/*************************************************************************** spu.c - description ------------------- begin : Wed May 15 2002 copyright : (C) 2002 by Pete Bernert email : BlackDove@addcom.de Portions (C) GraÅžvydas "notaz" Ignotas, 2010-2012 ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. See also the license.txt file for * * additional informations. * * * ***************************************************************************/ #include "stdafx.h" #define _IN_SPU #include "externals.h" #include "registers.h" #include "out.h" #include "arm_features.h" #ifdef ENABLE_NLS #include #include #define _(x) gettext(x) #define N_(x) (x) #else #define _(x) (x) #define N_(x) (x) #endif #ifdef __ARM_ARCH_7A__ #define ssat32_to_16(v) \ asm("ssat %0,#16,%1" : "=r" (v) : "r" (v)) #else #define ssat32_to_16(v) do { \ if (v < -32768) v = -32768; \ else if (v > 32767) v = 32767; \ } while (0) #endif #define PSXCLK 33868800 /* 33.8688 MHz */ // intended to be ~1 frame #define IRQ_NEAR_BLOCKS 32 /* #if defined (USEMACOSX) static char * libraryName = N_("Mac OS X Sound"); #elif defined (USEALSA) static char * libraryName = N_("ALSA Sound"); #elif defined (USEOSS) static char * libraryName = N_("OSS Sound"); #elif defined (USESDL) static char * libraryName = N_("SDL Sound"); #elif defined (USEPULSEAUDIO) static char * libraryName = N_("PulseAudio Sound"); #else static char * libraryName = N_("NULL Sound"); #endif static char * libraryInfo = N_("P.E.Op.S. Sound Driver V1.7\nCoded by Pete Bernert and the P.E.Op.S. team\n"); */ // globals // psx buffer / addresses unsigned short regArea[10000]; unsigned short spuMem[256*1024]; unsigned char * spuMemC; unsigned char * pSpuIrq=0; unsigned char * pSpuBuffer; // user settings int iVolume=768; // 1024 is 1.0 int iXAPitch=1; int iUseReverb=2; int iUseInterpolation=2; // MAIN infos struct for each channel SPUCHAN s_chan[MAXCHAN+1]; // channel + 1 infos (1 is security for fmod handling) REVERBInfo rvb; unsigned int dwNoiseVal; // global noise generator unsigned int dwNoiseCount; unsigned short spuCtrl=0; // some vars to store psx reg infos unsigned short spuStat=0; unsigned short spuIrq=0; unsigned long spuAddr=0xffffffff; // address into spu mem int bSpuInit=0; int bSPUIsOpen=0; unsigned int dwNewChannel=0; // flags for faster testing, if new channel starts unsigned int dwChannelOn=0; // not silent channels unsigned int dwPendingChanOff=0; unsigned int dwChannelDead=0; // silent+not useful channels void (CALLBACK *irqCallback)(void)=0; // func of main emu, called on spu irq void (CALLBACK *cddavCallback)(unsigned short,unsigned short)=0; void (CALLBACK *scheduleCallback)(unsigned int)=0; // certain globals (were local before, but with the new timeproc I need em global) static const int f[8][2] = { { 0, 0 }, { 60, 0 }, { 115, -52 }, { 98, -55 }, { 122, -60 } }; int ChanBuf[NSSIZE+3]; int SSumLR[(NSSIZE+3)*2]; int iFMod[NSSIZE]; short * pS; static int decode_dirty_ch; int decode_pos; unsigned int cycles_played; #define CDDA_BUFFER_SIZE (16384 * sizeof(uint32_t)) // must be power of 2 //////////////////////////////////////////////////////////////////////// // CODE AREA //////////////////////////////////////////////////////////////////////// // dirty inline func includes #include "reverb.c" #include "adsr.c" //////////////////////////////////////////////////////////////////////// // helpers