/* * (C) GraÅžvydas "notaz" Ignotas, 2011 * * This work is licensed under the terms of any of these licenses * (at your option): * - GNU GPL, version 2 or later. * - GNU LGPL, version 2.1 or later. * See the COPYING file in the top-level directory. */ #include #include #include "gpu.h" #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) #define unlikely(x) __builtin_expect((x), 0) #define noinline __attribute__((noinline)) //#define log_io printf #define log_io(...) #define log_anomaly printf struct psx_gpu gpu __attribute__((aligned(64))); static noinline void do_reset(void) { memset(gpu.regs, 0, sizeof(gpu.regs)); gpu.status.reg = 0x14802000; gpu.gp0 = 0; gpu.regs[3] = 1; gpu.screen.hres = gpu.screen.w = 256; gpu.screen.vres = gpu.screen.h = 240; } static noinline void update_width(void) { int sw = gpu.screen.x2 - gpu.screen.x1; if (sw <= 0 || sw >= 2560) // full width gpu.screen.w = gpu.screen.hres; else gpu.screen.w = sw * gpu.screen.hres / 2560; } static noinline void update_height(void) { int sh = gpu.screen.y2 - gpu.screen.y1; if (gpu.status.dheight) sh *= 2; if (sh <= 0) sh = gpu.screen.vres; gpu.screen.h = sh; } static noinline void decide_frameskip(void) { gpu.frameskip.frame_ready = !gpu.frameskip.active; if (!gpu.frameskip.active && *gpu.frameskip.advice) gpu.frameskip.active = 1; else gpu.frameskip.active = 0; } static noinline void get_gpu_info(uint32_t data) { switch (data & 0x0f) { case 0x02: case 0x03: case 0x04: case 0x05: gpu.gp0 = gpu.ex_regs[data & 7] & 0xfffff; break; case 0x06: gpu.gp0 = gpu.ex_regs[5] & 0xfffff; break; case 0x07: gpu.gp0 = 2; break; default: gpu.gp0 = 0; break; } } long GPUinit(void) { int ret = vout_init(); do_reset(); gpu.lcf_hc = &gpu.zero; return ret; } long GPUshutdown(void) { return vout_finish(); } void GPUwriteStatus(uint32_t data) { static const short hres[8] = { 256, 368, 320, 384, 512, 512, 640, 640 }; static const short vres[4] = { 240, 480, 256, 480 }; uint32_t cmd = data >> 24; if (cmd < ARRAY_SIZE(gpu.regs)) { if (cmd != 0 && gpu.regs[cmd] == data) return; gpu.regs[cmd] = data; } gpu.state.fb_dirty = 1; switch (cmd) { case 0x00: do_reset(); break; case 0x03: gpu.status.blanking = data & 1; break; case 0x04: gpu.status.dma = data & 3; break; case 0x05: gpu.screen.x = data & 0x3ff; gpu.screen.y = (data >> 10) & 0x3ff; if (gpu.frameskip.enabled) decide_frameskip(); break; case 0x06: gpu.screen.x1 = data & 0xfff; gpu.screen.x2 = (data >> 12) & 0xfff; update_width(); break; case 0x07: gpu.screen.y1 = data & 0x3ff; gpu.screen.y2 = (data >> 10) & 0x3ff; update_height(); break; case 0x08: gpu.status.reg = (gpu.status.reg & ~0x7f0000) | ((data & 0x3F) << 17) | ((data & 0x40) << 10); gpu.screen.hres = hres[(gpu.status.reg >> 16) & 7]; gpu.screen.vres = vres[(gpu.status.reg >> 19) & 3]; update_width(); update_height(); break; case 0x10 ... 