/* gameplaySP * * Copyright (C) 2006 Exophase * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef X86_EMIT_H #define X86_EMIT_H u32 x86_update_gba(u32 pc); // Although these are defined as a function, don't call them as // such (jump to it instead) void x86_indirect_branch_arm(u32 address); void x86_indirect_branch_thumb(u32 address); void x86_indirect_branch_dual(u32 address); void function_cc execute_store_cpsr(u32 new_cpsr, u32 store_mask); typedef enum { x86_reg_number_eax, x86_reg_number_ecx, x86_reg_number_edx, x86_reg_number_ebx, x86_reg_number_esp, x86_reg_number_ebp, x86_reg_number_esi, x86_reg_number_edi } x86_reg_number; #define x86_emit_byte(value) \ *translation_ptr = value; \ translation_ptr++ \ #define x86_emit_dword(value) \ *((u32 *)translation_ptr) = value; \ translation_ptr += 4 \ typedef enum { x86_mod_mem = 0, x86_mod_mem_disp8 = 1, x86_mod_mem_disp32 = 2, x86_mod_reg = 3 } x86_mod; #define x86_emit_mod_rm(mod, rm, spare) \ x86_emit_byte((mod << 6) | (spare << 3) | rm) \ #define x86_emit_mem_op(dest, base, offset) \ if(offset == 0) \ { \ x86_emit_mod_rm(x86_mod_mem, base, dest); \ } \ else \ \ if(((s32)offset < 127) && ((s32)offset > -128)) \ { \ x86_emit_mod_rm(x86_mod_mem_disp8, base, dest); \ x86_emit_byte((s8)offset); \ } \ else \ { \ x86_emit_mod_rm(x86_mod_mem_disp32, base, dest); \ x86_emit_dword(offset); \ } \ #define x86_emit_reg_op(dest, source) \ x86_emit_mod_rm(x86_mod_reg, source, dest) \ typedef enum { x86_opcode_mov_rm_reg = 0x89, x86_opcode_mov_reg_rm = 0x8B, x86_opcode_mov_reg_imm = 0xB8, x86_opcode_mov_rm_imm = 0x00C7, x86_opcode_ror_reg_imm = 0x01C1, x86_opcode_shl_reg_imm = 0x04C1, x86_opcode_shr_reg_imm = 0x05C1, x86_opcode_sar_reg_imm = 0x07C1, x86_opcode_push_reg = 0x50, x86_opcode_push_rm = 0xFF, x86_opcode_push_imm = 0x0668, x86_opcode_pop_reg = 0x58, x86_opcode_call_offset = 0xE8, x86_opcode_ret = 0xC3, x86_opcode_test_rm_imm = 0x00F7, x86_opcode_test_reg_rm = 0x85, x86_opcode_mul_eax_rm = 0x04F7, x86_opcode_imul_eax_rm = 0x05F7, x86_opcode_idiv_eax_rm = 0x07F7, x86_opcode_add_rm_imm = 0x0081, x86_opcode_and_rm_imm = 0x0481, x86_opcode_sub_rm_imm = 0x0581, x86_opcode_xor_rm_imm = 0x0681, x86_opcode_add_reg_rm = 0x03, x86_opcode_adc_reg_rm = 0x13, x86_opcode_or_reg_rm = 0x0B, x86_opcode_sub_reg_rm = 0x2B, x86_opcode_xor_reg_rm = 0x33, x86_opcode_cmp_reg_rm = 0x39, x86_opcode_cmp_rm_imm = 0x053B, x86_opcode_lea_reg_rm = 0x8D, x86_opcode_j = 0x80, x86_opcode_jmp = 0xE9, x86_opcode_jmp_reg = 0x04FF, x86_opcode_ext = 0x0F } x86_opcodes; typedef enum { x86_condition_code_o = 0x00, x86_condition_code_no = 0x01, x86_condition_code_c = 0x02, x86_condition_code_nc = 0x03, x86_condition_code_z = 0x04, x86_condition_code_nz = 0x05, x86_condition_code_na = 0x06, x86_condition_code_a = 0x07, x86_condition_code_s = 0x08, x86_condition_code_ns = 0x09, x86_condition_code_p = 0x0A, x86_condition_code_np = 0x0B, x86_condition_code_l = 0x0C, x86_condition_code_nl = 0x0D, x86_condition_code_ng = 0x0E, x86_condition_code_g = 0x0F } x86_condition_codes; #define x86_relative_offset(source, offset, next) \ ((u32)offset - ((u32)source + next)) \ #define x86_unequal_operands(op_a, op_b) \ (x86_reg_number_##op_a != x86_reg_number_##op_b) \ #define x86_emit_opcode_1b_reg(opcode, dest, source) \ { \ x86_emit_byte(x86_opcode_##opcode); \ x86_emit_reg_op(x86_reg_number_##dest, x86_reg_number_##source); \ } \ #define x86_emit_opcode_1b_mem(opcode, dest, base, offset) \ { \ x86_emit_byte(x86_opcode_##opcode); \ x86_emit_mem_op(x86_reg_number_##dest, x86_reg_number_##base, offset); \ } \ #define x86_emit_opcode_1b(opcode, reg) \ x86_emit_byte(x86_opcode_##opcode | x86_reg_number_##reg) \ #define x86_emit_opcode_1b_ext_reg(opcode, dest) \ x86_emit_byte(x86_opcode_##opcode & 0xFF); \ x86_emit_reg_op(x86_opcode_##opcode >> 8, x86_reg_number_##dest) \ #define x86_emit_opcode_1b_ext_mem(opcode, base, offset) \ x86_emit_byte(x86_opcode_##opcode & 0xFF); \ x86_emit_mem_op(x86_opcode_##opcode >> 8, x86_reg_number_##base, offset) \ #define x86_emit_mov_reg_mem(dest, base, offset) \ x86_emit_opcode_1b_mem(mov_reg_rm, dest, base, offset) \ #define x86_emit_mov_mem_reg(source, base, offset) \ x86_emit_opcode_1b_mem(mov_rm_reg, source, base, offset) \ #define x86_emit_mov_reg_reg(dest, source) \ if(x86_unequal_operands(dest, source)) \ { \ x86_emit_opcode_1b_reg(mov_reg_rm, dest, source) \ } \ #define x86_emit_mov_reg_imm(dest, imm) \ x86_emit_opcode_1b(mov_reg_imm, dest); \ x86_emit_dword(imm) \ #define x86_emit_mov_mem_imm(imm, base, offset) \ x86_emit_opcode_1b_ext_mem(mov_rm_imm, base, offset); \ x86_emit_dword(imm) \ #define x86_emit_shl_reg_imm(dest, imm) \ x86_emit_opcode_1b_ext_reg(shl_reg_imm, dest); \ x86_emit_byte(imm) \ #define x86_emit_shr_reg_imm(dest, imm) \ x86_emit_opcode_1b_ext_reg(shr_reg_imm, dest); \ x86_emit_byte(imm) \ #define x86_emit_sar_reg_imm(dest, imm) \ x86_emit_opcode_1b_ext_reg(sar_reg_imm, dest); \ x86_emit_byte(imm) \ #define x86_emit_ror_reg_imm(dest, imm) \ x86_emit_opcode_1b_ext_reg(ror_reg_imm, dest); \ x86_emit_byte(imm) \ #define x86_emit_add_reg_reg(dest, source) \ x86_emit_opcode_1b_reg(add_reg_rm, dest, source) \ #define x86_emit_adc_reg_reg(dest, source) \ x86_emit_opcode_1b_reg(adc_reg_rm, dest, source) \ #define x86_emit_sub_reg_reg(dest, source) \ x86_emit_opcode_1b_reg(sub_reg_rm, dest, source) \ #define x86_emit_or_reg_reg(dest, source) \ x86_emit_opcode_1b_reg(or_reg_rm, dest, source) \ #define x86_emit_xor_reg_reg(dest, source) \ x86_emit_opcode_1b_reg(xor_reg_rm, dest, source) \ #define x86_emit_add_reg_imm(dest, imm) \ if(imm != 0) \ { \ x86_emit_opcode_1b_ext_reg(add_rm_imm, dest); \ x86_emit_dword(imm); \ } \ #define x86_emit_sub_reg_imm(dest, imm) \ if(imm != 0) \ { \ x86_emit_opcode_1b_ext_reg(sub_rm_imm, dest); \ x86_emit_dword(imm); \ } \ #define x86_emit_and_reg_imm(dest, imm) \ x86_emit_opcode_1b_ext_reg(and_rm_imm, dest); \ x86_emit_dword(imm) \ #define x86_emit_xor_reg_imm(dest, imm) \ x86_emit_opcode_1b_ext_reg(xor_rm_imm, dest); \ x86_emit_dword(imm) \ #define x86_emit_test_reg_imm(dest, imm) \ x86_emit_opcode_1b_ext_reg(test_rm_imm, dest); \ x86_emit_dword(imm) \ #define x86_emit_cmp_reg_reg(dest, source) \ x86_emit_opcode_1b_reg(cmp_reg_rm, dest, source) \ #define x86_emit_test_reg_reg(dest, source) \ x86_emit_opcode_1b_reg(test_reg_rm, dest, source) \ #define x86_emit_cmp_reg_imm(dest, imm) \ x86_emit_opcode_1b_ext_reg(cmp_rm_imm, dest); \ x86_emit_dword(imm) \ #define x86_emit_mul_eax_reg(source) \ x86_emit_opcode_1b_ext_reg(mul_eax_rm, source) \ #define x86_emit_imul_eax_reg(source) \ x86_emit_opcode_1b_ext_reg(imul_eax_rm, source) \ #define x86_emit_idiv_eax_reg(source) \ x86_emit_opcode_1b_ext_reg(idiv_eax_rm, source) \ #define x86_emit_pop_reg(regn) \ x86_emit_opcode_1b(pop_reg, regn) \ #define x86_emit_push_reg(regn) \ x86_emit_opcode_1b(push_reg, regn) \ #define x86_emit_push_mem(base, offset) \ x86_emit_opcode_1b_mem(push_rm, 0x06, base, offset) \ #define x86_emit_push_imm(imm) \ x86_emit_byte(x86_opcode_push_imm); \ x86_emit_dword(imm) \ #define x86_emit_call_offset(relative_offset) \ x86_emit_byte(x86_opcode_call_offset); \ x86_emit_dword(relative_offset) \ #define x86_emit_ret() \ x86_emit_byte(x86_opcode_ret) \ #define x86_emit_lea_reg_mem(dest, base, offset) \ x86_emit_opcode_1b_mem(lea_reg_rm, dest, base, offset) \ #define x86_emit_j_filler(condition_code, writeback_location) \ x86_emit_byte(x86_opcode_ext); \ x86_emit_byte(x86_opcode_j | condition_code); \ (writeback_location) = translation_ptr; \ translation_ptr += 4 \ #define x86_emit_j_offset(condition_code, offset) \ x86_emit_byte(x86_opcode_ext); \ x86_emit_byte(x86_opcode_j | condition_code); \ x86_emit_dword(offset) \ #define x86_emit_jmp_filler(writeback_location) \ x86_emit_byte(x86_opcode_jmp); \ (writeback_location) = translation_ptr; \ translation_ptr += 4 \ #define x86_emit_jmp_offset(offset) \ x86_emit_byte(x86_opcode_jmp); \ x86_emit_dword(offset) \ #define x86_emit_jmp_reg(source) \ x86_emit_opcode_1b_ext_reg(jmp_reg, source) \ #define reg_base ebx #define reg_cycles edi #define reg_a0 eax #define reg_a1 edx #define reg_a2 ecx #define reg_rv eax #define reg_s0 esi #define generate_load_reg(ireg, reg_index) \ x86_emit_mov_reg_mem(reg_##ireg, reg_base, reg_index * 4); \ #define generate_load_pc(ireg, new_pc) \ x86_emit_mov_reg_imm(reg_##ireg, new_pc) \ #define generate_load_imm(ireg, imm) \ x86_emit_mov_reg_imm(reg_##ireg, imm) \ #define generate_store_reg(ireg, reg_index) \ x86_emit_mov_mem_reg(reg_##ireg, reg_base, reg_index * 4) \ #define generate_shift_left(ireg, imm) \ x86_emit_shl_reg_imm(reg_##ireg, imm) \ #define generate_shift_right(ireg, imm) \ x86_emit_shr_reg_imm(reg_##ireg, imm) \ #define generate_shift_right_arithmetic(ireg, imm) \ x86_emit_sar_reg_imm(reg_##ireg, imm) \ #define generate_rotate_right(ireg, imm) \ x86_emit_ror_reg_imm(reg_##ireg, imm) \ #define generate_add(ireg_dest, ireg_src) \ x86_emit_add_reg_reg(reg_##ireg_dest, reg_##ireg_src) \ #define generate_sub(ireg_dest, ireg_src) \ x86_emit_sub_reg_reg(reg_##ireg_dest, reg_##ireg_src) \ #define generate_or(ireg_dest, ireg_src) \ x86_emit_or_reg_reg(reg_##ireg_dest, reg_##ireg_src) \ #define generate_xor(ireg_dest, ireg_src) \ x86_emit_xor_reg_reg(reg_##ireg_dest, reg_##ireg_src) \ #define generate_add_imm(ireg, imm) \ x86_emit_add_reg_imm(reg_##ireg, imm) \ #define generate_sub_imm(ireg, imm) \ x86_emit_sub_reg_imm(reg_##ireg, imm) \ #define generate_xor_imm(ireg, imm) \ x86_emit_xor_reg_imm(reg_##ireg, imm) \ #define generate_add_reg_reg_imm(ireg_dest, ireg_src, imm) \ x86_emit_lea_reg_mem(reg_##ireg_dest, reg_##ireg_src, imm) \ #define generate_and_imm(ireg, imm) \ x86_emit_and_reg_imm(reg_##ireg, imm) \ #define generate_mov(ireg_dest, ireg_src) \ x86_emit_mov_reg_reg(reg_##ireg_dest, reg_##ireg_src) \ #define generate_multiply(ireg) \ x86_emit_imul_eax_reg(reg_##ireg) \ #define generate_multiply_s64(ireg) \ x86_emit_imul_eax_reg(reg_##ireg) \ #define generate_multiply_u64(ireg) \ x86_emit_mul_eax_reg(reg_##ireg) \ #define generate_multiply_s64_add(ireg_src, ireg_lo, ireg_hi) \ x86_emit_imul_eax_reg(reg_##ireg_src); \ x86_emit_add_reg_reg(reg_a0, reg_##ireg_lo); \ x86_emit_adc_reg_reg(reg_a1, reg_##ireg_hi) \ #define generate_multiply_u64_add(ireg_src, ireg_lo, ireg_hi) \ x86_emit_mul_eax_reg(reg_##ireg_src); \ x86_emit_add_reg_reg(reg_a0, reg_##ireg_lo); \ x86_emit_adc_reg_reg(reg_a1, reg_##ireg_hi) \ #define generate_function_call(function_location) \ x86_emit_call_offset(x86_relative_offset(translation_ptr, \ function_location, 4)); \ #define generate_exit_block() \ x86_emit_ret(); \ #define generate_branch_filler_true(ireg_dest, ireg_src, writeback_location) \ x86_emit_test_reg_imm(reg_##ireg_dest, 1); \ x86_emit_j_filler(x86_condition_code_z, writeback_location) \ #define generate_branch_filler_false(ireg_dest, ireg_src, writeback_location) \ x86_emit_test_reg_imm(reg_##ireg_dest, 1); \ x86_emit_j_filler(x86_condition_code_nz, writeback_location) \ #define generate_branch_filler_equal(ireg_dest, ireg_src, writeback_location) \ x86_emit_cmp_reg_reg(reg_##ireg_dest, reg_##ireg_src); \ x86_emit_j_filler(x86_condition_code_nz, writeback_location) \ #define generate_branch_filler_not_equal(ireg_dest, ireg_src, \ writeback_location) \ x86_emit_cmp_reg_reg(reg_##ireg_dest, reg_##ireg_src); \ x86_emit_j_filler(x86_condition_code_z, writeback_location) \ #define generate_update_pc(new_pc) \ x86_emit_mov_reg_imm(eax, new_pc) \ #define generate_update_pc_reg() \ generate_update_pc(pc); \ generate_store_reg(a0, REG_PC) \ #define generate_cycle_update() \ x86_emit_sub_reg_imm(reg_cycles, cycle_count); \ cycle_count = 0 \ #define generate_branch_patch_conditional(dest, offset) \ *((u32 *)(dest)) = x86_relative_offset(dest, offset, 4) \ #define generate_branch_patch_unconditional(dest, offset) \ *((u32 *)(dest)) = x86_relative_offset(dest, offset, 4) \ #define generate_branch_no_cycle_update(writeback_location, new_pc) \ if(pc == idle_loop_target_pc) \ { \ x86_emit_mov_reg_imm(eax, new_pc); \ generate_function_call(x86_update_gba); \ x86_emit_jmp_filler(writeback_location); \ } \ else \ { \ x86_emit_test_reg_reg(reg_cycles, reg_cycles); \ x86_emit_j_offset(x86_condition_code_ns, 10); \ x86_emit_mov_reg_imm(eax, new_pc); \ generate_function_call(x86_update_gba); \ x86_emit_jmp_filler(writeback_location); \ } \ #define generate_branch_cycle_update(writeback_location, new_pc) \ generate_cycle_update(); \ generate_branch_no_cycle_update(writeback_location, new_pc) \ #define generate_conditional_branch(ireg_a, ireg_b, type, writeback_location) \ generate_branch_filler_##type(ireg_a, ireg_b, writeback_location) \ // a0 holds the destination #define generate_indirect_branch_cycle_update(type) \ generate_cycle_update(); \ x86_emit_jmp_offset(x86_relative_offset(translation_ptr, \ x86_indirect_branch_##type, 4)) \ #define generate_indirect_branch_no_cycle_update(type) \ x86_emit_jmp_offset(x86_relative_offset(translation_ptr, \ x86_indirect_branch_##type, 4)) \ #define generate_block_prologue() \ #define generate_block_extra_vars_arm() \ void generate_indirect_branch_arm(void) \ { \ if(condition == 0x0E) \ { \ generate_indirect_branch_cycle_update(arm); \ } \ else \ { \ generate_indirect_branch_no_cycle_update(arm); \ } \ } \ \ void generate_indirect_branch_dual() \ { \ if(condition == 0x0E) \ { \ generate_indirect_branch_cycle_update(dual); \ } \ else \ { \ generate_indirect_branch_no_cycle_update(dual); \ } \ } \ #define generate_block_extra_vars_thumb() \ #define block_prologue_size 0 #define calculate_z_flag(dest) \ reg[REG_Z_FLAG] = (dest == 0) \ #define calculate_n_flag(dest) \ reg[REG_N_FLAG] = ((signed)dest < 0) \ #define calculate_c_flag_sub(dest, src_a, src_b) \ reg[REG_C_FLAG] = ((unsigned)src_b <= (unsigned)src_a) \ #define calculate_v_flag_sub(dest, src_a, src_b) \ reg[REG_V_FLAG] = ((signed)src_b > (signed)src_a) != ((signed)dest < 0) \ #define calculate_c_flag_add(dest, src_a, src_b) \ reg[REG_C_FLAG] = ((unsigned)dest < (unsigned)src_a) \ #define calculate_v_flag_add(dest, src_a, src_b) \ reg[REG_V_FLAG] = ((signed)dest < (signed)src_a) != ((signed)src_b < 