/*************************************************************************** spu.c - description ------------------- begin : Wed May 15 2002 copyright : (C) 2002 by Pete Bernert email : BlackDove@addcom.de Portions (C) GraÅžvydas "notaz" Ignotas, 2010-2011 ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. See also the license.txt file for * * additional informations. * * * ***************************************************************************/ #include "stdafx.h" #define _IN_SPU #include "externals.h" #include "registers.h" #include "cfg.h" #include "dsoundoss.h" #include "regs.h" #ifdef ENABLE_NLS #include #include #define _(x) gettext(x) #define N_(x) (x) #else #define _(x) (x) #define N_(x) (x) #endif #ifdef __arm__ #define ssat32_to_16(v) \ asm("ssat %0,#16,%1" : "=r" (v) : "r" (v)) #else #define ssat32_to_16(v) do { \ if (v < -32768) v = -32768; \ else if (v > 32767) v = 32767; \ } while (0) #endif /* #if defined (USEMACOSX) static char * libraryName = N_("Mac OS X Sound"); #elif defined (USEALSA) static char * libraryName = N_("ALSA Sound"); #elif defined (USEOSS) static char * libraryName = N_("OSS Sound"); #elif defined (USESDL) static char * libraryName = N_("SDL Sound"); #elif defined (USEPULSEAUDIO) static char * libraryName = N_("PulseAudio Sound"); #else static char * libraryName = N_("NULL Sound"); #endif static char * libraryInfo = N_("P.E.Op.S. Sound Driver V1.7\nCoded by Pete Bernert and the P.E.Op.S. team\n"); */ // globals // psx buffer / addresses unsigned short regArea[10000]; unsigned short spuMem[256*1024]; unsigned char * spuMemC; unsigned char * pSpuIrq=0; unsigned char * pSpuBuffer; unsigned char * pMixIrq=0; // user settings int iVolume=768; // 1024 is 1.0 int iXAPitch=1; int iUseTimer=2; int iSPUIRQWait=1; int iDebugMode=0; int iRecordMode=0; int iUseReverb=2; int iUseInterpolation=2; // MAIN infos struct for each channel SPUCHAN s_chan[MAXCHAN+1]; // channel + 1 infos (1 is security for fmod handling) REVERBInfo rvb; unsigned int dwNoiseVal; // global noise generator unsigned int dwNoiseCount; int iSpuAsyncWait=0; unsigned short spuCtrl=0; // some vars to store psx reg infos unsigned short spuStat=0; unsigned short spuIrq=0; unsigned long spuAddr=0xffffffff; // address into spu mem int bEndThread=0; // thread handlers int bThreadEnded=0; int bSpuInit=0; int bSPUIsOpen=0; static pthread_t thread = (pthread_t)-1; // thread id (linux) unsigned long dwNewChannel=0; // flags for faster testing, if new channel starts unsigned long dwChannelOn=0; unsigned long dwPendingChanOff=0; void (CALLBACK *irqCallback)(void)=0; // func of main emu, called on spu irq void (CALLBACK *cddavCallback)(unsigned short,unsigned short)=0; // certain globals (were local before, but with the new timeproc I need em global) static const int f[8][2] = { { 0, 0 }, { 60, 0 }, { 115, -52 }, { 98, -55 }, { 122, -60 } }; int ChanBuf[NSSIZE+3]; int SSumLR[(NSSIZE+3)*2]; int iFMod[NSSIZE]; int iCycle = 0; short * pS; int lastch=-1; // last channel processed on spu irq in timer mode static int lastns=0; // last ns pos static int iSecureStart=0; // secure start counter //////////////////////////////////////////////////////////////////////// // CODE AREA //////////////////////////////////////////////////////////////////////// // dirty inline func includes #include "reverb.c" #include "adsr.c" //////////////////////////////////////////////////////////////////////// // helpers for simple interpolation // // easy interpolation on upsampling, no special filter, just "Pete's common sense" tm // // instead of having n equal sample values in a row like: // ____ // |____ // // we compare the current delta change with the next delta change. // // if curr_delta is positive, // // - and next delta is smaller (or changing direction): // \. // -__ // // - and next delta significant (at least twice) bigger: // --_ // \. // // - and next delta is nearly same: // \. // \. // // // if curr_delta is negative, // // - and next delta is smaller (or changing direction): // _-- // / // // - and next delta significant (at least twice) bigger: // / // __- // // - and next delta is nearly same: // / // / // INLINE void InterpolateUp(int ch) { if(s_chan[ch].SB[32]==1) // flag == 1? calc step and set flag... and don't change the value in this pass { const int id1=s_chan[ch].SB[30]-s_chan[ch].SB[29]; // curr delta to next val const int id2=s_chan[ch].SB[31]-s_chan[ch].SB[30]; // and next delta to next-next val :) s_chan[ch].SB[32]=0; if(id1>0) // curr delta positive { if(id2id1) {s_chan[ch].SB[28]=id1;s_chan[ch].SB[32]=2;} else if(id2>(id1<<1)) s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x10000L; else s_chan[ch].SB[28]=(id1*s_chan[ch].sinc)/0x20000L; } } else if(s_chan[ch].SB[32]==2) // flag 1: calc step and set flag... and don't change the value in this pass { s_chan[ch].SB[32]=0; s_chan[ch].SB[28]=(s_chan[ch].SB[28]*s_chan[ch].sinc)/0x20000L; if(s_chan[ch].sinc<=0x8000) s_chan[ch].SB[29]=s_chan[ch].SB[30]-(s_chan[ch].SB[28]*((0x10000/s_chan[ch].sinc)-1)); else s_chan[ch].SB[29]+=s_chan[ch].SB[28]; } else // no flags? add bigger val (if possible), calc smaller step, set flag1 s_chan[ch].SB[29]+=s_chan[ch].SB[28]; } // // even easier interpolation on downsampling, also no special filter, again just "Pete's common sense" tm // INLINE void InterpolateDown(int ch) { if(s_chan[ch].sinc>=0x20000L) // we would skip at least one val? { s_chan[ch].SB[29]+=(s_chan[ch].SB[30]-s_chan[ch].SB[29])/2; // add easy weight if(s_chan[ch].sinc>=0x30000L) // we would skip even more vals? s_chan[ch].SB[29]+=(s_chan[ch].SB[31]-s_chan[ch].SB[30])/2;// add additional next weight } } //////////////////////////////////////////////////////////////////////// // helpers for gauss interpolation #define gval0 (((short*)(&s_chan[ch].SB[29]))[gpos]) #define gval(x) (((short*)(&s_chan[ch].SB[29]))[(gpos+x)&3]) #include "gauss_i.h" //////////////////////////////////////////////////////////////////////// #include "xa.c" //////////////////////////////////////////////////////////////////////// // START SOUND... called by main thread to setup a new sound on a channel //////////////////////////////////////////////////////////////////////// INLINE void StartSound(int ch) { StartADSR(ch); StartREVERB(ch); // fussy timing issues - do in VoiceOn //s_chan[ch].pCurr=s_chan[ch].pStart; // set sample start //s_chan[ch].bStop=0; //s_chan[ch].bOn=1; s_chan[ch].SB[26]=0; // init mixing vars s_chan[ch].SB[27]=0; s_chan[ch].iSBPos=28; s_chan[ch].SB[29]=0; // init our interpolation helpers s_chan[ch].SB[30]=0; if(iUseInterpolation>=2) // gauss interpolation? {s_chan[ch].spos=0x30000L;s_chan[ch].SB[28]=0;} // -> start with more decoding else {s_chan[ch].spos=0x10000L;s_chan[ch].SB[31]=0;} // -> no/simple interpolation starts with one 44100 decoding dwNewChannel&=~(1< take it and calc steps s_chan[ch].sinc=s_chan[ch].iRawPitch<<4; if(!s_chan[ch].sinc) s_chan[ch].sinc=1; if(iUseInterpolation==1) s_chan[ch].SB[32]=1; // -> freq change in simle imterpolation mode: set flag } //////////////////////////////////////////////////////////////////////// INLINE