0x1f: get_gpu_info(data); break; } } const unsigned char cmd_lengths[256] = { 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 6, 6, 6, 6, 4, 4, 4, 4, 8, 8, 8, 8, // 20 5, 5, 5, 5, 8, 8, 8, 8, 7, 7, 7, 7, 11, 11, 11, 11, 2, 2, 2, 2, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, // 40 3, 3, 3, 3, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2, // 60 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // a0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // c0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // e0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; #define VRAM_MEM_XY(x, y) &gpu.vram[(y) * 1024 + (x)] static inline void do_vram_line(int x, int y, uint16_t *mem, int l, int is_read) { uint16_t *vram = VRAM_MEM_XY(x, y); if (is_read) memcpy(mem, vram, l * 2); else memcpy(vram, mem, l * 2); } static int do_vram_io(uint32_t *data, int count, int is_read) { int count_initial = count; uint16_t *sdata = (uint16_t *)data; int x = gpu.dma.x, y = gpu.dma.y; int w = gpu.dma.w, h = gpu.dma.h; int o = gpu.dma.offset; int l; count *= 2; // operate in 16bpp pixels if (gpu.dma.offset) { l = w - gpu.dma.offset; if (count < l) l = count; do_vram_line(x + o, y, sdata, l, is_read); if (o + l < w) o += l; else { o = 0; y++; h--; } sdata += l; count -= l; } for (; h > 0 && count >= w; sdata += w, count -= w, y++, h--) { y &= 511; do_vram_line(x, y, sdata, w, is_read); } if (h > 0 && count > 0) { y &= 511; do_vram_line(x, y, sdata, count, is_read); o = count; count = 0; } gpu.dma.y = y; gpu.dma.h = h; gpu.dma.offset = o; return count_initial - count / 2; } static void start_vram_transfer(uint32_t pos_word, uint32_t size_word, int is_read) { if (gpu.dma.h) log_anomaly("start_vram_transfer while old unfinished\n"); gpu.dma.x = pos_word & 1023; gpu.dma.y = (pos_word >> 16) & 511; gpu.dma.w = size_word & 0xffff; // ? gpu.dma.h = size_word >> 16; gpu.dma.offset = 0; if (is_read) gpu.status.img = 1; log_io("start_vram_transfer %c (%d, %d) %dx%d\n", is_read ? 'r' : 'w', gpu.dma.x, gpu.dma.y, gpu.dma.w, gpu.dma.h); } static int check_cmd(uint32_t *data, int count) { int len, cmd, start, pos; int vram_dirty = 0; // process buffer for (start = pos = 0; pos < count; ) { cmd = -1; len = 0; if (gpu.dma.h) { pos += do_vram_io(data + pos, count - pos, 0); if (pos == count) break; start = pos; } // do look-ahead pass to detect SR changes and VRAM i/o while (pos < count) { uint32_t *list = data + pos; cmd = list[0] >> 24; len = 1 + cmd_lengths[cmd]; //printf(" %3d: %02x %d\n", pos, cmd, len); if ((cmd & 0xf4) == 0x24) { // flat textured prim gpu.status.reg &= ~0x1ff; gpu.status.reg |= list[4] & 0x1ff; } else if ((cmd & 0xf4) == 0x34) { // shaded textured prim gpu.status.reg &= ~0x1ff; gpu.status.reg |= list[5] & 0x1ff; } else switch (cmd) { case 0xe1: gpu.status.reg &= ~0x7ff; gpu.status.reg |= list[0] & 0x7ff; break; case 0xe6: gpu.status.reg &= ~0x1800; gpu.status.reg |= (list[0] & 3) << 11; break; } if (2 <= cmd && cmd < 0xc0) vram_dirty = 1; else if ((cmd & 0xf8) == 0xe0) gpu.ex_regs[cmd & 7] = list[0]; if (pos + len > count) { cmd = -1; break; // incomplete cmd } if (cmd == 0xa0 || cmd == 0xc0) break; // image i/o pos += len; } if (pos - start > 0) { if (!gpu.frameskip.active) do_cmd_list(data + start, pos - start); start = pos; } if (cmd == 0xa0 || cmd == 0xc0) { // consume vram write/read cmd start_vram_transfer(data[pos + 1], data[pos + 2], cmd == 0xc0); pos += len; } if (cmd == -1) break; } gpu.state.fb_dirty |= vram_dirty; return count - pos; } static void flush_cmd_buffer(void) { int