for simple interpolation // // easy interpolation on upsampling, no special filter, just "Pete's common sense" tm // // instead of having n equal sample values in a row like: // ____ // |____ // // we compare the current delta change with the next delta change. // // if curr_delta is positive, // // - and next delta is smaller (or changing direction): // \. // -__ // // - and next delta significant (at least twice) bigger: // --_ // \. // // - and next delta is nearly same: // \. // \. // // // if curr_delta is negative, // // - and next delta is smaller (or changing direction): // _-- // / // // - and next delta significant (at least twice) bigger: // / // __- // // - and next delta is nearly same: // / // / // INLINE void InterpolateUp(int ch) { if(s_chan[ch].SB[32]==1) // flag == 1? calc step and set flag... and don't change the value in this pass { const int id1=s_chan[ch].SB[30]-s_chan[ch].SB[29]; // curr delta to next val const int id2=s_chan[ch].SB[31]-s_chan[ch].SB[30]; // and next delta to next-next val :) s_chan[ch].SB[32]=0; if(id1>0) // curr delta positive { if(id2id1) {s_chan[ch].SB[28]=id1;s_chan[ch].SB[32]=2;} else if(id2>(id1<<1)) s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x10000L; else s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x20000L; } } else if(s_chan[ch].SB[32]==2) // flag 1: calc step and set flag... and don't change the value in this pass { s_chan[ch].SB[32]=0; s_chan[ch].SB[28]=(s_chan[ch].SB[28]*s_chan[ch].sinc)/0x20000L; //if(s_chan[ch].sinc<=0x8000) // s_chan[ch].SB[29]=s_chan[ch].SB[30]-(s_chan[ch].SB[28]*((0x10000/s_chan[ch].sinc)-1)); //else s_chan[ch].SB[29]+=s_chan[ch].SB[28]; } else // no flags? add bigger val (if possible), calc smaller step, set flag1 s_chan[ch].SB[29]+=s_chan[ch].SB[28]; } // // even easier interpolation on downsampling, also no special filter, again just "Pete's common sense" tm // INLINE void InterpolateDown(int ch) { if(s_chan[ch].sinc>=0x20000L) // we would skip at least one val? { s_chan[ch].SB[29]+=(s_chan[ch].SB[30]-s_chan[ch].SB[29])/2; // add easy weight if(s_chan[ch].sinc>=0x30000L) // we would skip even more vals? s_chan[ch].SB[29]+=(s_chan[ch].SB[31]-s_chan[ch].SB[30])/2;// add additional next weight } } //////////////////////////////////////////////////////////////////////// // helpers for gauss interpolation #define gval0 (((short*)(&s_chan[ch].SB[29]))[gpos]) #define gval(x) ((int)((short*)(&s_chan[ch].SB[29]))[(gpos+x)&3]) #include "gauss_i.h" //////////////////////////////////////////////////////////////////////// #include "xa.c" static void do_irq(void) { //if(!(spuStat & STAT_IRQ)) { spuStat |= STAT_IRQ; // asserted status? if(irqCallback) irqCallback(); } } static int check_irq(int ch, unsigned char *pos) { if((spuCtrl & CTRL_IRQ) && pos == pSpuIrq) { //printf("ch%d irq %04x\n", ch, pos - spuMemC); do_irq(); return 1; } return 0; } //////////////////////////////////////////////////////////////////////// // START SOUND... called by main thread to setup a new sound on a channel //////////////////////////////////////////////////////////////////////// INLINE void StartSound(int ch) { StartADSR(ch); StartREVERB(ch); // fussy timing issues - do in VoiceOn //s_chan[ch].pCurr=s_chan[ch].pStart; // set sample start //s_chan[ch].bStop=0; //s_chan[ch].bOn=1; s_chan[ch].SB[26]=0; // init