_chan->iSBPos; work->ch[ch].sinc = s_chan->sinc; work->ch[ch].adsr = s_chan->ADSRX; work->ch[ch].vol_l = s_chan->iLeftVolume; work->ch[ch].vol_r = s_chan->iRightVolume; work->ch[ch].start = s_chan->pCurr - spu.spuMemC; work->ch[ch].loop = s_chan->pLoop - spu.spuMemC; if (s_chan->prevflags & 1) work->ch[ch].start = work->ch[ch].loop; d = do_samples_skip(ch, ns_to); work->ch[ch].ns_to = d; // note: d is not accurate on skip d = SkipADSR(&s_chan->ADSRX, d); if (d < ns_to) { spu.dwChannelOn &= ~(1 << ch); s_chan->ADSRX.EnvelopeVol = 0; } } work->rvb_addr = 0; if (spu.rvb->StartAddr) { if (spu_config.iUseReverb) work->rvb_addr = spu.rvb->CurrAddr; spu.rvb->CurrAddr += ns_to / 2; while (spu.rvb->CurrAddr >= 0x40000) spu.rvb->CurrAddr -= 0x40000 - spu.rvb->StartAddr; } worker->i_ready++; thread_work_start(); } static void do_channel_work(struct work_item *work) { unsigned int mask; unsigned int decode_dirty_ch = 0; const SPUCHAN *s_chan; int *SB, sinc, spos, sbpos; int d, ch, ns_to; ns_to = work->ns_to; if (work->rvb_addr) memset(RVB, 0, ns_to * sizeof(RVB[0]) * 2); mask = work->channels_new; for (ch = 0; mask != 0; ch++, mask >>= 1) { if (mask & 1) StartSoundSB(spu.SB + ch * SB_SIZE); } mask = work->channels_on; for (ch = 0; mask != 0; ch++, mask >>= 1) { if (!(mask & 1)) continue; d = work->ch[ch].ns_to; spos = work->ch[ch].spos; sbpos = work->ch[ch].sbpos; sinc = work->ch[ch].sinc; s_chan = &spu.s_chan[ch]; SB = spu.SB + ch * SB_SIZE; if (s_chan->bNoise) do_lsfr_samples(d, work->ctrl, &spu.dwNoiseCount, &spu.dwNoiseVal); else if (s_chan->bFMod == 2 || (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 0)) do_samples_noint(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos); else if (s_chan->bFMod == 0 && spu_config.iUseInterpolation == 1) do_samples_simple(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos); else do_samples_default(decode_block_work, work, ch, d, SB, sinc, &spos, &sbpos); d = MixADSR(&work->ch[ch].adsr, d); if (d < ns_to) { work->ch[ch].adsr.EnvelopeVol = 0; memset(&ChanBuf[d], 0, (ns_to - d) * sizeof(ChanBuf[0])); } if (ch == 1 || ch == 3) { do_decode_bufs(spu.spuMem, ch/2, ns_to, work->decode_pos); decode_dirty_ch |= 1 << ch; } if (s_chan->bFMod == 2) // fmod freq channel memcpy(iFMod, &ChanBuf, ns_to * sizeof(iFMod[0])); if (s_chan->bRVBActive && work->rvb_addr) mix_chan_rvb(work->SSumLR, ns_to, work->ch[ch].vol_l, work->ch[ch].vol_r, RVB); else mix_chan(work->SSumLR, ns_to, work->ch[ch].vol_l, work->ch[ch].vol_r); } if (work->rvb_addr) REVERBDo(work->SSumLR, RVB, ns_to, work->rvb_addr); } static void sync_worker_thread(int force) { struct work_item *work; int done, used_space; // rvb offsets will change, thread may be using them force |= spu.rvb->dirty && spu.rvb->StartAddr; done = thread_get_i_done() - worker->i_reaped; used_space = worker->i_ready - worker->i_reaped; //printf("done: %d use: %d dsp: %u/%u\n", done, used_space, // worker->boot_cnt, worker->i_done); while ((force && used_space > 0) || used_space >= WORK_MAXCNT || done > 0) { work = &worker->i[worker->i_reaped & WORK_I_MASK]; thread_work_wait_sync(work, force); do_samples_finish(work->SSumLR, work->ns_to, work->channels_silent, work->decode_pos); worker->i_reaped++; done = thread_get_i_done() - worker->i_reaped; used_space = worker->i_ready - worker->i_reaped; } if (force) thread_sync_caches(); } #else static void queue_channel_work(int ns_to, int silentch) {} static void sync_worker_thread(int force) {} static const void * const worker = NULL; #endif // THREAD_ENABLED //////////////////////////////////////////////////////////////////////// // MAIN