#include #include "core.h" #include "options.h" #include "scale.h" #define prefetch(a,b) __builtin_prefetch(a,b) #define likely(x) __builtin_expect((x),1) #define unlikely(x) __builtin_expect((x),0) typedef void (*scaler_t)(unsigned w, unsigned h, size_t pitch, const void *src, void *dst); struct dimensions { unsigned w; unsigned h; size_t pitch; }; static scaler_t scaler; static unsigned dst_w, dst_h, dst_offs; struct dimensions prev; static void scale_memcpy(unsigned w, unsigned h, size_t pitch, const void *src, void *dst) { dst += dst_offs; memcpy(dst, src, h * pitch); } static void scale_1x(unsigned w, unsigned h, size_t pitch, const void *src, void *dst) { dst += dst_offs; for (int y = 0; y < h; y++) { memcpy(dst + y * SCREEN_PITCH, src + y * pitch, pitch); } } static void scale_nearest(unsigned w, unsigned h, size_t pitch, const void *src_bytes, void *dst_bytes) { const uint16_t *src = (const uint16_t *)src_bytes; uint16_t *dst = (uint16_t *)dst_bytes; int dy = -(dst_h / 2); unsigned lines = 0; dst += dst_offs / sizeof(dst[0]); while (lines < h) { int dx = -(dst_w / 2); const uint16_t *psrc = src; uint16_t *pdst = dst; bool copy = false; if (copy) { copy = false; memcpy(dst, dst - SCREEN_PITCH / sizeof(dst[0]), SCREEN_PITCH); } else if (dy <= 0) { while (psrc - src < w) { if (dx <= 0) { *pdst++ = *psrc; dx += w; } if (dx > 0) { psrc++; dx -= dst_w; } } } if (dy <= 0) { dy += h; dst += SCREEN_PITCH / sizeof(dst[0]); } if (dy > 0) { dy -= dst_h; src += pitch / sizeof(src[0]); lines++; } else { copy = true; } } } /* drowsnug's nofilter upscaler, edited by eggs for smoothness */ #define AVERAGE16(c1, c2) (((c1) + (c2) + (((c1) ^ (c2)) & 0x0821))>>1) //More accurate static void scale_sharp_240x160_320xXXX(unsigned _w, unsigned _h, size_t _pitch, const void *src_bytes, void *dst_bytes) { int Eh = 0; int dh = 0; int width = 240; int vf = 0; const uint16_t *src = (const uint16_t *)src_bytes; uint16_t *dst = (uint16_t *)dst_bytes; dst += dst_offs / sizeof(uint16_t); int x, y; for (y = 0; y < dst_h; y++) { int source = dh * width; for (x = 0; x < 320/4; x++) { register uint16_t a, b, c; a = src[source]; b = src[source+1]; c = src[source+2]; if(vf == 1){ a = AVERAGE16(a, src[source+width]); b = AVERAGE16(b, src[source+width+1]); c = AVERAGE16(c, src[source+width+2]); } *dst++ = a; *dst++ = AVERAGE16(AVERAGE16(a,b),b); *dst++ = AVERAGE16(b,AVERAGE16(b,c)); *dst++ = c; source+=3; } Eh += 160; if(Eh >= dst_h) { Eh -= dst_h; dh++; vf = 0; } else vf = 1; } } static void scale_sharp_256xXXX_320xXXX(unsigned w, unsigned h, size_t pitch, const void *src_bytes, void *dst_bytes) { int Eh = 0; int dh = 0; int vf = 0; const uint16_t *src = (const uint16_t *)src_bytes; uint16_t *dst = (uint16_t *)dst_bytes; size_t pxpitch = pitch / 2; dst += dst_offs / sizeof(uint16_t); int x, y; for (y = 0; y < dst_h; y++) { int source = dh * pxpitch; for (x = 0; x < 320/5; x++) { register uint16_t a, b, c, d; a = src[source]; b = src[source+1]; c = src[source+2]; d = src[source+3]; if(vf == 1){ a = AVERAGE16(a, src[source+pxpitch]); b = AVERAGE16(b, src[source+pxpitch+1]); c = AVERAGE16(c, src[source+pxpitch+2]); d = AVERAGE16(d, src[source+pxpitch+3]); } *dst++ = a; *dst++ = AVERAGE16(AVERAGE16(a,b),b); *dst++ = AVERAGE16(b,c); *dst++ = AVERAGE16(c,AVERAGE16(c,d)); *dst++ = d; source+=4; } Eh += h; if(Eh >= dst_h) { Eh -= dst_h; dh++; vf = 0; } else vf = 1; } } /* gpsp-bittboy bilinear scalers https://github.com/retrofirmware/gpsp-bittboy */ #define Average(A, B) ((((A) & 0xF7DE) >> 1) + (((B) & 0xF7DE) >> 