mixing vars s_chan[ch].SB[27]=0; s_chan[ch].iSBPos=28; s_chan[ch].SB[29]=0; // init our interpolation helpers s_chan[ch].SB[30]=0; if(iUseInterpolation>=2) // gauss interpolation? {s_chan[ch].spos=0x30000L;s_chan[ch].SB[28]=0;} // -> start with more decoding else {s_chan[ch].spos=0x10000L;s_chan[ch].SB[31]=0;} // -> no/simple interpolation starts with one 44100 decoding dwNewChannel&=~(1<0x3fff) NP=0x3fff; if(NP<0x1) NP=0x1; sinc=NP<<4; // calc frequency if(iUseInterpolation==1) // freq change in simple interpolation mode s_chan[ch].SB[32]=1; iFMod[ns]=0; return sinc; } //////////////////////////////////////////////////////////////////////// INLINE void StoreInterpolationVal(int ch,int fa) { if(s_chan[ch].bFMod==2) // fmod freq channel s_chan[ch].SB[29]=fa; else { ssat32_to_16(fa); if(iUseInterpolation>=2) // gauss/cubic interpolation { int gpos = s_chan[ch].SB[28]; gval0 = fa; gpos = (gpos+1) & 3; s_chan[ch].SB[28] = gpos; } else if(iUseInterpolation==1) // simple interpolation { s_chan[ch].SB[28] = 0; s_chan[ch].SB[29] = s_chan[ch].SB[30]; // -> helpers for simple linear interpolation: delay real val for two slots, and calc the two deltas, for a 'look at the future behaviour' s_chan[ch].SB[30] = s_chan[ch].SB[31]; s_chan[ch].SB[31] = fa; s_chan[ch].SB[32] = 1; // -> flag: calc new interolation } else s_chan[ch].SB[29]=fa; // no interpolation } } //////////////////////////////////////////////////////////////////////// INLINE int iGetInterpolationVal(int ch, int spos) { int fa; if(s_chan[ch].bFMod==2) return s_chan[ch].SB[29]; switch(iUseInterpolation) { //--------------------------------------------------// case 3: // cubic interpolation { long xd;int gpos; xd = (spos >> 1)+1; gpos = s_chan[ch].SB[28]; fa = gval(3) - 3*gval(2) + 3*gval(1) - gval0; fa *= (xd - (2<<15)) / 6; fa >>= 15; fa += gval(2) - gval(1) - gval(1) + gval0; fa *= (xd - (1<<15)) >> 1; fa >>= 15; fa += gval(1) - gval0; fa *= xd; fa >>= 15; fa = fa + gval0; } break; //--------------------------------------------------// case 2: // gauss interpolation { int vl, vr;int gpos; vl = (spos >> 6) & ~3; gpos = s_chan[ch].SB[28]; vr=(gauss[vl]*(int)gval0)&~2047; vr+=(gauss[vl+1]*gval(1))&~2047; vr+=(gauss[vl+2]*gval(2))&~2047; vr+=(gauss[vl+3]*gval(3))&~2047; fa = vr>>11; } break; //--------------------------------------------------// case 1: // simple interpolation { if(s_chan[ch].sinc<0x10000L) // -> upsampling? InterpolateUp(ch); // --> interpolate up else InterpolateDown(ch); // --> else down fa=s_chan[ch].SB[29]; } break; //--------------------------------------------------// default: // no interpolation { fa=s_chan[ch].SB[29]; } break; //--------------------------------------------------// } return fa; } static void decode_block_data(int *dest, const unsigned char *src, int predict_nr, int shift_factor) { int nSample; int fa, s_1, s_2, d, s; s_1 = dest[27]; s_2 = dest[26]; for (nSample = 0; nSample < 28; src++) { d = (int)*src; s = (int)(signed short)((d & 0x0f) << 12); fa = s >> shift_factor; fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6); s_2=s_1;s_1=fa; dest[nSample++] = fa; s = (int)(signed short)((d & 0xf0) << 8); fa = s >> shift_factor; fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6); s_2=s_1;s_1=fa; dest[nSample++] = fa; } } static int decode_block(int ch) { unsigned char *start; int predict_nr,shift_factor,flags; int stop = 0; int ret = 0; start = s_chan[ch].pCurr; // set up the current pos if(start == spuMemC) // ? stop = 1; if(s_chan[ch].prevflags&1) // 1: stop/loop { if(!