left = check_cmd(gpu.cmd_buffer, gpu.cmd_len); if (left > 0) memmove(gpu.cmd_buffer, gpu.cmd_buffer + gpu.cmd_len - left, left * 4); gpu.cmd_len = left; } void GPUwriteDataMem(uint32_t *mem, int count) { int left; log_io("gpu_dma_write %p %d\n", mem, count); if (unlikely(gpu.cmd_len > 0)) flush_cmd_buffer(); left = check_cmd(mem, count); if (left) log_anomaly("GPUwriteDataMem: discarded %d/%d words\n", left, count); } void GPUwriteData(uint32_t data) { log_io("gpu_write %08x\n", data); gpu.cmd_buffer[gpu.cmd_len++] = data; if (gpu.cmd_len >= CMD_BUFFER_LEN) flush_cmd_buffer(); } long GPUdmaChain(uint32_t *rambase, uint32_t start_addr) { uint32_t addr, *list; int len, left, count; if (unlikely(gpu.cmd_len > 0)) flush_cmd_buffer(); log_io("gpu_dma_chain\n"); addr = start_addr & 0xffffff; for (count = 0; addr != 0xffffff; count++) { log_io(".chain %08x\n", addr); list = rambase + (addr & 0x1fffff) / 4; len = list[0] >> 24; addr = list[0] & 0xffffff; // loop detection marker // (bit23 set causes DMA error on real machine, so // unlikely to be ever set by the game) list[0] |= 0x800000; if (len) { left = check_cmd(list + 1, len); if (left) log_anomaly("GPUwriteDataMem: discarded %d/%d words\n", left, len); } if (addr & 0x800000) break; } // remove loop detection markers addr = start_addr & 0x1fffff; while (count-- > 0) { list = rambase + addr / 4; addr = list[0] & 0x1fffff; list[0] &= ~0x800000; } return 0; } void GPUreadDataMem(uint32_t *mem, int count) { log_io("gpu_dma_read %p %d\n", mem, count); if (unlikely(gpu.cmd_len > 0)) flush_cmd_buffer(); if (gpu.dma.h) do_vram_io(mem, count, 1); } uint32_t GPUreadData(void) { log_io("gpu_read\n"); if (unlikely(gpu.cmd_len > 0)) flush_cmd_buffer(); if (gpu.dma.h) do_vram_io(&gpu.gp0, 1, 1); return gpu.gp0; } uint32_t GPUreadStatus(void) { uint32_t ret; if (unlikely(gpu.cmd_len > 0)) flush_cmd_buffer(); ret = gpu.status.reg | (*gpu.lcf_hc << 31); log_io("gpu_read_status %08x\n", ret); return ret; } typedef struct GPUFREEZETAG { uint32_t ulFreezeVersion; // should be always 1 for now (set by main emu) uint32_t ulStatus; // current gpu status uint32_t ulControl[256]; // latest control register values unsigned char psxVRam[1024*1024*2]; // current VRam image (full 2 MB for ZN) } GPUFreeze_t; long GPUfreeze(uint32_t type, GPUFreeze_t *freeze) { int i; switch (type) { case 1: // save if (gpu.cmd_len > 0) flush_cmd_buffer(); memcpy(freeze->psxVRam, gpu.vram, sizeof(gpu.vram)); memcpy(freeze->ulControl, gpu.regs, sizeof(gpu.regs)); memcpy(freeze->ulControl + 0xe0, gpu.ex_regs, sizeof(gpu.ex_regs)); freeze->ulStatus = gpu.status.reg; break; case 0: // load memcpy(gpu.vram, freeze->psxVRam, sizeof(gpu.vram)); memcpy(gpu.regs, freeze->ulControl, sizeof(gpu.regs)); memcpy(gpu.ex_regs, freeze->ulControl + 0xe0, sizeof(gpu.ex_regs)); gpu.status.reg = freeze->ulStatus; for (i = 8; i > 0; i--) { gpu.regs[i] ^= 1; // avoid reg change detection GPUwriteStatus((i << 24) | (gpu.regs[i] ^ 1)); } break; } return 1; } void GPUvBlank(int val, uint32_t *hcnt) { gpu.lcf_hc = &gpu.zero; if (gpu.status.interlace) { if (val) gpu.status.lcf ^= 1; } else { gpu.status.lcf = 0; if (!val) gpu.lcf_hc = hcnt; } } // vim:shiftwidth=2:expandtab