1) + ((A) & (B) & 0x0821)) /* Calculates the average of two pairs of RGB565 pixels. The result is, in * the lower bits, the average of both lower pixels, and in the upper bits, * the average of both upper pixels. */ #define Average32(A, B) ((((A) & 0xF7DEF7DE) >> 1) + (((B) & 0xF7DEF7DE) >> 1) + ((A) & (B) & 0x08210821)) /* Raises a pixel from the lower half to the upper half of a pair. */ #define Raise(N) ((N) << 16) /* Extracts the upper pixel of a pair into the lower pixel of a pair. */ #define Hi(N) ((N) >> 16) /* Extracts the lower pixel of a pair. */ #define Lo(N) ((N) & 0xFFFF) /* Calculates the average of two RGB565 pixels. The source of the pixels is * the lower 16 bits of both parameters. The result is in the lower 16 bits. * The average is weighted so that the first pixel contributes 3/4 of its * color and the second pixel contributes 1/4. */ #define AverageQuarters3_1(A, B) ( (((A) & 0xF7DE) >> 1) + (((A) & 0xE79C) >> 2) + (((B) & 0xE79C) >> 2) + ((( (( ((A) & 0x1863) + ((A) & 0x0821) ) << 1) + ((B) & 0x1863) ) >> 2) & 0x1863) ) static inline void scale_bilinearish_240x160_320x240(unsigned src_x, unsigned src_y, size_t src_pitch, const void *src, void *dst) { /* Before: * a b c d e f * g h i j k l * * After (multiple letters = average): * a ab bc c d de ef f * ag abgh bchi ci dj dejk efkl fl * g gh hi i j jk kl l */ uint16_t *to = (uint16_t *)dst; const uint16_t *from = (const uint16_t *)src; const uint32_t dst_pitch = SCREEN_PITCH; const uint32_t dst_x = src_x * 4 / 3; const uint32_t src_skip = src_pitch - src_x * sizeof(uint16_t), dst_skip = dst_pitch - dst_x * sizeof(uint16_t); uint32_t x, y; for (y = 0; y < src_y; y += 2) { for (x = 0; x < src_x / 6; x++) { // -- Row 1 -- // Read RGB565 elements in the source grid. // The notation is high_low (little-endian). uint32_t b_a = (*(uint32_t*) (from )), d_c = (*(uint32_t*) (from + 2)), f_e = (*(uint32_t*) (from + 4)); // Generate ab_a from b_a. *(uint32_t*) (to) = likely(Hi(b_a) == Lo(b_a)) ? b_a : Lo(b_a) /* 'a' verbatim to low pixel */ | Raise(Average(Hi(b_a), Lo(b_a))) /* ba to high pixel */; // Generate c_bc from b_a and d_c. *(uint32_t*) (to + 2) = likely(Hi(b_a) == Lo(d_c)) ? Lo(d_c) | Raise(Lo(d_c)) : Raise(Lo(d_c)) /* 'c' verbatim to high pixel */ | Average(Lo(d_c), Hi(b_a)) /* bc to low pixel */; // Generate de_d from d_c and f_e. *(uint32_t*) (to + 4) = likely(Hi(d_c) == Lo(f_e)) ? Lo(f_e) | Raise(Lo(f_e)) : Hi(d_c) /* 'd' verbatim to low pixel */ | Raise(Average(Lo(f_e), Hi(d_c))) /* de to high pixel */; // Generate f_ef from f_e. *(uint32_t*) (to + 6) = likely(Hi(f_e) == Lo(f_e)) ? f_e : Raise(Hi(f_e)) /* 'f' verbatim to high pixel */ | Average(Hi(f_e), Lo(f_e)) /* ef to low pixel */; if (likely(y + 1 < src_y)) // Is there a source row 2? { // -- Row 2 -- uint32_t h_g = (*(uint32_t*) ((uint8_t*) from + src_pitch )), j_i = (*(uint32_t*) ((uint8_t*) from + src_pitch + 4)), l_k = (*(uint32_t*) ((uint8_t*) from + src_pitch + 8)); // Generate abgh_ag from b_a and h_g. uint32_t bh_ag = Average32(b_a, h_g); *(uint32_t*) ((uint8_t*) to + dst_pitch) = likely(Hi(bh_ag) == Lo(bh_ag)) ? bh_ag : Lo(bh_ag) /* ag verbatim to low pixel */ | Raise(Average(Hi(bh_ag), Lo(bh_ag))) /* abgh to high pixel */; // Generate ci_bchi from b_a, d_c, h_g and j_i. uint32_t ci_bh = Hi(bh_ag) /* bh verbatim to low pixel */ | Raise(Average(Lo(d_c), Lo(j_i))) /* ci to high pixel */; *(uint32_t*) ((uint8_t*) to + dst_pitch + 4) = likely(Hi(ci_bh) == Lo(ci_bh)) ? ci_bh : Raise(Hi(ci_bh)) /* ci verbatim to high pixel */ | Average(Hi(ci_bh), Lo(ci_bh)) /* bchi