(s_chan[ch].prevflags&2)) stop = 1; start = s_chan[ch].pLoop; } else ret = check_irq(ch, start); // hack, see check_irq below.. if(stop) { dwChannelOn &= ~(1< turn everything off s_chan[ch].bStop = 1; s_chan[ch].ADSRX.EnvelopeVol = 0; } predict_nr=(int)start[0]; shift_factor=predict_nr&0xf; predict_nr >>= 4; decode_block_data(s_chan[ch].SB, start + 2, predict_nr, shift_factor); flags=(int)start[1]; if(flags&4) s_chan[ch].pLoop=start; // loop adress start+=16; if(flags&1) { // 1: stop/loop start = s_chan[ch].pLoop; ret |= check_irq(ch, start); // hack.. :( } if (start - spuMemC >= 0x80000) start = spuMemC; s_chan[ch].pCurr = start; // store values for next cycle s_chan[ch].prevflags = flags; return ret; } // do block, but ignore sample data static int skip_block(int ch) { unsigned char *start = s_chan[ch].pCurr; int flags = start[1]; int ret = check_irq(ch, start); if(s_chan[ch].prevflags & 1) start = s_chan[ch].pLoop; if(flags & 4) s_chan[ch].pLoop = start; start += 16; if(flags & 1) start = s_chan[ch].pLoop; s_chan[ch].pCurr = start; s_chan[ch].prevflags = flags; return ret; } // if irq is going to trigger sooner than in upd_samples, set upd_samples static void scan_for_irq(int ch, unsigned int *upd_samples) { int pos, sinc, sinc_inv, end; unsigned char *block; int flags; block = s_chan[ch].pCurr; pos = s_chan[ch].spos; sinc = s_chan[ch].sinc; end = pos + *upd_samples * sinc; pos += (28 - s_chan[ch].iSBPos) << 16; while (pos < end) { if (block == pSpuIrq) break; flags = block[1]; block += 16; if (flags & 1) { // 1: stop/loop block = s_chan[ch].pLoop; if (block == pSpuIrq) // hack.. (see decode_block) break; } pos += 28 << 16; } if (pos < end) { sinc_inv = s_chan[ch].sinc_inv; if (sinc_inv == 0) sinc_inv = s_chan[ch].sinc_inv = (0x80000000u / (uint32_t)sinc) << 1; pos -= s_chan[ch].spos; *upd_samples = (((uint64_t)pos * sinc_inv) >> 32) + 1; //xprintf("ch%02d: irq sched: %3d %03d\n", // ch, *upd_samples, *upd_samples * 60 * 263 / 44100); } } #define make_do_samples(name, fmod_code, interp_start, interp1_code, interp2_code, interp_end) \ static noinline int do_samples_##name(int ch, int ns, int ns_to) \ { \ int sinc = s_chan[ch].sinc; \ int spos = s_chan[ch].spos; \ int sbpos = s_chan[ch].iSBPos; \ int *SB = s_chan[ch].SB; \ int ret = -1; \ int d, fa; \ interp_start; \ \ for (; ns < ns_to; ns++) \ { \ fmod_code; \ \ spos += sinc; \ while (spos >= 0x10000) \ { \ fa = SB[sbpos++]; \ if(sbpos >= 28) \ { \ sbpos = 0; \ d = decode_block(ch); \ if(d) \ ret = /*ns_to =*/ ns + 1; \ } \ \ interp1_code; \ spos -= 0x10000; \ } \ \ interp2_code; \ } \ \ s_chan[ch].sinc = sinc; \ s_chan[ch].spos = spos; \ s_chan[ch].iSBPos = sbpos; \ interp_end; \ \ return ret; \ } #define fmod_recv_check \ if(s_chan[ch].bFMod==1 && iFMod[ns]) \ sinc = FModChangeFrequency(ch,ns) make_do_samples(default, fmod_recv_check, , StoreInterpolationVal(ch, fa), ChanBuf[ns] = iGetInterpolationVal(ch, spos), ) make_do_samples(noint, , fa = s_chan[ch].SB[29], , ChanBuf[ns] = fa, s_chan[ch].SB[29] = fa) #define simple_interp_store \ s_chan[ch].SB[28] = 0; \ s_chan[ch].SB[29] = s_chan[ch].SB[30]; \ s_chan[ch].SB[30] = s_chan[ch].SB[31]; \ s_chan[ch].SB[31] = fa; \ s_chan[ch].SB[32] = 1 #define simple_interp_get \ if(sinc<0x10000) /* -> upsampling? */ \ InterpolateUp(ch); /* --> interpolate up */ \ else InterpolateDown(ch); /* --> else down */ \ ChanBuf[ns] = s_chan[ch].SB[29] make_do_samples(simple, , , simple_interp_store, simple_interp_get, ) static noinline int do_samples_noise(int ch, int ns, int ns_to) { int level, shift, bit; int ret = -1, d; s_chan[ch].spos += s_chan[ch].sinc * (ns_to - ns); while (s_chan[ch].spos >= 28*0x10000) { d = skip_block(ch); if (d) ret = ns_to; s_chan[ch].spos -= 28*0x10000; } // modified from DrHell/shalma, no fraction level = (spuCtrl >> 10) & 0x0f; level = 0x8000 >> level; for (; ns < ns_to; ns++) { dwNoiseCount += 2; if (dwNoiseCount >= level) { dwNoiseCount -= level; shift = (dwNoiseVal >> 10) & 0x1f; bit = (0x69696969 >> shift) & 1; if (dwNoiseVal & 0x8000) bit ^= 1; dwNoiseVal = (dwNoiseVal << 1) | bit; } ChanBuf[ns] = (signed short)dwNoiseVal; } return ret; } #ifdef HAVE_ARMV5 // asm code; lv and rv must be 0-3fff extern void mix_chan(int start, int count, int lv, int rv); extern void mix_chan_rvb(int start, int count, int lv, int rv); #else static void mix_chan(int start, int count, int lv, int rv) { int *dst = SSumLR + start * 2; const int *src = ChanBuf + start; int l, r; while (count--) { int sval = *src++; l = (sval * lv) >> 14; r = (sval * rv) >> 14; *dst++ += l; *dst++ += r; } } static void mix_chan_rvb(int start, int count, int lv, int rv) { int *dst = SSumLR + start * 2; int *drvb = sRVBStart + start * 2; const int *src = ChanBuf + start; int l, r; while (count--) { int sval = *src++; l = (sval * lv) >> 14; r = (sval * rv) >> 14; *dst++ += l; *dst++ += r; *drvb++ += l; *drvb++ += r; } } #endif // 0x0800-0x0bff Voice 1 // 0x0c00-0x0fff Voice 3 static noinline void do_decode_bufs(int which, int start, int count) { const int *src = ChanBuf + start; unsigned short *dst = &spuMem[0x800/2 + which*0x400/2]; int cursor = decode_pos + start; while (count-- > 0) { cursor &= 0x1ff; dst[cursor] = *src++; cursor++; } // decode_pos is updated and irqs are checked later, after voice loop } //////////////////////////////////////////////////////////////////////// // MAIN SPU FUNCTION // here is the main job handler... // basically the whole sound processing is done in this fat func! //////////////////////////////////////////////////////////////////////// void do_samples(unsigned int cycles_to) { const int ns_from = 0; int ns,ns_to,ns_len; int volmult = iVolume; int ch,d,silentch; int cycle_diff; cycle_diff = cycles_to - cycles_played; if (cycle_diff < -2*1048576 || cycle_diff > 2*1048576) { //xprintf("desync %u %d\n", cycles_to, cycle_diff); cycles_played = cycles_to; return; } if (cycle_diff < 2 * 768) return; ns_to = (cycle_diff / 768 + 1) & ~1; if (ns_to > NSSIZE) { // should never happen //xprintf("ns_to oflow %d %d\n", ns_to, NSSIZE); ns_to = NSSIZE; } ////////////////////////////////////////////////////// // special irq handling in the decode buffers (0x0000-0x1000) // we know: // the decode buffers are located in spu memory in the following way: // 0x0000-0x03ff CD audio left // 0x0400-0x07ff CD audio right // 0x0800-0x0bff Voice 1 // 0x0c00-0x0fff Voice 3 // and decoded data is 16 bit for one sample // we assume: // even if voices 1/3 are off or no cd audio is playing, the internal // play positions will move on and