int FModChangeFrequency(int ch,int ns) { int NP=s_chan[ch].iRawPitch; int sinc; NP=((32768L+iFMod[ns])*NP)/32768L; if(NP>0x3fff) NP=0x3fff; if(NP<0x1) NP=0x1; NP=(44100L*NP)/(4096L); // calc frequency s_chan[ch].iActFreq=NP; s_chan[ch].iUsedFreq=NP; sinc=(((NP/10)<<16)/4410); if(!sinc) sinc=1; if(iUseInterpolation==1) // freq change in simple interpolation mode s_chan[ch].SB[32]=1; iFMod[ns]=0; return sinc; } //////////////////////////////////////////////////////////////////////// INLINE void StoreInterpolationVal(int ch,int fa) { if(s_chan[ch].bFMod==2) // fmod freq channel s_chan[ch].SB[29]=fa; else { ssat32_to_16(fa); if(iUseInterpolation>=2) // gauss/cubic interpolation { int gpos = s_chan[ch].SB[28]; gval0 = fa; gpos = (gpos+1) & 3; s_chan[ch].SB[28] = gpos; } else if(iUseInterpolation==1) // simple interpolation { s_chan[ch].SB[28] = 0; s_chan[ch].SB[29] = s_chan[ch].SB[30]; // -> helpers for simple linear interpolation: delay real val for two slots, and calc the two deltas, for a 'look at the future behaviour' s_chan[ch].SB[30] = s_chan[ch].SB[31]; s_chan[ch].SB[31] = fa; s_chan[ch].SB[32] = 1; // -> flag: calc new interolation } else s_chan[ch].SB[29]=fa; // no interpolation } } //////////////////////////////////////////////////////////////////////// INLINE int iGetInterpolationVal(int ch) { int fa; if(s_chan[ch].bFMod==2) return s_chan[ch].SB[29]; switch(iUseInterpolation) { //--------------------------------------------------// case 3: // cubic interpolation { long xd;int gpos; xd = ((s_chan[ch].spos) >> 1)+1; gpos = s_chan[ch].SB[28]; fa = gval(3) - 3*gval(2) + 3*gval(1) - gval0; fa *= (xd - (2<<15)) / 6; fa >>= 15; fa += gval(2) - gval(1) - gval(1) + gval0; fa *= (xd - (1<<15)) >> 1; fa >>= 15; fa += gval(1) - gval0; fa *= xd; fa >>= 15; fa = fa + gval0; } break; //--------------------------------------------------// case 2: // gauss interpolation { int vl, vr;int gpos; vl = (s_chan[ch].spos >> 6) & ~3; gpos = s_chan[ch].SB[28]; vr=(gauss[vl]*gval0)&~2047; vr+=(gauss[vl+1]*gval(1))&~2047; vr+=(gauss[vl+2]*gval(2))&~2047; vr+=(gauss[vl+3]*gval(3))&~2047; fa = vr>>11; } break; //--------------------------------------------------// case 1: // simple interpolation { if(s_chan[ch].sinc<0x10000L) // -> upsampling? InterpolateUp(ch); // --> interpolate up else InterpolateDown(ch); // --> else down fa=s_chan[ch].SB[29]; } break; //--------------------------------------------------// default: // no interpolation { fa=s_chan[ch].SB[29]; } break; //--------------------------------------------------// } return fa; } static void do_irq(void) { if(!(spuStat & STAT_IRQ)) { spuStat |= STAT_IRQ; if(irqCallback) irqCallback(); } } static void decode_block_data(int *dest, const unsigned char *src, int predict_nr, int shift_factor) { int nSample; int fa, s_1, s_2, d, s; s_1 = dest[27]; s_2 = dest[26]; for (nSample = 0; nSample < 28; src++) { d = (int)*src; s = (int)(signed short)((d & 0x0f) << 12); fa = s >> shift_factor; fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6); s_2=s_1;s_1=fa; dest[nSample++] = fa; s = (int)(signed short)((d & 0xf0) << 8); fa = s >> shift_factor; fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1])>>6); s_2=s_1;s_1=fa; dest[nSample++] = fa; } } static int decode_block(int ch) { unsigned char *start; int predict_nr,shift_factor,flags; int ret = 0; start=s_chan[ch].pCurr; // set up the current pos if(start == (unsigned char*)-1 || // special "stop" sign (dwPendingChanOff&(1< turn everything off dwPendingChanOff&=~(1< and done for this channel } //////////////////////////////////////////// irq check if(spuCtrl&CTRL_IRQ) { if(pSpuIrq == start) // irq address reached? { do_irq(); // -> call main emu ret = 1; } } predict_nr=(int)start[0]; shift_factor=predict_nr&0xf; predict_nr >>= 4; decode_block_data(s_chan[ch].SB, start + 2, predict_nr, shift_factor); //////////////////////////////////////////// flag handler flags=(int)start[1]; if(flags&4) s_chan[ch].pLoop=start; // loop adress start+=16; if(flags&1) // 1: stop/loop { if(!