SPU FUNCTION // here is the main job handler... //////////////////////////////////////////////////////////////////////// void do_samples(unsigned int cycles_to, int do_direct) { unsigned int silentch; int cycle_diff; int ns_to; cycle_diff = cycles_to - spu.cycles_played; if (cycle_diff < -2*1048576 || cycle_diff > 2*1048576) { //xprintf("desync %u %d\n", cycles_to, cycle_diff); spu.cycles_played = cycles_to; return; } silentch = ~(spu.dwChannelOn | spu.dwNewChannel) & 0xffffff; do_direct |= (silentch == 0xffffff); if (worker != NULL) sync_worker_thread(do_direct); if (cycle_diff < 2 * 768) return; ns_to = (cycle_diff / 768 + 1) & ~1; if (ns_to > NSSIZE) { // should never happen //xprintf("ns_to oflow %d %d\n", ns_to, NSSIZE); ns_to = NSSIZE; } ////////////////////////////////////////////////////// // special irq handling in the decode buffers (0x0000-0x1000) // we know: // the decode buffers are located in spu memory in the following way: // 0x0000-0x03ff CD audio left // 0x0400-0x07ff CD audio right // 0x0800-0x0bff Voice 1 // 0x0c00-0x0fff Voice 3 // and decoded data is 16 bit for one sample // we assume: // even if voices 1/3 are off or no cd audio is playing, the internal // play positions will move on and wrap after 0x400 bytes. // Therefore: we just need a pointer from spumem+0 to spumem+3ff, and // increase this pointer on each sample by 2 bytes. If this pointer // (or 0x400 offsets of this pointer) hits the spuirq address, we generate // an IRQ. if (unlikely((spu.spuCtrl & CTRL_IRQ) && spu.pSpuIrq < spu.spuMemC+0x1000)) { int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff; int left = (irq_pos - spu.decode_pos) & 0x1ff; if (0 < left && left <= ns_to) { //xprintf("decoder irq %x\n", spu.decode_pos); do_irq(); } } if (unlikely(spu.rvb->dirty)) REVERBPrep(); if (do_direct || worker == NULL || !spu_config.iUseThread) { do_channels(ns_to); do_samples_finish(spu.SSumLR, ns_to, silentch, spu.decode_pos); } else { queue_channel_work(ns_to, silentch); } // advance "stopped" channels that can cause irqs // (all chans are always playing on the real thing..) if (spu.spuCtrl & CTRL_IRQ) do_silent_chans(ns_to, silentch); spu.cycles_played += ns_to * 768; spu.decode_pos = (spu.decode_pos + ns_to) & 0x1ff; } static void do_samples_finish(int *SSumLR, int ns_to, int silentch, int decode_pos) { int volmult = spu_config.iVolume; int ns; int d; // must clear silent channel decode buffers if(unlikely(silentch & spu.decode_dirty_ch & (1<<1))) { memset(&spu.spuMem[0x800/2], 0, 0x400); spu.decode_dirty_ch &= ~(1<<1); } if(unlikely(silentch & spu.decode_dirty_ch & (1<<3))) { memset(&spu.spuMem[0xc00/2], 0, 0x400); spu.decode_dirty_ch &= ~(1<<3); } MixXA(SSumLR, ns_to, decode_pos); if((spu.spuCtrl&0x4000)==0) // muted? (rare, don't optimize for this) { memset(spu.pS, 0, ns_to * 2 * sizeof(spu.pS[0])); spu.pS += ns_to * 2; } else for (ns = 0; ns < ns_to * 2; ) { d = SSumLR[ns]; SSumLR[ns] = 0; d = d * volmult >> 10; ssat32_to_16(d); *spu.pS++ = d; ns++; d = SSumLR[ns]; SSumLR[ns] = 0; d = d * volmult >> 10; ssat32_to_16(d); *spu.pS++ = d; ns++; } } void schedule_next_irq(void) { unsigned int upd_samples; int ch; if (spu.scheduleCallback == NULL) return; upd_samples = 44100 / 50; for (ch = 0; ch < MAXCHAN; ch++) { if (spu.dwChannelDead & (1 << ch)) continue; if ((unsigned long)(spu.pSpuIrq - spu.s_chan[ch].pCurr) > IRQ_NEAR_BLOCKS * 16 && (unsigned long)(spu.pSpuIrq - spu.s_chan[ch].pLoop) > IRQ_NEAR_BLOCKS * 16) continue; scan_for_irq(ch, &upd_samples); } if (unlikely(spu.pSpuIrq < spu.spuMemC + 0x1000)) { int irq_pos = (spu.pSpuIrq - spu.spuMemC) / 2 & 0x1ff; int left = (irq_pos - spu.decode_pos) & 0x1ff; if (0 < left && left < upd_samples) { //xprintf("decode: %3d (%3d/%3d)\n", left, spu.decode_pos, irq_pos); upd_samples = left; } } if (upd_samples < 44100 / 50) spu.scheduleCallback(upd_samples * 768); } // SPU ASYNC... even newer epsxe func // 1 time every 'cycle' cycles... harhar // rearmed: called dynamically now void CALLBACK SPUasync(unsigned int cycle, unsigned int flags) { do_samples(cycle, spu_config.iUseFixedUpdates); if (spu.spuCtrl & CTRL_IRQ) schedule_next_irq(); if (flags & 1) { out_current->feed(spu.pSpuBuffer, (unsigned char *)spu.pS - spu.pSpuBuffer); spu.pS = (short *)spu.pSpuBuffer; if (spu_config.iTempo) { if (!out_current->busy()) // cause more samples to be generated // (and break some games because of bad sync) spu.cycles_played -= 44100 / 60 / 2 * 768; } } } // SPU UPDATE... new epsxe func // 1 time every 32 hsync lines // (312/32)x50 in pal // (262/32)x60 in ntsc // since epsxe 1.5.2 (linux) uses SPUupdate, not SPUasync, I will // leave that func in the linux port, until epsxe linux is using // the async function as well void CALLBACK SPUupdate(void) { } // XA AUDIO void CALLBACK SPUplayADPCMchannel(xa_decode_t *xap) { if(!xap) return; if(!xap->freq) return; // no xa freq ? bye FeedXA(xap); // call main XA feeder } // CDDA AUDIO int CALLBACK SPUplayCDDAchannel(short *pcm, int nbytes) { if (!pcm) return -1; if (nbytes<=0) return -1; return FeedCDDA((unsigned char *)pcm, nbytes); } // to be called after state load void ClearWorkingState(void) { memset(iFMod, 0, sizeof(iFMod)); spu.pS=(short *)spu.pSpuBuffer; // setup soundbuffer pointer } // SETUPSTREAMS: init most of the spu buffers static void SetupStreams(void) { spu.pSpuBuffer = (unsigned char *)malloc(32768); // alloc mixing buffer spu.SSumLR = calloc(NSSIZE * 2, sizeof(spu.SSumLR[0])); spu.XAStart = // alloc xa buffer (uint32_t *)malloc(44100 * sizeof(uint32_t)); spu.XAEnd = spu.XAStart + 44100; spu.XAPlay = spu.XAStart; spu.XAFeed = spu.XAStart; spu.CDDAStart = // alloc cdda buffer (uint32_t *)malloc(CDDA_BUFFER_SIZE); spu.CDDAEnd = spu.CDDAStart + 16384; spu.CDDAPlay = spu.CDDAStart; spu.CDDAFeed = spu.CDDAStart; ClearWorkingState(); } // REMOVESTREAMS: free most buffer static void RemoveStreams(void) { free(spu.pSpuBuffer); // free mixing buffer spu.pSpuBuffer = NULL; free(spu.SSumLR); spu.SSumLR = NULL; free(spu.XAStart); // free XA buffer spu.XAStart = NULL; free(spu.CDDAStart); // free CDDA buffer spu.CDDAStart = NULL; } #if defined(C64X_DSP) /* special code for TI C64x DSP */ #include "spu_c64x.c" #elif defined(THREAD_ENABLED) #include #include #include static struct { pthread_t thread; sem_t sem_avail; sem_t sem_done; } t; /* generic pthread implementation */ static void thread_work_start(void) { sem_post(&t.sem_avail); } static void thread_work_wait_sync(struct work_item *work, int force) { sem_wait(&t.sem_done); } static int thread_get_i_done(void) { return worker->i_done; } static void thread_sync_caches(void) { } static void *spu_worker_thread(void *unused) { struct work_item *work; while (1) { sem_wait(&t.sem_avail); if (worker->exit_thread) break; work = &worker->i[worker->i_done & WORK_I_MASK]; do_channel_work(work); worker->i_done++; sem_post(&t.sem_done); } return NULL; } static void init_spu_thread(void) { int ret; if (sysconf(_SC_NPROCESSORS_ONLN) <= 1) return; worker = calloc(1, sizeof(*worker)); if (worker == NULL) return; ret = sem_init(&t.sem_avail, 0, 0); if (ret != 0) goto fail_sem_avail; ret = sem_init(&t.sem_done, 0, 0); if (ret != 