wrap after 0x400 bytes. // Therefore: we just need a pointer from spumem+0 to spumem+3ff, and // increase this pointer on each sample by 2 bytes. If this pointer // (or 0x400 offsets of this pointer) hits the spuirq address, we generate // an IRQ. if (unlikely((spuCtrl & CTRL_IRQ) && pSpuIrq && pSpuIrq < spuMemC+0x1000)) { int irq_pos = (pSpuIrq - spuMemC) / 2 & 0x1ff; int left = (irq_pos - decode_pos) & 0x1ff; if (0 < left && left <= ns_to) { //xprintf("decoder irq %x\n", decode_pos); do_irq(); ns_to = left; } } InitREVERB(ns_to); { silentch=~(dwChannelOn|dwNewChannel); //--------------------------------------------------// //- main channel loop -// //--------------------------------------------------// { for(ch=0;ch pSpuIrq && s_chan[ch].pLoop > pSpuIrq) continue; s_chan[ch].spos += s_chan[ch].sinc * (ns_to - ns_from); while(s_chan[ch].spos >= 28 * 0x10000) { unsigned char *start = s_chan[ch].pCurr; skip_block(ch); if(start == s_chan[ch].pCurr || start - spuMemC < 0x1000) { // looping on self or stopped(?) dwChannelDead |= 1<> 10; ssat32_to_16(d); *pS++ = d; ns++; d = SSumLR[ns]; SSumLR[ns] = 0; d = d * volmult >> 10; ssat32_to_16(d); *pS++ = d; ns++; } cycles_played += ns_to * 768; decode_pos = (decode_pos + ns_to) & 0x1ff; } } void schedule_next_irq(void) { unsigned int upd_samples; int ch; if (scheduleCallback == NULL) return; upd_samples = 44100 / 50; for (ch = 0; ch < MAXCHAN; ch++) { if (dwChannelDead & (1 << ch)) continue; if ((unsigned long)(pSpuIrq - s_chan[ch].pCurr) > IRQ_NEAR_BLOCKS * 16 && (unsigned long)(pSpuIrq - s_chan[ch].pLoop) > IRQ_NEAR_BLOCKS * 16) continue; scan_for_irq(ch, &upd_samples); } if (unlikely(pSpuIrq < spuMemC + 0x1000)) { int irq_pos = (pSpuIrq - spuMemC) / 2 & 0x1ff; int left = (irq_pos - decode_pos) & 0x1ff; if (0 < left && left < upd_samples) { //xprintf("decode: %3d (%3d/%3d)\n", left, decode_pos, irq_pos); upd_samples = left; } } if (upd_samples < 44100 / 50) scheduleCallback(upd_samples * 768); } // SPU ASYNC... even newer epsxe func // 1 time every 'cycle' cycles... harhar // rearmed: called dynamically now void CALLBACK SPUasync(unsigned int cycle, unsigned int flags) { do_samples(cycle); if (spuCtrl & CTRL_IRQ) schedule_next_irq(); if (flags & 1) { out_current->feed(pSpuBuffer, (unsigned char *)pS - pSpuBuffer); pS = (short *)pSpuBuffer; if (0) { if (!out_current->busy()) // cause more samples to be generated // (and break some games because of bad sync) cycles_played -= 44100 / 60 / 2 * 768; } } } // SPU UPDATE... new epsxe func // 1 time every 32 hsync lines // (312/32)x50 in pal // (262/32)x60 in ntsc // since epsxe 1.5.2 (linux) uses SPUupdate, not SPUasync, I will // leave that func in the linux port, until epsxe linux is using // the async function as well void CALLBACK SPUupdate(void) { } // XA AUDIO void CALLBACK SPUplayADPCMchannel(xa_decode_t *xap) { if(!xap) return; if(!xap->freq) return; // no xa freq ? bye FeedXA(xap); // call main XA feeder } // CDDA AUDIO int CALLBACK SPUplayCDDAchannel(short *pcm, int nbytes) { if (!pcm) return -1; if (nbytes<=0) return -1; return FeedCDDA((unsigned char *)pcm, nbytes); } // to be called after state load void ClearWorkingState(void) { memset(SSumLR,0,sizeof(SSumLR)); // init some mixing buffers memset(iFMod,0,sizeof(iFMod)); pS=(short *)pSpuBuffer; // setup soundbuffer pointer } // SETUPSTREAMS: init most