(flags&2)) dwPendingChanOff|=1<= 0x80000) start = (unsigned char*)-1; s_chan[ch].pCurr = start; // store values for next cycle return ret; } // do block, but ignore sample data static int skip_block(int ch) { unsigned char *start = s_chan[ch].pCurr; int flags = start[1]; int ret = 0; // Tron Bonne hack, probably wrong (could be wrong memory contents..) if(flags & ~7) flags = 0; if(start == pSpuIrq) { do_irq(); ret = 1; } if(flags & 4) s_chan[ch].pLoop=start; s_chan[ch].pCurr += 16; if(flags & 1) s_chan[ch].pCurr = s_chan[ch].pLoop; return ret; } #define make_do_samples(name, fmod_code, interp_start, interp1_code, interp2_code, interp_end) \ static int do_samples_##name(int ch, int ns, int ns_to) \ { \ int sinc = s_chan[ch].sinc; \ int spos = s_chan[ch].spos; \ int sbpos = s_chan[ch].iSBPos; \ int *SB = s_chan[ch].SB; \ int ret = -1; \ int d, fa; \ interp_start; \ \ for (; ns < ns_to; ns++) \ { \ fmod_code; \ \ while (spos >= 0x10000) \ { \ if(sbpos == 28) \ { \ sbpos = 0; \ d = decode_block(ch); \ if(d && iSPUIRQWait) \ { \ ret = ns; \ goto out; \ } \ } \ \ fa = SB[sbpos++]; \ interp1_code; \ spos -= 0x10000; \ } \ \ interp2_code; \ spos += sinc; \ } \ \ out: \ s_chan[ch].sinc = sinc; \ s_chan[ch].spos = spos; \ s_chan[ch].iSBPos = sbpos; \ interp_end; \ \ return ret; \ } #define fmod_recv_check \ if(s_chan[ch].bFMod==1 && iFMod[ns]) \ sinc = FModChangeFrequency(ch,ns) make_do_samples(default, fmod_recv_check, , StoreInterpolationVal(ch, fa), ChanBuf[ns] = iGetInterpolationVal(ch), ) make_do_samples(noint, , fa = s_chan[ch].SB[29], , ChanBuf[ns] = fa, s_chan[ch].SB[29] = fa) #define simple_interp_store \ s_chan[ch].SB[28] = 0; \ s_chan[ch].SB[29] = s_chan[ch].SB[30]; \ s_chan[ch].SB[30] = s_chan[ch].SB[31]; \ s_chan[ch].SB[31] = fa; \ s_chan[ch].SB[32] = 1 #define simple_interp_get \ if(sinc<0x10000) /* -> upsampling? */ \ InterpolateUp(ch); /* --> interpolate up */ \ else InterpolateDown(ch); /* --> else down */ \ ChanBuf[ns] = s_chan[ch].SB[29] make_do_samples(simple, , , simple_interp_store, simple_interp_get, ) static int do_samples_noise(int ch, int ns, int ns_to) { int level, shift, bit; s_chan[ch].spos += s_chan[ch].sinc * (ns_to - ns); while (s_chan[ch].spos >= 28*0x10000) { skip_block(ch); s_chan[ch].spos -= 28*0x10000; } // modified from DrHell/shalma, no fraction level = (spuCtrl >> 10) & 0x0f; level = 0x8000 >> level; for (; ns < ns_to; ns++) { dwNoiseCount += 2; if (dwNoiseCount >= level) { dwNoiseCount -= level; shift = (dwNoiseVal >> 10) & 0x1f; bit = (0x69696969 >> shift) & 1; if (dwNoiseVal & 0x8000) bit ^= 1; dwNoiseVal = (dwNoiseVal << 1) | bit; } ChanBuf[ns] = (signed short)dwNoiseVal; } return -1; } #ifdef __arm__ // asm code extern void mix_chan(int start, int count, int lv, int rv); extern void mix_chan_rvb(int start, int count, int lv, int rv); #else static void mix_chan(int start, int count, int lv, int rv) { int *dst = SSumLR + start * 2; const int *src = ChanBuf + start; int l, r; while (count--) { int sval = *src++; l = (sval * lv) >> 14; r = (sval * rv) >> 14; *dst++ += l; *dst++ += r; } } static void mix_chan_rvb(int start, int count, int lv, int rv) { int *dst = SSumLR + start * 2; int *drvb = sRVBStart + start * 2; const int *src = ChanBuf + start; int l, r; while (count--) { int sval = *src++; l = (sval * lv) >> 14; r = (sval * rv) >> 14; *dst++ += l; *dst++ += r; *drvb++ += l; *drvb++ += r; } } #endif //////////////////////////////////////////////////////////////////////// // MAIN SPU FUNCTION // here is the main job handler... thread, timer or direct func call // basically the whole sound processing is done in this fat func! //////////////////////////////////////////////////////////////////////// // 5 ms waiting phase, if buffer is full and no new sound has to get started // .. can be made smaller (smallest val: 1 ms), but bigger waits give // better performance #define PAUSE_W 5 #define PAUSE_L 5000 //////////////////////////////////////////////////////////////////////// static void *MAINThread(void *arg) { int volmult = iVolume; int ns,ns_from,ns_to; int ch,d; int bIRQReturn=0; while(!bEndThread) // until we are shutting down { // ok, at the beginning we are looking if there is // enuff free place in the dsound/oss buffer to // fill in new data, or if there is a new channel to start. // if not, we wait (thread) or return (timer/spuasync) // until enuff free place is available/a new channel gets // started if(dwNewChannel) // new channel should start immedately? { // (at least one bit 0 ... MAXCHANNEL is set?) iSecureStart++; // -> set iSecure if(iSecureStart>5) iSecureStart=0; // (if it is set 5 times - that means on 5 tries a new samples has been started - in a row, we will reset it, to give the sound update a chance) } else iSecureStart=0; // 0: no new channel should start while(!iSecureStart && !bEndThread && // no new start? no thread end? (SoundGetBytesBuffered()>TESTSIZE)) // and still enuff data in sound buffer? { iSecureStart=0; // reset secure if(iUseTimer) return 0; // linux no-thread mode? bye usleep(PAUSE_L); // else sleep for x ms (linux) if(dwNewChannel) iSecureStart=1; // if a new channel kicks in (or, of course, sound buffer runs low), we will leave the loop } //--------------------------------------------------// continue from irq handling in timer mode? ns_from=0; ns_to=NSSIZE; ch=0; if(lastch>=0) // will be -1 if no continue is pending { ch=lastch; ns_from=lastns; lastch=-1; // -> setup all kind of vars to continue } //--------------------------------------------------// //- main channel loop -// //--------------------------------------------------// { for(;ch=0) { bIRQReturn=1; lastch=ch; lastns=ns_to=d; } MixADSR(ch, ns_from, ns_to); if(s_chan[ch].bFMod==2) // fmod freq channel memcpy(iFMod, ChanBuf, sizeof(iFMod)); else if(s_chan[ch].bRVBActive) mix_chan_rvb(ns_from,ns_to-ns_from,s_chan[ch].iLeftVolume,s_chan[ch].iRightVolume); else mix_chan(ns_from,ns_to-ns_from,s_chan[ch].iLeftVolume,s_chan[ch].iRightVolume); } } // advance "stopped" channels that can cause irqs // (all chans are always playing on the real thing..) if(!bIRQReturn && (spuCtrl&CTRL_IRQ)) for(ch=0;ch pSpuIrq && s_chan[ch].pLoop > pSpuIrq) continue; if(s_chan[ch].iActFreq!=s_chan[ch].iUsedFreq) // new psx frequency? VoiceChangeFrequency(ch); s_chan[ch].spos += s_chan[ch].sinc * NSSIZE; while(s_chan[ch].spos >= 28 * 0x10000) { unsigned char *start=s_chan[ch].pCurr; // no need for bIRQReturn since the channel is silent iSpuAsyncWait |= skip_block(ch); if(start == s_chan[ch].pCurr) { // looping on self s_chan[ch].pCurr=(unsigned char *)-1; break; } s_chan[ch].spos -= 28 * 0x10000; } } if(bIRQReturn && iSPUIRQWait) // special return for "spu irq - wait for cpu action" { iSpuAsyncWait=1; bIRQReturn=0; if(iUseTimer!