to low pixel */; // Generate fl_efkl from f_e and l_k. uint32_t fl_ek = Average32(f_e, l_k); *(uint32_t*) ((uint8_t*) to + dst_pitch + 12) = likely(Hi(fl_ek) == Lo(fl_ek)) ? fl_ek : Raise(Hi(fl_ek)) /* fl verbatim to high pixel */ | Average(Hi(fl_ek), Lo(fl_ek)) /* efkl to low pixel */; // Generate dejk_dj from d_c, f_e, j_i and l_k. uint32_t ek_dj = Raise(Lo(fl_ek)) /* ek verbatim to high pixel */ | Average(Hi(d_c), Hi(j_i)) /* dj to low pixel */; *(uint32_t*) ((uint8_t*) to + dst_pitch + 8) = likely(Hi(ek_dj) == Lo(ek_dj)) ? ek_dj : Lo(ek_dj) /* dj verbatim to low pixel */ | Raise(Average(Hi(ek_dj), Lo(ek_dj))) /* dejk to high pixel */; // -- Row 3 -- // Generate gh_g from h_g. *(uint32_t*) ((uint8_t*) to + dst_pitch * 2) = likely(Hi(h_g) == Lo(h_g)) ? h_g : Lo(h_g) /* 'g' verbatim to low pixel */ | Raise(Average(Hi(h_g), Lo(h_g))) /* gh to high pixel */; // Generate i_hi from g_h and j_i. *(uint32_t*) ((uint8_t*) to + dst_pitch * 2 + 4) = likely(Hi(h_g) == Lo(j_i)) ? Lo(j_i) | Raise(Lo(j_i)) : Raise(Lo(j_i)) /* 'i' verbatim to high pixel */ | Average(Lo(j_i), Hi(h_g)) /* hi to low pixel */; // Generate jk_j from j_i and l_k. *(uint32_t*) ((uint8_t*) to + dst_pitch * 2 + 8) = likely(Hi(j_i) == Lo(l_k)) ? Lo(l_k) | Raise(Lo(l_k)) : Hi(j_i) /* 'j' verbatim to low pixel */ | Raise(Average(Hi(j_i), Lo(l_k))) /* jk to high pixel */; // Generate l_kl from l_k. *(uint32_t*) ((uint8_t*) to + dst_pitch * 2 + 12) = likely(Hi(l_k) == Lo(l_k)) ? l_k : Raise(Hi(l_k)) /* 'l' verbatim to high pixel */ | Average(Hi(l_k), Lo(l_k)) /* kl to low pixel */; } from += 6; to += 8; } // Skip past the waste at the end of the first line, if any, // then past 1 whole lines of source and 2 of destination. from = (uint16_t*) ((uint8_t*) from + src_skip + src_pitch); to = (uint16_t*) ((uint8_t*) to + dst_skip + 2 * dst_pitch); } } static inline void scale_bilinearish_240x160_320x213(unsigned src_x, unsigned src_y, size_t src_pitch, const void *src, void *dst) { /* Before: * a b c d e f * g h i j k l * m n o p q r * * After (multiple letters = average): * a ab bc c d de ef f * ag abgh bchi ci dj dejk efkl fl * gm ghmn hino io jp jkpq klqr lr * m mn no o p pq qr r */ uint16_t *to = (uint16_t *)dst + dst_offs / sizeof(uint16_t); const uint16_t *from = (const uint16_t *)src; const uint32_t dst_pitch = SCREEN_PITCH; const uint32_t dst_x = src_x * 4 / 3; const uint32_t src_skip = src_pitch - src_x * sizeof(uint16_t), dst_skip = dst_pitch - dst_x * sizeof(uint16_t); uint32_t x, y; for (y = 0; y < src_y; y += 3) { for (x = 0; x < src_x / 6; x++) { // -- Row 1 -- // Read RGB565 elements in the source grid. // The notation is high_low (little-endian). uint32_t b_a = (*(uint32_t*) (from )), d_c = (*(uint32_t*) (from + 2)), f_e = (*(uint32_t*) (from + 4)); // Generate ab_a from b_a. *(uint32_t*) (to) = likely(Hi(b_a) == Lo(b_a)) ? b_a : Lo(b_a) /* 'a' verbatim to low pixel */ | Raise(Average(Hi(b_a), Lo(b_a))) /* ba to high pixel */; // Generate c_bc from b_a and d_c. *(uint32_t*) (to + 2) = likely(Hi(b_a) == Lo(d_c)) ? Lo(d_c) | Raise(Lo(d_c)) : Raise(Lo(d_c)) /* 'c' verbatim to high pixel */ | Average(Lo(d_c), Hi(b_a)) /* bc to low pixel */; // Generate de_d from d_c and f_e. *(uint32_t*) (to + 4) = likely(Hi(d_c) == Lo(f_e)) ? Lo(f_e) | Raise(Lo(f_e)) : Hi(d_c) /* 'd' verbatim to low pixel */ | Raise(Average(Lo(f_e), Hi(d_c))) /* de to high pixel */; // Generate f_ef from f_e. *(uint32_t*) (to + 6) = likely(Hi(f_e) == Lo(f_e)) ? f_e : Raise(Hi(f_e)) /* 'f' verbatim to high pixel */ | Average(Hi(f_e), Lo(f_e)) /* ef