of the spu buffers void SetupStreams(void) { int i; pSpuBuffer=(unsigned char *)malloc(32768); // alloc mixing buffer if(iUseReverb==1) i=88200*2; else i=NSSIZE*2; sRVBStart = (int *)malloc(i*4); // alloc reverb buffer memset(sRVBStart,0,i*4); sRVBEnd = sRVBStart + i; sRVBPlay = sRVBStart; XAStart = // alloc xa buffer (uint32_t *)malloc(44100 * sizeof(uint32_t)); XAEnd = XAStart + 44100; XAPlay = XAStart; XAFeed = XAStart; CDDAStart = // alloc cdda buffer (uint32_t *)malloc(CDDA_BUFFER_SIZE); CDDAEnd = CDDAStart + 16384; CDDAPlay = CDDAStart; CDDAFeed = CDDAStart; for(i=0;i init sustain s_chan[i].ADSRX.SustainIncrease = 1; s_chan[i].pLoop=spuMemC; s_chan[i].pCurr=spuMemC; } ClearWorkingState(); bSpuInit=1; // flag: we are inited } // REMOVESTREAMS: free most buffer void RemoveStreams(void) { free(pSpuBuffer); // free mixing buffer pSpuBuffer = NULL; free(sRVBStart); // free reverb buffer sRVBStart = NULL; free(XAStart); // free XA buffer XAStart = NULL; free(CDDAStart); // free CDDA buffer CDDAStart = NULL; } // INIT/EXIT STUFF // SPUINIT: this func will be called first by the main emu long CALLBACK SPUinit(void) { spuMemC = (unsigned char *)spuMem; // just small setup memset((void *)&rvb, 0, sizeof(REVERBInfo)); InitADSR(); spuIrq = 0; spuAddr = 0xffffffff; spuMemC = (unsigned char *)spuMem; decode_pos = 0; memset((void *)s_chan, 0, (MAXCHAN + 1) * sizeof(SPUCHAN)); pSpuIrq = 0; SetupStreams(); // prepare streaming return 0; } // SPUOPEN: called by main emu after init long CALLBACK SPUopen(void) { if (bSPUIsOpen) return 0; // security for some stupid main emus SetupSound(); // setup sound (before init!) bSPUIsOpen = 1; return PSE_SPU_ERR_SUCCESS; } // SPUCLOSE: called before shutdown long CALLBACK SPUclose(void) { if (!bSPUIsOpen) return 0; // some security bSPUIsOpen = 0; // no more open out_current->finish(); // no more sound handling return 0; } // SPUSHUTDOWN: called by main emu on final exit long CALLBACK SPUshutdown(void) { SPUclose(); RemoveStreams(); // no more streaming bSpuInit=0; return 0; } // SPUTEST: we don't test, we are always fine ;) long CALLBACK SPUtest(void) { return 0; } // SPUCONFIGURE: call config dialog long CALLBACK SPUconfigure(void) { #ifdef _MACOSX DoConfiguration(); #else // StartCfgTool("CFG"); #endif return 0; } // SPUABOUT: show about window void CALLBACK SPUabout(void) { #ifdef _MACOSX DoAbout(); #else // StartCfgTool("ABOUT"); #endif } // SETUP CALLBACKS // this functions will be called once, // passes a callback that should be called on SPU-IRQ/cdda volume change void CALLBACK SPUregisterCallback(void (CALLBACK *callback)(void)) { irqCallback = callback; } void CALLBACK SPUregisterCDDAVolume(void (CALLBACK *CDDAVcallback)(unsigned short,unsigned short)) { cddavCallback = CDDAVcallback; } void CALLBACK SPUregisterScheduleCb(void (CALLBACK *callback)(unsigned int)) { scheduleCallback = callback; } // COMMON PLUGIN INFO FUNCS /* char * CALLBACK PSEgetLibName(void) { return _(libraryName); } unsigned long CALLBACK PSEgetLibType(void) { return PSE_LT_SPU; } unsigned long CALLBACK PSEgetLibVersion(void) { return (1 << 16) | (6 << 8); } char * SPUgetLibInfos(void) { return _(libraryInfo); } */ // debug void spu_get_debug_info(int *chans_out, int *run_chans, int *fmod_chans_out, int *noise_chans_out) { int ch = 0, fmod_chans = 0, noise_chans = 0, irq_chans = 0; for(;ch