=2) { DWORD dwWatchTime=timeGetTime_spu()+2500; while(iSpuAsyncWait && !bEndThread && timeGetTime_spu()> 10; ssat32_to_16(d); *pS++ = d; ns++; d = SSumLR[ns]; SSumLR[ns] = 0; d = d * volmult >> 10; ssat32_to_16(d); *pS++ = d; ns++; } ////////////////////////////////////////////////////// // special irq handling in the decode buffers (0x0000-0x1000) // we know: // the decode buffers are located in spu memory in the following way: // 0x0000-0x03ff CD audio left // 0x0400-0x07ff CD audio right // 0x0800-0x0bff Voice 1 // 0x0c00-0x0fff Voice 3 // and decoded data is 16 bit for one sample // we assume: // even if voices 1/3 are off or no cd audio is playing, the internal // play positions will move on and wrap after 0x400 bytes. // Therefore: we just need a pointer from spumem+0 to spumem+3ff, and // increase this pointer on each sample by 2 bytes. If this pointer // (or 0x400 offsets of this pointer) hits the spuirq address, we generate // an IRQ. Only problem: the "wait for cpu" option is kinda hard to do here // in some of Peops timer modes. So: we ignore this option here (for now). if(pMixIrq) { for(ns=0;ns=pMixIrq+(ch*0x400) && pSpuIrqspuMemC+0x3ff) pMixIrq=spuMemC; } } InitREVERB(); // feed the sound // wanna have around 1/60 sec (16.666 ms) updates if (iCycle++ > 16/FRAG_MSECS) { SoundFeedStreamData((unsigned char *)pSpuBuffer, ((unsigned char *)pS) - ((unsigned char *)pSpuBuffer)); pS = (short *)pSpuBuffer; iCycle = 0; } } // end of big main loop... bThreadEnded = 1; return 0; } // SPU ASYNC... even newer epsxe func // 1 time every 'cycle' cycles... harhar void CALLBACK SPUasync(unsigned long cycle) { if(iSpuAsyncWait) { iSpuAsyncWait++; if(iSpuAsyncWait<=16/FRAG_MSECS) return; iSpuAsyncWait=0; } if(iUseTimer==2) // special mode, only used in Linux by this spu (or if you enable the experimental Windows mode) { if(!bSpuInit) return; // -> no init, no call MAINThread(0); // -> linux high-compat mode // abuse iSpuAsyncWait mechanism to reduce calls to above function // to make it do larger chunks // note: doing it less often than once per frame causes skips iSpuAsyncWait=1; } } // SPU UPDATE... new epsxe func // 1 time every 32 hsync lines // (312/32)x50 in pal // (262/32)x60 in ntsc // since epsxe 1.5.2 (linux) uses SPUupdate, not SPUasync, I will // leave that func in the linux port, until epsxe linux is using // the async function as well void CALLBACK SPUupdate(void) { SPUasync(0); } // XA AUDIO void CALLBACK SPUplayADPCMchannel(xa_decode_t *xap) { if(!xap) return; if(!xap->freq) return; // no xa freq ? bye FeedXA(xap); // call main XA feeder } // CDDA AUDIO void CALLBACK SPUplayCDDAchannel(short *pcm, int nbytes) { if (!pcm) return; if (nbytes<=0) return; FeedCDDA((unsigned char *)pcm, nbytes); } // SETUPTIMER: init of certain buffers and threads/timers void SetupTimer(void) { memset(SSumLR,0,sizeof(SSumLR)); // init some mixing buffers memset(iFMod,0,NSSIZE*sizeof(int)); pS=(short *)pSpuBuffer; // setup soundbuffer pointer bEndThread=0; // init thread vars bThreadEnded=0; bSpuInit=1; // flag: we are inited if(!iUseTimer) // linux: use thread { pthread_create(&thread, NULL, MAINThread, NULL); } } // REMOVETIMER: kill threads/timers void RemoveTimer(void) { bEndThread=1; // raise flag to end thread if(!iUseTimer) // linux tread? { int i=0; while(!bThreadEnded && i<2000) {usleep(1000L);i++;} // -> wait until thread has ended if(thread!