to low pixel */; if (likely(y + 1 < src_y)) // Is there a source row 2? { // -- Row 2 -- uint32_t h_g = (*(uint32_t*) ((uint8_t*) from + src_pitch )), j_i = (*(uint32_t*) ((uint8_t*) from + src_pitch + 4)), l_k = (*(uint32_t*) ((uint8_t*) from + src_pitch + 8)); // Generate abgh_ag from b_a and h_g. uint32_t bh_ag = Average32(b_a, h_g); *(uint32_t*) ((uint8_t*) to + dst_pitch) = likely(Hi(bh_ag) == Lo(bh_ag)) ? bh_ag : Lo(bh_ag) /* ag verbatim to low pixel */ | Raise(Average(Hi(bh_ag), Lo(bh_ag))) /* abgh to high pixel */; // Generate ci_bchi from b_a, d_c, h_g and j_i. uint32_t ci_bh = Hi(bh_ag) /* bh verbatim to low pixel */ | Raise(Average(Lo(d_c), Lo(j_i))) /* ci to high pixel */; *(uint32_t*) ((uint8_t*) to + dst_pitch + 4) = likely(Hi(ci_bh) == Lo(ci_bh)) ? ci_bh : Raise(Hi(ci_bh)) /* ci verbatim to high pixel */ | Average(Hi(ci_bh), Lo(ci_bh)) /* bchi to low pixel */; // Generate fl_efkl from f_e and l_k. uint32_t fl_ek = Average32(f_e, l_k); *(uint32_t*) ((uint8_t*) to + dst_pitch + 12) = likely(Hi(fl_ek) == Lo(fl_ek)) ? fl_ek : Raise(Hi(fl_ek)) /* fl verbatim to high pixel */ | Average(Hi(fl_ek), Lo(fl_ek)) /* efkl to low pixel */; // Generate dejk_dj from d_c, f_e, j_i and l_k. uint32_t ek_dj = Raise(Lo(fl_ek)) /* ek verbatim to high pixel */ | Average(Hi(d_c), Hi(j_i)) /* dj to low pixel */; *(uint32_t*) ((uint8_t*) to + dst_pitch + 8) = likely(Hi(ek_dj) == Lo(ek_dj)) ? ek_dj : Lo(ek_dj) /* dj verbatim to low pixel */ | Raise(Average(Hi(ek_dj), Lo(ek_dj))) /* dejk to high pixel */; if (likely(y + 2 < src_y)) // Is there a source row 3? { // -- Row 3 -- uint32_t n_m = (*(uint32_t*) ((uint8_t*) from + src_pitch * 2 )), p_o = (*(uint32_t*) ((uint8_t*) from + src_pitch * 2 + 4)), r_q = (*(uint32_t*) ((uint8_t*) from + src_pitch * 2 + 8)); // Generate ghmn_gm from h_g and n_m. uint32_t hn_gm = Average32(h_g, n_m); *(uint32_t*) ((uint8_t*) to + dst_pitch * 2) = likely(Hi(hn_gm) == Lo(hn_gm)) ? hn_gm : Lo(hn_gm) /* gm verbatim to low pixel */ | Raise(Average(Hi(hn_gm), Lo(hn_gm))) /* ghmn to high pixel */; // Generate io_hino from h_g, j_i, n_m and p_o. uint32_t io_hn = Hi(hn_gm) /* hn verbatim to low pixel */ | Raise(Average(Lo(j_i), Lo(p_o))) /* io to high pixel */; *(uint32_t*) ((uint8_t*) to + dst_pitch * 2 + 4) = likely(Hi(io_hn) == Lo(io_hn)) ? io_hn : Raise(Hi(io_hn)) /* io verbatim to high pixel */ | Average(Hi(io_hn), Lo(io_hn)) /* hino to low pixel */; // Generate lr_klqr from l_k and r_q. uint32_t lr_kq = Average32(l_k, r_q); *(uint32_t*) ((uint8_t*) to + dst_pitch * 2 + 12) = likely(Hi(lr_kq) == Lo(lr_kq)) ? lr_kq : Raise(Hi(lr_kq)) /* lr verbatim to high pixel */ | Average(Hi(lr_kq), Lo(lr_kq)) /* klqr to low pixel */; // Generate jkpq_jp from j_i, l_k, p_o and r_q. uint32_t kq_jp = Raise(Lo(lr_kq)) /* kq verbatim to high pixel */ | Average(Hi(j_i), Hi(p_o)) /* jp to low pixel */; *(uint32_t*) ((uint8_t*) to + dst_pitch * 2 + 8) = likely(Hi(kq_jp) == Lo(kq_jp)) ? kq_jp : Lo(kq_jp) /* jp verbatim to low pixel */ | Raise(Average(Hi(kq_jp), Lo(kq_jp))) /* jkpq to high pixel */; // -- Row 4 -- // Generate mn_m from n_m. *(uint32_t*) ((uint8_t*) to + dst_pitch * 3) = likely(Hi(n_m) == Lo(n_m)) ? n_m : Lo(n_m) /* 'm' verbatim to low pixel */ | Raise(Average(Hi(n_m), Lo(n_m))) /* mn to high pixel */; // Generate o_no from n_m and p_o. *(uint32_t*) ((uint8_t*) to + dst_pitch * 3 + 4) = likely(Hi(n_m) == Lo(p_o)) ? Lo(p_o) | Raise(Lo(p_o)) : Raise(Lo(p_o)) /* 'o' verbatim to high pixel */ | Average(Lo(p_o), Hi(n_m)) /* no to low pixel */; // Generate pq_p