0) goto fail_sem_done; ret = pthread_create(&t.thread, NULL, spu_worker_thread, NULL); if (ret != 0) goto fail_thread; spu_config.iThreadAvail = 1; return; fail_thread: sem_destroy(&t.sem_done); fail_sem_done: sem_destroy(&t.sem_avail); fail_sem_avail: free(worker); worker = NULL; spu_config.iThreadAvail = 0; } static void exit_spu_thread(void) { if (worker == NULL) return; worker->exit_thread = 1; sem_post(&t.sem_avail); pthread_join(t.thread, NULL); sem_destroy(&t.sem_done); sem_destroy(&t.sem_avail); free(worker); worker = NULL; } #else // if !THREAD_ENABLED static void init_spu_thread(void) { } static void exit_spu_thread(void) { } #endif // SPUINIT: this func will be called first by the main emu long CALLBACK SPUinit(void) { int i; spu.spuMemC = calloc(1, 512 * 1024); InitADSR(); spu.s_chan = calloc(MAXCHAN+1, sizeof(spu.s_chan[0])); // channel + 1 infos (1 is security for fmod handling) spu.rvb = calloc(1, sizeof(REVERBInfo)); spu.SB = calloc(MAXCHAN, sizeof(spu.SB[0]) * SB_SIZE); spu.spuAddr = 0; spu.decode_pos = 0; spu.pSpuIrq = spu.spuMemC; SetupStreams(); // prepare streaming if (spu_config.iVolume == 0) spu_config.iVolume = 768; // 1024 is 1.0 init_spu_thread(); for (i = 0; i < MAXCHAN; i++) // loop sound channels { spu.s_chan[i].ADSRX.SustainLevel = 0xf; // -> init sustain spu.s_chan[i].ADSRX.SustainIncrease = 1; spu.s_chan[i].pLoop = spu.spuMemC; spu.s_chan[i].pCurr = spu.spuMemC; } spu.bSpuInit=1; // flag: we are inited return 0; } // SPUOPEN: called by main emu after init long CALLBACK SPUopen(void) { if (spu.bSPUIsOpen) return 0; // security for some stupid main emus SetupSound(); // setup sound (before init!) spu.bSPUIsOpen = 1; return PSE_SPU_ERR_SUCCESS; } // SPUCLOSE: called before shutdown long CALLBACK SPUclose(void) { if (!spu.bSPUIsOpen) return 0; // some security spu.bSPUIsOpen = 0; // no more open out_current->finish(); // no more sound handling return 0; } // SPUSHUTDOWN: called by main emu on final exit long CALLBACK SPUshutdown(void) { SPUclose(); exit_spu_thread(); free(spu.spuMemC); spu.spuMemC = NULL; free(spu.SB); spu.SB = NULL; free(spu.s_chan); spu.s_chan = NULL; free(spu.rvb); spu.rvb = NULL; RemoveStreams(); // no more streaming spu.bSpuInit=0; return 0; } // SPUTEST: we don't test, we are always fine ;) long CALLBACK SPUtest(void) { return 0; } // SPUCONFIGURE: call config dialog long CALLBACK SPUconfigure(void) { #ifdef _MACOSX DoConfiguration(); #else // StartCfgTool("CFG"); #endif return 0; } // SPUABOUT: show about window void CALLBACK SPUabout(void) { #ifdef _MACOSX DoAbout(); #else // StartCfgTool("ABOUT"); #endif } // SETUP CALLBACKS // this functions will be called once, // passes a callback that should be called on SPU-IRQ/cdda volume change void CALLBACK SPUregisterCallback(void (CALLBACK *callback)(void)) { spu.irqCallback = callback; } void CALLBACK SPUregisterCDDAVolume(void (CALLBACK *CDDAVcallback)(unsigned short,unsigned short)) { spu.cddavCallback = CDDAVcallback; } void CALLBACK SPUregisterScheduleCb(void (CALLBACK *callback)(unsigned int)) { spu.scheduleCallback = callback; } // COMMON PLUGIN INFO FUNCS /* char * CALLBACK PSEgetLibName(void) { return _(libraryName); } unsigned long CALLBACK PSEgetLibType(void) { return PSE_LT_SPU; } unsigned long CALLBACK PSEgetLibVersion(void) { return (1 << 16) | (6 << 8); } char * SPUgetLibInfos(void) { return _(libraryInfo); } */ // debug void spu_get_debug_info(int *chans_out, int *run_chans, int *fmod_chans_out, int *noise_chans_out) { int ch = 0, fmod_chans = 0, noise_chans = 0, irq_chans = 0; if (spu.s_chan == NULL) return; for(;ch