=(pthread_t)-1) {pthread_cancel(thread);thread=(pthread_t)-1;} // -> cancel thread anyway } bThreadEnded=0; // no more spu is running bSpuInit=0; } // SETUPSTREAMS: init most of the spu buffers void SetupStreams(void) { int i; pSpuBuffer=(unsigned char *)malloc(32768); // alloc mixing buffer if(iUseReverb==1) i=88200*2; else i=NSSIZE*2; sRVBStart = (int *)malloc(i*4); // alloc reverb buffer memset(sRVBStart,0,i*4); sRVBEnd = sRVBStart + i; sRVBPlay = sRVBStart; XAStart = // alloc xa buffer (uint32_t *)malloc(44100 * sizeof(uint32_t)); XAEnd = XAStart + 44100; XAPlay = XAStart; XAFeed = XAStart; CDDAStart = // alloc cdda buffer (uint32_t *)malloc(16384 * sizeof(uint32_t)); CDDAEnd = CDDAStart + 16384; CDDAPlay = CDDAStart; CDDAFeed = CDDAStart; for(i=0;i init sustain s_chan[i].pLoop=spuMemC; s_chan[i].pStart=spuMemC; s_chan[i].pCurr=spuMemC; } pMixIrq=spuMemC; // enable decoded buffer irqs by setting the address } // REMOVESTREAMS: free most buffer void RemoveStreams(void) { free(pSpuBuffer); // free mixing buffer pSpuBuffer = NULL; free(sRVBStart); // free reverb buffer sRVBStart = NULL; free(XAStart); // free XA buffer XAStart = NULL; free(CDDAStart); // free CDDA buffer CDDAStart = NULL; } // INIT/EXIT STUFF // SPUINIT: this func will be called first by the main emu long CALLBACK SPUinit(void) { spuMemC = (unsigned char *)spuMem; // just small setup memset((void *)&rvb, 0, sizeof(REVERBInfo)); InitADSR(); spuIrq = 0; spuAddr = 0xffffffff; bEndThread = 0; bThreadEnded = 0; spuMemC = (unsigned char *)spuMem; pMixIrq = 0; memset((void *)s_chan, 0, (MAXCHAN + 1) * sizeof(SPUCHAN)); pSpuIrq = 0; //iSPUIRQWait = 0; lastch = -1; //ReadConfigSPU(); // read user stuff SetupStreams(); // prepare streaming return 0; } // SPUOPEN: called by main emu after init long CALLBACK SPUopen(void) { if (bSPUIsOpen) return 0; // security for some stupid main emus SetupSound(); // setup sound (before init!) SetupTimer(); // timer for feeding data bSPUIsOpen = 1; return PSE_SPU_ERR_SUCCESS; } // SPUCLOSE: called before shutdown long CALLBACK SPUclose(void) { if (!bSPUIsOpen) return 0; // some security bSPUIsOpen = 0; // no more open RemoveTimer(); // no more feeding RemoveSound(); // no more sound handling return 0; } // SPUSHUTDOWN: called by main emu on final exit long CALLBACK SPUshutdown(void) { SPUclose(); RemoveStreams(); // no more streaming return 0; } // SPUTEST: we don't test, we are always fine ;) long CALLBACK SPUtest(void) { return 0; } // SPUCONFIGURE: call config dialog long CALLBACK SPUconfigure(void) { #ifdef _MACOSX DoConfiguration(); #else // StartCfgTool("CFG"); #endif return 0; } // SPUABOUT: show about window void CALLBACK SPUabout(void) { #ifdef _MACOSX DoAbout(); #else // StartCfgTool("ABOUT"); #endif } // SETUP CALLBACKS // this functions will be called once, // passes a callback that should be called on SPU-IRQ/cdda volume change void CALLBACK SPUregisterCallback(void (CALLBACK *callback)(void)) { irqCallback = callback; } void CALLBACK SPUregisterCDDAVolume(void (CALLBACK *CDDAVcallback)(unsigned short,unsigned short)) { cddavCallback = CDDAVcallback; } // COMMON PLUGIN INFO FUNCS /* char * CALLBACK PSEgetLibName(void) { return _(libraryName); } unsigned long CALLBACK PSEgetLibType(void) { return PSE_LT_SPU; } unsigned long CALLBACK PSEgetLibVersion(void) { return (1 << 16) | (6 << 8); } char * SPUgetLibInfos(void) { return _(libraryInfo); } */ // debug void spu_get_debug_info(int *chans_out, int *fmod_chans_out, int *noise_chans_out) { int ch = 0, fmod_chans = 0, noise_chans = 0; for(;ch