/* * (C) GraÅžvydas "notaz" Ignotas, 2011 * * This work is licensed under the terms of any of these licenses * (at your option): * - GNU GPL, version 2 or later. * - GNU LGPL, version 2.1 or later. * See the COPYING file in the top-level directory. */ #include #include #include #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) #define unlikely(x) __builtin_expect((x), 0) #define CMD_BUFFER_LEN 1024 static struct __attribute__((aligned(64))) { uint16_t vram[1024 * 512]; uint16_t guard[1024 * 512]; // overdraw guard uint32_t cmd_buffer[CMD_BUFFER_LEN]; uint32_t regs[16]; union { uint32_t reg; struct { uint32_t tx:4; // 0 texture page uint32_t ty:1; uint32_t abr:2; uint32_t tp:2; // 7 t.p. mode (4,8,15bpp) uint32_t dtd:1; // 9 dither uint32_t dfe:1; uint32_t md:1; // 11 set mask bit when drawing uint32_t me:1; // 12 no draw on mask uint32_t unkn:3; uint32_t width1:1; // 16 uint32_t width0:2; uint32_t dheight:1; // 19 double height uint32_t video:1; // 20 NTSC,PAL uint32_t rgb24:1; uint32_t interlace:1; // 22 interlace on uint32_t blanking:1; // 23 display not enabled uint32_t unkn2:2; uint32_t busy:1; // 26 !busy drawing uint32_t img:1; // 27 ready to DMA image data uint32_t com:1; // 28 ready for commands uint32_t dma:2; // 29 off, ?, to vram, from vram uint32_t lcf:1; // 31 }; } status; struct { int x, y, w, h; int y1, y2; } screen; struct { int x, y, w, h; int offset; } dma; int cmd_len; const uint32_t *lcf_hc; uint32_t zero; } gpu; long GPUinit(void) { gpu.status.reg = 0x14802000; return 0; } long GPUshutdown(void) { return 0; } void GPUwriteStatus(uint32_t data) { static const short hres[8] = { 256, 368, 320, 384, 512, 512, 640, 640 }; static const short vres[4] = { 240, 480, 256, 480 }; uint32_t cmd = data >> 24; switch (data >> 24) { case 0x00: gpu.status.reg = 0x14802000; break; case 0x03: gpu.status.blanking = data & 1; break; case 0x04: gpu.status.dma = data & 3; break; case 0x05: gpu.screen.x = data & 0x3ff; gpu.screen.y = (data >> 10) & 0x3ff; break; case 0x07: gpu.screen.y1 = data & 0x3ff; gpu.screen.y2 = (data >> 10) & 0x3ff; break; case 0x08: gpu.status.reg = (gpu.status.reg & ~0x7f0000) | ((data & 0x3F) << 17) | ((data & 0x40) << 10); gpu.screen.w = hres[(gpu.status.reg >> 16) & 7]; gpu.screen.h = vres[(gpu.status.reg >> 19) & 3]; break; } if (cmd < ARRAY_SIZE(gpu.regs)) gpu.regs[cmd] = data; } static const unsigned char cmd_lengths[256] = { 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 6, 6, 6, 6, 4, 4, 4, 4, 8, 8, 8, 8, // 20 5, 5, 5, 5, 8, 8, 8, 8, 7, 7, 7, 7, 11, 11, 11, 11, 2, 2, 2, 2, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, // 40 3, 3, 3, 3, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2, // 60 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // a0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // c0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // e0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; void do_cmd(uint32_t *list, int count) { uint32_t *list_end = list + count; int cmd; //printf("do_cmd %p, %d\n", data, count); for (; list < list_end; list += 1 + cmd_lengths[cmd]) { cmd = list[0] >> 24; switch (cmd) { case 0xe1: gpu.status.reg &= ~0x7ff; gpu.status.reg |= list[0] & 0x7ff; break; case 0xe6: gpu.status.reg &= ~0x1800; gpu.status.reg |= (list[0] & 3) << 11; break; } if ((cmd & 0xf4) == 0x24) { // flat textured prim gpu.status.reg &= ~0x1ff; gpu.status.reg |= list[4] & 0x1ff; } else if ((cmd & 0xf4) == 0x34) { // shaded textured prim gpu.status.reg &= ~0x1ff; gpu.status.reg |= list[5] & 0x1ff; } } } #define VRAM_MEM_XY(x, y) &gpu.vram[(y) * 1024 + (x)] static inline void do_vram_line(int x, int y, uint16_t *mem, int l, int is_read) { uint16_t *vram = VRAM_MEM_XY(x, y); if (is_read) memcpy(mem, vram, l * 2); else memcpy(vram, mem, l * 2); } static int do_vram_io(uint32_t *data, int count, int is_read) { int count_initial = count; uint16_t *sdata = (uint16_t *)data; int x = gpu.dma.x, y = gpu.dma.y; int w = gpu.dma.w, h = gpu.dma.h; int l; count *= 2; // operate in 16bpp pixels if (gpu.dma.offset) { l = w - gpu.dma.offset; if (l > count) l = count; do_vram_line(x + gpu.dma.offset, y, sdata, l, is_read); sdata += l; count -= l; y++; h--; } for (; h > 0 && count >= w; sdata += w, count -= w, y++, h--) { y &= 511; do_vram_line(x, y, sdata, w, is_read); } if (h > 0 && count > 0) { y &= 511; do_vram_line(x, y, sdata, count, is_read); gpu.dma.offset = count; count = 0; } else gpu.dma.offset = 0; gpu.dma.y = y; gpu.dma.h = h; return count_initial - (count + 1) / 2; } static void start_vram_transfer(uint32_t pos_word, uint32_t size_word, int is_read) { gpu.dma.x = pos_word & 1023; gpu.dma.y = (pos_word >> 16) & 511; gpu.dma.w = size_word & 0xffff; // ? gpu.dma.h = size_word >> 16; gpu.dma.offset = 0; if (is_read) gpu.status.img = 1; //printf("start_vram_transfer %c (%d, %d) %dx%d\n", is_read ? 'r' : 'w', // gpu.dma.x, gpu.dma.y, gpu.dma.w, gpu.dma.h); } static int check_cmd(uint32_t *data, int count) { int len, cmd, start, pos; //printf("check_cmd %p, %d\n", data, count); // process buffer for (start = pos = 0;; ) { cmd = -1; len = 0; if (gpu.dma.h) { pos += do_vram_io(data + pos, count - pos, 0); start = pos; } while (pos < count) { cmd = data[pos] >> 24; len = 1 + cmd_lengths[cmd]; //printf(" %3d: %02x %d\n", pos, cmd, len); if (pos + len > count) { cmd = -1; break; // incomplete cmd } if (cmd == 0xa0 || cmd == 0xc0) break; // image i/o pos += len; } if (pos - start > 0) { do_cmd(data + start, pos - start); start = pos; } if (cmd == 0xa0 || cmd == 0xc0) { // consume vram write/read cmd start_vram_transfer(data[pos + 1], data[pos + 2], cmd == 0xc0); pos += len; } if (pos == count) return 0; if (pos + len > count) { //printf("discarding %d words\n", pos + len - count); return pos + len - count; } } } static void flush_cmd_buffer(void) { int left = check_cmd(gpu.cmd_buffer, gpu.cmd_len); if (left > 0) memmove(gpu.cmd_buffer, gpu.cmd_buffer + gpu.cmd_len - left, left * 4); gpu.cmd_len = left; } void GPUwriteDataMem(uint32_t *mem, int count) { int left; if (unlikely(gpu.cmd_len > 0)) flush_cmd_buffer(); left = check_cmd(mem, count); if (left) printf("GPUwriteDataMem: discarded %d/%d words\n", left, count); } void GPUwriteData(uint32_t data) { gpu.cmd_buffer[gpu.cmd_len++] = data; if (gpu.cmd_len >= CMD_BUFFER_LEN) flush_cmd_buffer(); } long GPUdmaChain(uint32_t *base, uint32_t addr) { uint32_t *list; int len; if (unlikely(gpu.cmd_len > 0)) flush_cmd_buffer(); while (addr != 0xffffff) { list = base + (addr & 0x1fffff) / 4; len = list[0] >> 24; addr = list[0] & 0xffffff; if (len) GPUwriteDataMem(list + 1, len); } return 0; } void GPUreadDataMem(uint32_t *mem, int count) { if (unlikely(gpu.cmd_len > 0)) flush_cmd_buffer(); if (gpu.dma.h) do_vram_io(mem, count, 1); } uint32_t GPUreadData(void) { uint32_t v = 0; GPUreadDataMem(&v, 1); return v; } uint32_t GPUreadStatus(void) { if (unlikely(gpu.cmd_len > 0)) flush_cmd_buffer(); return gpu.status.reg | (*gpu.lcf_hc << 31); } typedef struct GPUFREEZETAG { uint32_t ulFreezeVersion; // should be always 1 for now (set by main emu) uint32_t ulStatus; // current gpu status uint32_t ulControl[256]; // latest control register values unsigned char psxVRam[1024*1024*2]; // current VRam image (full 2 MB for ZN) } GPUFreeze_t; long GPUfreeze(uint32_t type, GPUFreeze_t *freeze) { switch (type) { case 1: // save if (gpu.cmd_len > 0) flush_cmd_buffer(); memcpy(freeze->psxVRam, gpu.vram, sizeof(gpu.vram)); memcpy(freeze->ulControl, gpu.regs, sizeof(gpu.regs)); freeze->ulStatus = gpu.status.reg; break; case 0: // load memcpy(gpu.vram, freeze->psxVRam, sizeof(gpu.vram)); memcpy(gpu.regs, freeze->ulControl, sizeof(gpu.regs)); gpu.status.reg = freeze->ulStatus; GPUwriteStatus((5 << 24) | gpu.regs[5]); GPUwriteStatus((7 << 24) | gpu.regs[7]); GPUwriteStatus((8 << 24) | gpu.regs[8]); break; } return 1; } void GPUvBlank(int val, uint32_t *hcnt) { gpu.lcf_hc = &gpu.zero; if (gpu.status.interlace) { if (val) gpu.status.lcf ^= 1; } else { gpu.status.lcf = 0; if (!val) gpu.lcf_hc = hcnt; } } // rearmed specific #include "../../frontend/plugin_lib.h" #include "../../frontend/arm_utils.h" static const struct rearmed_cbs *cbs; static void *screen_buf; static void blit(void) { static uint32_t old_status, old_h; int x = gpu.screen.x & ~3; // alignment needed by blitter int y = gpu.screen.y; int w = gpu.screen.w; int h; uint16_t *srcs; uint8_t *dest; srcs = &gpu.vram[y * 1024 + x]; h = gpu.screen.y2 - gpu.screen.y1; if (gpu.status.dheight) h *= 2; if (h <= 0) return; if ((gpu.status.reg ^ old_status) & ((7<<16)|(1<<21)) || h != old_h) // width|rgb24 change? { old_status = gpu.status.reg; old_h = h; screen_buf = cbs->pl_fbdev_set_mode(w, h, gpu.status.rgb24 ? 24 : 16); } dest = screen_buf; if (gpu.status.rgb24) { #ifndef MAEMO for (; h-- > 0; dest += w * 3, srcs += 1024) { bgr888_to_rgb888(dest, srcs, w * 3); } #else for (; h-- > 0; dest += w * 2, srcs += 1024) { bgr888_to_rgb565(dest, srcs, w * 3); } #endif } else { for (; h-- > 0; dest += w * 2, srcs += 1024) { bgr555_to_rgb565(dest, srcs, w * 2); } } screen_buf = cbs->pl_fbdev_flip(); } void GPUupdateLace(void) { if (!gpu.status.blanking) blit(); } long GPUopen(void) { cbs->pl_fbdev_open(); screen_buf = cbs->pl_fbdev_flip(); return 0; } long GPUclose(void) { cbs->pl_fbdev_close(); return 0; } void GPUrearmedCallbacks(const struct rearmed_cbs *cbs_) { cbs = cbs_; } // vim:shiftwidth=2:expandtab