from p_o and r_q. *(uint32_t*) ((uint8_t*) to + dst_pitch * 3 + 8) = likely(Hi(p_o) == Lo(r_q)) ? Lo(r_q) | Raise(Lo(r_q)) : Hi(p_o) /* 'p' verbatim to low pixel */ | Raise(Average(Hi(p_o), Lo(r_q))) /* pq to high pixel */; // Generate r_qr from r_q. *(uint32_t*) ((uint8_t*) to + dst_pitch * 3 + 12) = likely(Hi(r_q) == Lo(r_q)) ? r_q : Raise(Hi(r_q)) /* 'r' verbatim to high pixel */ | Average(Hi(r_q), Lo(r_q)) /* qr to low pixel */; } } from += 6; to += 8; } // Skip past the waste at the end of the first line, if any, // then past 2 whole lines of source and 3 of destination. from = (uint16_t*) ((uint8_t*) from + src_skip + 2 * src_pitch); to = (uint16_t*) ((uint8_t*) to + dst_skip + 3 * dst_pitch); } } /* * Approximately bilinear scaler, 256x224 to 320x240 * * Copyright (C) 2014 hi-ban, Nebuleon * * This function and all auxiliary functions are free software; you can * redistribute them and/or modify them under the terms of the GNU Lesser * General Public License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * These functions are distributed in the hope that they will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ // Support math #define Half(A) (((A) >> 1) & 0x7BEF) #define Quarter(A) (((A) >> 2) & 0x39E7) // Error correction expressions to piece back the lower bits together #define RestHalf(A) ((A) & 0x0821) #define RestQuarter(A) ((A) & 0x1863) // Error correction expressions for quarters of pixels #define Corr1_3(A, B) Quarter(RestQuarter(A) + (RestHalf(B) << 1) + RestQuarter(B)) #define Corr3_1(A, B) Quarter((RestHalf(A) << 1) + RestQuarter(A) + RestQuarter(B)) // Error correction expressions for halves #define Corr1_1(A, B) ((A) & (B) & 0x0821) // Quarters #define Weight1_3(A, B) (Quarter(A) + Half(B) + Quarter(B) + Corr1_3(A, B)) #define Weight3_1(A, B) (Half(A) + Quarter(A) + Quarter(B) + Corr3_1(A, B)) // Halves #define Weight1_1(A, B) (Half(A) + Half(B) + Corr1_1(A, B)) /* Upscales a 256x224 image to 320x240 using an approximate bilinear * resampling algorithm that only uses integer math. * * Input: * src: A packed 256x224 pixel image. The pixel format of this image is * RGB 565. * width: The width of the source image. Should always be 256. * Output: * dst: A packed 320x240 pixel image. The pixel format of this image is * RGB 565. */ void scale_bilinearish_256x224_320x240(unsigned src_x, unsigned src_y, size_t src_pitch, const void *src, void *dst) { uint16_t* Src16 = (uint16_t*) src; uint16_t* Dst16 = (uint16_t*) dst; unsigned pxpitch = src_pitch / 2; // There are 64 blocks of 4 pixels horizontally, and 14 of 16 vertically. // Each block of 4x16 becomes 5x17. uint32_t BlockX, BlockY; uint16_t* BlockSrc; uint16_t* BlockDst; for (BlockY = 0; BlockY < 14; BlockY++) { BlockSrc = Src16 + BlockY * pxpitch * 16; BlockDst = Dst16 + BlockY * 320 * 17; for (BlockX = 0; BlockX < 64; BlockX++) { /* Horizontally: * Before(4): * (a)(b)(c)(d) * After(5): * (a)(abbb)(bc)(cccd)(d) * * Vertically: * Before(16): After(17): * (a) (a) * (b) (b) * (c) (c) * (d) (cddd) * (e) (deee) * (f) (efff) * (g) (fggg) * (h) (ghhh) * (i) (hi) * (j) (iiij) * (k) (jjjk) * (l) (kkkl) * (m) (lllm) * (n) (mmmn) * (o) (n) * (p) (o) * (p) */ // -- Row 1 -- uint16_t _1 = *(BlockSrc ); *(BlockDst ) = _1; uint16_t _2 = *(BlockSrc + 1); *(BlockDst + 1) = Weight1_3( _1, _2); uint16_t _3 = *(BlockSrc + 2); *(BlockDst + 2) = Weight1_1( _2, _3); uint16_t _4 = *(BlockSrc + 3); *(BlockDst + 3) = Weight3_1( _3, _4); *(BlockDst + 4) = _4; // -- Row 2 -- uint16_t _5 = *(BlockSrc + pxpitch * 1 ); *(BlockDst + 320 * 1 ) = _5; uint16_t _6 = *(BlockSrc + pxpitch * 1 + 1); *(BlockDst + 320 * 1 + 1) = Weight1_3( _5, _6); uint16_t _7 = *(BlockSrc + pxpitch * 1 + 2); *(BlockDst + 320 * 1 + 2) = Weight1_1( _6, _7); uint16_t _8 = *(BlockSrc + pxpitch * 1 + 3); *(BlockDst + 320 * 1 + 3) = Weight3_1( _7, _8); *(BlockDst + 320 * 1 + 4) = _8; // -- Row 3 -- uint16_t _9 = *(BlockSrc + pxpitch * 2 ); *(BlockDst + 320 * 2 ) = _9; uint16_t _10 = *(BlockSrc + pxpitch * 2 + 1); *(BlockDst + 320 * 2 + 1) = Weight1_3( _9, _10); uint16_t _11 = *(BlockSrc + pxpitch * 2 + 2); *(BlockDst + 320 * 2 + 2) = Weight1_1(_10, _11); uint16_t _12 = *(BlockSrc + pxpitch * 2 + 3); *(BlockDst + 320 * 2 + 3) = Weight3_1(_11, _12); *(BlockDst + 320 * 2 + 4) = _12; // -- Row 4 -- uint16_t _13 = *(BlockSrc + pxpitch * 3 ); *(BlockDst + 320 * 3 ) = Weight1_3( _9, _13); uint16_t _14 = *(BlockSrc + pxpitch * 3 + 1); *(BlockDst + 320 * 3 + 1) = Weight1_3(Weight1_3( _9, _10), Weight1_3(_13, _14)); uint16_t _15 = *(BlockSrc + pxpitch * 3 + 2); *(BlockDst + 320 * 3 + 2) = Weight1_3(Weight1_1(_10, _11), Weight1_1(_14, _15)); uint16_t _16 = *(BlockSrc + pxpitch * 3 + 3); *(BlockDst + 320 * 3 + 3) = Weight1_3(Weight3_1(_11, _12), Weight3_1(_15, _16)); *(BlockDst + 320 * 3 + 4) = Weight1_3(_12, _16); // -- Row 5 -- uint16_t _17 = *(BlockSrc + pxpitch * 4 ); *(BlockDst + 320 * 4 ) = Weight1_3(_13, _17); uint16_t _18 = *(BlockSrc + pxpitch * 4 + 1); *(BlockDst + 320 * 4 + 1) = Weight1_3(Weight1_3(_13, _14), Weight1_3(_17, _18)); uint16_t _19 = *(BlockSrc + pxpitch * 4 + 2); *(BlockDst + 320 * 4 + 2) = Weight1_3(Weight1_1(_14, _15), Weight1_1(_18, _19)); uint16_t _20 = *(BlockSrc + pxpitch * 4 + 3); *(BlockDst + 320 * 4 + 3) = Weight1_3(Weight3_1(_15, _16), Weight3_1(_19, _20)); *(BlockDst + 320 * 4 + 4) = Weight1_3(_16, _20); // -- Row 6 -- uint16_t _21 = *(BlockSrc + pxpitch * 5 ); *(BlockDst + 320 * 5 ) = Weight1_3(_17, _21); uint16_t _22 = *(BlockSrc + pxpitch * 5 + 1); *(BlockDst + 320 * 5 + 1) = Weight1_3(Weight1_3(_17, _18), Weight1_3(_21, _22)); uint16_t _23 = *(BlockSrc + pxpitch * 5 + 2); *(BlockDst + 320 * 5 + 2) = Weight1_3(Weight1_1(_18, _19), Weight1_1(_22, _23)); uint16_t _24 = *(BlockSrc + pxpitch * 5 + 3); *(BlockDst + 320 * 5 + 3) = Weight1_3(Weight3_1(_19, _20), Weight3_1(_23, _24)); *(BlockDst + 320 * 5 + 4) = Weight1_3(_20, _24); // -- Row 7 -- uint16_t _25 = *(BlockSrc + pxpitch * 6 ); *(BlockDst + 320 * 6 ) = Weight1_3(_21, _25); uint16_t _26 = *(BlockSrc + pxpitch * 6 + 1); *(BlockDst + 320 * 6 + 1) = Weight1_3(Weight1_3(_21, _22), Weight1_3(_25, _26)); uint16_t _27 = *(BlockSrc + pxpitch * 6 + 2); *(BlockDst + 320 * 6 + 2) = Weight1_3(Weight1_1(_22, _23), Weight1_1(_26, _27)); uint16_t _28 = *(BlockSrc + pxpitch * 6 + 3); *(BlockDst + 320 * 6 + 3) = Weight1_3(Weight3_1(_23, _24), Weight3_1(_27, _28)); *(BlockDst + 320 * 6 + 4) = Weight1_3(_24, _28); // -- Row 8 -- uint16_t _29 = *(BlockSrc + pxpitch * 7 ); *(BlockDst + 320 * 7 ) = Weight1_3(_25, _29); uint16_t _30 = *(BlockSrc + pxpitch * 7 + 1); *(BlockDst + 320 * 7 + 1) = Weight1_3(Weight1_3(_25, _26), Weight1_3(_29, _30)); uint16_t _31 = *(BlockSrc + pxpitch * 7 + 2); *(BlockDst + 320 * 7 + 2) = Weight1_3(Weight1_1(_26, _27), Weight1_1(_30, _31)); uint16_t _32 = *(BlockSrc + pxpitch * 7 + 3); *(BlockDst + 320 * 7 + 3) = Weight1_3(Weight3_1(_27, _28), Weight3_1(_31, _32)); *(BlockDst + 320 * 7 + 4) = Weight1_3(_28, _32); // -- Row 9 -- uint16_t _33 = *(BlockSrc + pxpitch * 8 ); *(BlockDst + 320 * 8 ) = Weight1_1(_29, _33); uint16_t _34 = *(BlockSrc + pxpitch * 8 + 1); *(BlockDst + 320 * 8 + 1) = Weight1_1(Weight1_3(_29, _30), Weight1_3(_33, _34)); uint16_t _35 = *(BlockSrc + pxpitch * 8 + 2); *(BlockDst + 320 * 8 + 2) = Weight1_1(Weight1_1(_30, _31), Weight1_1(_34, _35)); uint16_t _36 = *(BlockSrc + pxpitch * 8 + 3); *(BlockDst + 320 * 8 + 3) = Weight1_1(Weight3_1(_31, _32), Weight3_1(_35, _36)); *(BlockDst + 320 * 8 + 4) = Weight1_1(_32, _36); // -- Row 10 -- uint16_t _37 = *(BlockSrc + pxpitch * 9 ); *(BlockDst + 320 * 9 ) = Weight3_1(_33, _37); uint16_t _38 = *(BlockSrc + pxpitch * 9 + 1); *(BlockDst + 320 * 9 + 1) = Weight3_1(Weight1_3(_33, _34), Weight1_3(_37, _38)); uint16_t _39 = *(BlockSrc + pxpitch * 9 + 2); *(BlockDst + 320 * 9 + 2) = Weight3_1(Weight1_1(_34, _35), Weight1_1(_38, _39)); uint16_t _40 = *(BlockSrc + pxpitch * 9 + 3); *(BlockDst + 320 * 9 + 3) = Weight3_1(Weight3_1(_35, _36), Weight3_1(_39, _40)); *(BlockDst + 320 * 9 + 4) = Weight3_1(_36, _40); // -- Row 11 -- uint16_t _41 = *(BlockSrc + pxpitch * 10 ); *(BlockDst + 320 * 10 ) = Weight3_1(_37, _41); uint16_t _42 = *(BlockSrc + pxpitch * 10 + 1); *(BlockDst + 320 * 10 + 1) = Weight3_1(Weight1_3(_37, _38), Weight1_3(_41, _42)); uint16_t _43 = *(BlockSrc + pxpitch * 10 + 2); *(BlockDst + 320 * 10 + 2) = Weight3_1(Weight1_1(_38, _39), Weight1_1(_42, _43)); uint16_t _44 = *(BlockSrc + pxpitch * 10 + 3); *(BlockDst + 320 * 10 + 3) = Weight3_1(Weight3_1(_39, _40), Weight3_1(_43, _44)); *(BlockDst + 320 * 10 + 4) = Weight3_1(_40, _44); // -- Row 12 -- uint16_t _45 = *(BlockSrc + pxpitch * 11 ); *(BlockDst + 320 * 11 ) = Weight3_1(_41, _45); uint16_t _46 = *(BlockSrc + pxpitch * 11 + 1); *(BlockDst + 320 * 11 + 1) = Weight3_1(Weight1_3(_41, _42), Weight1_3(_45, _46)); uint16_t _47 = *(BlockSrc + pxpitch * 11 + 2); *(BlockDst + 320 * 11 + 2) = Weight3_1(Weight1_1(_42, _43), Weight1_1(_46, _47)); uint16_t _48 = *(BlockSrc + pxpitch * 11 + 3); *(BlockDst + 320 * 11 + 3) = Weight3_1(Weight3_1(_43, _44), Weight3_1(_47, _48)); *(BlockDst + 320 * 11 + 4) = Weight3_1(_44, _48); // -- Row 13 -- uint16_t _49 = *(BlockSrc + pxpitch * 12 ); *(BlockDst + 320 * 12 ) = Weight3_1(_45, _49); uint16_t _50 = *(BlockSrc + pxpitch * 12 + 1); *(BlockDst + 320 * 12 + 1) = Weight3_1(Weight1_3(_45, _46), Weight1_3(_49, _50)); uint16_t _51 = *(BlockSrc + pxpitch * 12 + 2); *(BlockDst + 320 * 12 + 2) = Weight3_1(Weight1_1(_46, _47), Weight1_1(_50, _51)); uint16_t _52 = *(BlockSrc + pxpitch * 12 + 3); *(BlockDst + 320 * 12 + 3) = Weight3_1(Weight3_1(_47, _48), Weight3_1(_51, _52)); *(BlockDst + 320 * 12 + 4) = Weight3_1(_48, _52); // -- Row 14 -- uint16_t _53 = *(BlockSrc + pxpitch * 13 ); *(BlockDst + 320 * 13 ) = Weight3_1(_49, _53); uint16_t _54 = *(BlockSrc + pxpitch * 13 + 1); *(BlockDst + 320 * 13 + 1) = Weight3_1(Weight1_3(_49, _50), Weight1_3(_53, _54)); uint16_t _55 = *(BlockSrc + pxpitch * 13 + 2); *(BlockDst + 320 * 13 + 2) = Weight3_1(Weight1_1(_50, _51), Weight1_1(_54, _55)); uint16_t _56 = *(BlockSrc + pxpitch * 13 + 3); *(BlockDst + 320 * 13 + 3) = Weight3_1(Weight3_1(_51, _52), Weight3_1(_55, _56)); *(BlockDst + 320 * 13 + 4) = Weight3_1(_52, _56); // -- Row 15 -- *(BlockDst + 320 * 14 ) = _53; *(BlockDst + 320 * 14 + 1) = Weight1_3(_53, _54); *(BlockDst + 320 * 14 + 2) = Weight1_1(_54, _55); *(BlockDst + 320 * 14 + 3) = Weight3_1(_55, _56); *(BlockDst + 320 * 14 + 4) = _56; // -- Row 16 -- uint16_t _57 = *(BlockSrc + pxpitch * 14 ); *(BlockDst + 320 * 15 ) = _57; uint16_t _58 = *(BlockSrc + pxpitch * 14 + 1); *(BlockDst + 320 * 15 + 1) = Weight1_3(_57, _58); uint16_t _59 = *(BlockSrc + pxpitch * 14 + 2); *(BlockDst + 320 * 15 + 2) = Weight1_1(_58, _59); uint16_t _60 = *(BlockSrc + pxpitch * 14 + 3); *(BlockDst + 320 * 15 + 3) = Weight3_1(_59, _60); *(BlockDst + 320 * 15 + 4) = _60; // -- Row 17 -- uint16_t _61 = *(BlockSrc + pxpitch * 15 ); *(BlockDst + 320 * 16 ) = _61; uint16_t _62 = *(BlockSrc + pxpitch * 15 + 1); *(BlockDst + 320 * 16 + 1) = Weight1_3(_61, _62); uint16_t _63 = *(BlockSrc + pxpitch * 15 + 2); *(BlockDst + 320 * 16 + 2) = Weight1_1(_62, _63); uint16_t _64 = *(BlockSrc + pxpitch * 15 + 3); *(BlockDst + 320 * 16 + 3) = Weight3_1(_63, _64); *(BlockDst + 320 * 16 + 4) = _64; BlockSrc += 4; BlockDst += 5; } } } void scale_bilinearish_256x240_320x240(unsigned src_x, unsigned src_y, size_t src_pitch, const void *src, void *dst) { uint16_t* Src16 = (uint16_t*) src; uint16_t* Dst16 = (uint16_t*) dst; unsigned pxpitch = src_pitch / 2; // There are 64 blocks of 4 pixels horizontally, and 239 of 1 vertically. // Each block of 4x1 becomes 5x1. uint32_t BlockX, BlockY; uint16_t* BlockSrc; uint16_t* BlockDst; for (BlockY = 0; BlockY < 239; BlockY++) { BlockSrc = Src16 + BlockY * pxpitch * 1; BlockDst = Dst16 + BlockY * 320 * 1; for (BlockX = 0; BlockX < 64; BlockX++) { /* Horizontally: * Before(4): * (a)(b)(c)(d) * After(5): * (a)(abbb)(bc)(cccd)(d) */ // -- Row 1 -- uint16_t _1 = *(BlockSrc ); *(BlockDst ) = _1; uint16_t _2 = *(BlockSrc + 1); *(BlockDst + 1) = Weight1_3( _1, _2); uint16_t _3 = *(BlockSrc + 2); *(BlockDst + 2) = Weight1_1( _2, _3); uint16_t _4 = *(BlockSrc + 3); *(BlockDst + 3) = Weight3_1( _3, _4); *(BlockDst + 4) = _4; BlockSrc += 4; BlockDst += 5; } } } static void scale_select_scaler(unsigned w, unsigned h, size_t pitch) { scaler = NULL; if (scale_size == SCALE_SIZE_FULL) { dst_w = SCREEN_WIDTH; dst_h = SCREEN_HEIGHT; dst_offs = 0; } else if (scale_size == SCALE_SIZE_ASPECT) { dst_w = SCREEN_WIDTH; dst_h = SCREEN_WIDTH / aspect_ratio + 0.5; dst_offs = ((SCREEN_HEIGHT-dst_h)/2) * SCREEN_PITCH; if (dst_h > SCREEN_HEIGHT) { dst_w = SCREEN_HEIGHT * aspect_ratio + 0.5; dst_h = SCREEN_HEIGHT; dst_offs = ((SCREEN_WIDTH-dst_w)/2); } } else if (scale_size == SCALE_SIZE_NONE && w <= SCREEN_WIDTH && h <= SCREEN_HEIGHT) { unsigned dst_x = ((SCREEN_WIDTH - w) * SCREEN_BPP / 2); unsigned dst_y = ((SCREEN_HEIGHT - h) / 2); dst_offs = dst_y * SCREEN_PITCH + dst_x; if (pitch == SCREEN_PITCH) { scaler = scale_memcpy; } else { scaler = scale_1x; } return; } if (!scaler && w == 240 && h == 160) { if (scale_filter == SCALE_FILTER_SHARP) { scaler = scale_sharp_240x160_320xXXX; return; } else if (scale_filter == SCALE_FILTER_SMOOTH) { if (scale_size == SCALE_SIZE_ASPECT) { scaler = scale_bilinearish_240x160_320x213; } else { scaler = scale_bilinearish_240x160_320x240; } return; } } if (!scaler && aspect_ratio == 4.0f / 3.0f && w == 256) { if (scale_filter == SCALE_FILTER_SHARP) { scaler = scale_sharp_256xXXX_320xXXX; } else if (scale_filter == SCALE_FILTER_SMOOTH) { if (h == 240) { scaler = scale_bilinearish_256x240_320x240; } else if (h == 224) { scaler = scale_bilinearish_256x224_320x240; } } } if (!scaler && scale_filter == SCALE_FILTER_NEAREST) { scaler = scale_nearest; return; } if (!scaler) { scaler = scale_1x; } } void scale_update_scaler(void) { scale_select_scaler(prev.w, prev.h, prev.pitch); } void scale(unsigned w, unsigned h, size_t pitch, const void *src, void *dst) { if (w != prev.w || h != prev.h || pitch != prev.pitch) { scale_select_scaler(w, h, pitch); prev.w = w; prev.h = h; prev.pitch = pitch; } scaler(w, h, pitch, src, dst); }