0) \ #define get_shift_imm() \ u32 shift = (opcode >> 7) & 0x1F \ #define generate_shift_reg(ireg, name, flags_op) \ generate_load_reg_pc(ireg, rm, 12); \ generate_load_reg(a1, ((opcode >> 8) & 0x0F)); \ generate_function_call(execute_##name##_##flags_op##_reg); \ generate_mov(ireg, rv) \ #ifdef TRACE_INSTRUCTIONS void function_cc trace_instruction(u32 pc) { printf("Executed %x\n", pc); } #define emit_trace_thumb_instruction(pc) \ x86_emit_push_reg(eax); \ x86_emit_push_reg(ecx); \ x86_emit_push_reg(edx); \ x86_emit_mov_reg_imm(eax, pc); \ generate_function_call(trace_instruction); \ x86_emit_pop_reg(edx); \ x86_emit_pop_reg(ecx); \ x86_emit_pop_reg(eax); #define emit_trace_arm_instruction(pc) \ emit_trace_thumb_instruction(pc) #else #define emit_trace_thumb_instruction(pc) #define emit_trace_arm_instruction(pc) #endif u32 function_cc execute_lsl_no_flags_reg(u32 value, u32 shift) { if(shift != 0) { if(shift > 31) value = 0; else value <<= shift; } return value; } u32 function_cc execute_lsr_no_flags_reg(u32 value, u32 shift) { if(shift != 0) { if(shift > 31) value = 0; else value >>= shift; } return value; } u32 function_cc execute_asr_no_flags_reg(u32 value, u32 shift) { if(shift != 0) { if(shift > 31) value = (s32)value >> 31; else value = (s32)value >> shift; } return value; } u32 function_cc execute_ror_no_flags_reg(u32 value, u32 shift) { if(shift != 0) { ror(value, value, shift); } return value; } u32 function_cc execute_lsl_flags_reg(u32 value, u32 shift) { if(shift != 0) { if(shift > 31) { reg[REG_C_FLAG] = value & 0x01; if(shift != 32) reg[REG_C_FLAG] = 0; value = 0; } else { reg[REG_C_FLAG] = (value >> (32 - shift)) & 0x01; value <<= shift; } } return value; } u32 function_cc execute_lsr_flags_reg(u32 value, u32 shift) { if(shift != 0) { if(shift > 31) { reg[REG_C_FLAG] = value >> 31; if(shift != 32) reg[REG_C_FLAG] = 0; value = 0; } else { reg[REG_C_FLAG] = (value >> (shift - 1)) & 0x01; value >>= shift; } } return value; } u32 function_cc execute_asr_flags_reg(u32 value, u32 shift) { if(shift != 0) { if(shift > 31) { value = (s32)value >> 31; reg[REG_C_FLAG] = value & 0x01; } else { reg[REG_C_FLAG] = (value >> (shift - 1)) & 0x01; value = (s32)value >> shift; } } return value; } u32 function_cc execute_ror_flags_reg(u32 value, u32 shift) { if(shift != 0) { reg[REG_C_FLAG] = (value >> (shift - 1)) & 0x01; ror(value, value, shift); } return value; } u32 function_cc execute_rrx_flags(u32 value) { u32 c_flag = reg[REG_C_FLAG]; reg[REG_C_FLAG] = value & 0x01; return (value >> 1) | (c_flag << 31); } u32 function_cc execute_rrx(u32 value) { return (value >> 1) | (reg[REG_C_FLAG] << 31); } #define generate_shift_imm_lsl_no_flags(ireg) \ generate_load_reg_pc(ireg, rm, 8); \ if(shift != 0) \ { \ generate_shift_left(ireg, shift); \ } \ #define generate_shift_imm_lsr_no_flags(ireg) \ if(shift != 0) \ { \ generate_load_reg_pc(ireg, rm, 8); \ generate_shift_right(ireg, shift); \ } \ else \ { \ generate_load_imm(ireg, 0); \ } \ #define generate_shift_imm_asr_no_flags(ireg) \ generate_load_reg_pc(ireg, rm, 8); \ if(shift != 0) \ { \ generate_shift_right_arithmetic(ireg, shift); \ } \ else \ { \ generate_shift_right_arithmetic(ireg, 31); \ } \ #define generate_shift_imm_ror_no_flags(ireg) \ if(shift != 0) \ { \ generate_load_reg_pc(ireg, rm, 8); \ generate_rotate_right(ireg, shift); \ } \ else \ { \ generate_load_reg_pc(a0, rm, 8); \ generate_function_call(execute_rrx); \ generate_mov(ireg, rv); \ } \ #define generate_shift_imm_lsl_flags(ireg) \ generate_load_reg_pc(ireg, rm, 8); \ if(shift != 0) \ { \ generate_mov(a1, ireg); \ generate_shift_right(a1, (32 - shift)); \ generate_and_imm(a1, 1); \ generate_store_reg(a1, REG_C_FLAG); \ generate_shift_left(ireg, shift); \ } \ #define generate_shift_imm_lsr_flags(ireg) \ if(shift != 0) \ { \ generate_load_reg_pc(ireg, rm, 8); \ generate_mov(a1, ireg); \ generate_shift_right(a1, shift - 1); \ generate_and_imm(a1, 1); \ generate_store_reg(a1, REG_C_FLAG); \ generate_shift_right(ireg, shift); \ } \ else \ { \ generate_load_reg_pc(a1, rm, 8); \ generate_shift_right(a1, 31); \ generate_store_reg(a1, REG_C_FLAG); \ generate_load_imm(ireg, 0); \ } \ #define generate_shift_imm_asr_flags(ireg) \ if(shift != 0) \ { \ generate_load_reg_pc(ireg, rm, 8); \ generate_mov(a1, ireg); \ generate_shift_right_arithmetic(a1, shift - 1); \ generate_and_imm(a1, 1); \ generate_store_reg(a1, REG_C_FLAG); \ generate_shift_right_arithmetic(ireg, shift); \ } \ else \ { \ generate_load_reg_pc(a0, rm, 8); \ generate_shift_right_arithmetic(ireg, 31); \ generate_mov(a1, ireg); \ generate_and_imm(a1, 1); \ generate_store_reg(a1, REG_C_FLAG); \ } \ #define generate_shift_imm_ror_flags(ireg) \ generate_load_reg_pc(ireg, rm, 8); \ if(shift != 0) \ { \ generate_mov(a1, ireg); \ generate_shift_right(a1, shift - 1); \ generate_and_imm(a1, 1); \ generate_store_reg(a1, REG_C_FLAG); \ generate_rotate_right(ireg, shift); \ } \ else \ { \ generate_function_call(execute_rrx_flags); \ generate_mov(ireg, rv); \ } \ #define generate_shift_imm(ireg, name, flags_op) \ get_shift_imm(); \ generate_shift_imm_##name##_##flags_op(ireg) \ #define generate_load_rm_sh(flags_op) \ switch((opcode >> 4) & 0x07) \ { \ /* LSL imm */ \ case 0x0: \ { \ generate_shift_imm(a0, lsl, flags_op); \ break; \ } \ \ /* LSL reg */ \ case 0x1: \ { \ generate_shift_reg(a0, lsl, flags_op); \ break; \ } \ \ /* LSR imm */ \ case 0x2: \ { \ generate_shift_imm(a0, lsr, flags_op); \ break; \ } \ \ /* LSR reg */ \ case 0x3: \ { \ generate_shift_reg(a0, lsr, flags_op); \ break; \ } \ \ /* ASR imm */ \ case 0x4: \ { \ generate_shift_imm(a0, asr, flags_op); \ break; \ } \ \ /* ASR reg */ \ case 0x5: \ { \ generate_shift_reg(a0, asr, flags_op); \ break; \ } \ \ /* ROR imm */ \ case 0x6: \ { \ generate_shift_imm(a0, ror, flags_op); \ break; \ } \ \ /* ROR reg */ \ case 0x7: \ { \ generate_shift_reg(a0, ror, flags_op); \ break; \ } \ } \ #define generate_load_offset_sh() \ switch((opcode >> 5) & 0x03) \ { \ /* LSL imm */ \ case 0x0: \ { \ generate_shift_imm(a1, lsl, no_flags); \ break; \ } \ \ /* LSR imm */ \ case 0x1: \ { \ generate_shift_imm(a1, lsr, no_flags); \ break; \ } \ \ /* ASR imm */ \ case 0x2: \ { \ generate_shift_imm(a1, asr, no_flags); \ break; \ } \ \ /* ROR imm */ \ case 0x3: \ { \ generate_shift_imm(a1, ror, no_flags); \ break; \ } \ } \ #define calculate_flags_add(dest, src_a, src_b) \ calculate_z_flag(dest); \ calculate_n_flag(dest); \ calculate_c_flag_add(dest, src_a, src_b); \ calculate_v_flag_add(dest, src_a, src_b) \ #define calculate_flags_sub(dest, src_a, src_b) \ calculate_z_flag(dest); \ calculate_n_flag(dest); \ calculate_c_flag_sub(dest, src_a, src_b); \ calculate_v_flag_sub(dest, src_a, src_b) \ #define calculate_flags_logic(dest) \ calculate_z_flag(dest); \ calculate_n_flag(dest) \ #define extract_flags() \ reg[REG_N_FLAG] = reg[REG_CPSR] >> 31; \ reg[REG_Z_FLAG] = (reg[REG_CPSR] >> 30) & 0x01; \ reg[REG_C_FLAG] = (reg[REG_CPSR] >> 29) & 0x01; \ reg[REG_V_FLAG] = (reg[REG_CPSR] >> 28) & 0x01; \ #define collapse_flags() \ reg[REG_CPSR] = (reg[REG_N_FLAG] << 31) | (reg[REG_Z_FLAG] << 30) | \ (reg[REG_C_FLAG] << 29) | (reg[REG_V_FLAG] << 28) | \ (reg[REG_CPSR] & 0xFF) \ // It should be okay to still generate result flags, spsr will overwrite them. // This is pretty infrequent (returning from interrupt handlers, et al) so // probably not worth optimizing for. #define check_for_interrupts() \ if((io_registers[REG_IE] & io_registers[REG_IF]) && \ io_registers[REG_IME] && ((reg[REG_CPSR] & 0x80) == 0)) \ { \ reg_mode[MODE_IRQ][6] = reg[REG_PC] + 4; \ spsr[MODE_IRQ] = reg[REG_CPSR]; \ reg[REG_CPSR] = 0xD2; \ address = 0x00000018; \ set_cpu_mode(MODE_IRQ); \ } \ #define generate_load_reg_pc(ireg, reg_index, pc_offset) \ if(reg_index == 15) \ { \ generate_load_pc(ireg, pc + pc_offset); \ } \ else \ { \ generate_load_reg(ireg, reg_index); \ } \ #define generate_store_reg_pc_no_flags(ireg, reg_index) \ generate_store_reg(ireg, reg_index); \ if(reg_index == 15) \ { \ generate_mov(a0, ireg); \ generate_indirect_branch_arm(); \ } \ u32 function_cc execute_spsr_restore(u32 address) { if(reg[CPU_MODE] != MODE_USER) { reg[REG_CPSR] = spsr[reg[CPU_MODE]]; extract_flags(); set_cpu_mode(cpu_modes[reg[REG_CPSR] & 0x1F]); check_for_interrupts(); if(reg[REG_CPSR] & 0x20) address |= 0x01; } return address; } #define generate_store_reg_pc_flags(ireg, reg_index) \ generate_store_reg(ireg, reg_index); \ if(reg_index == 15) \ { \ generate_mov(a0, ireg); \ generate_function_call(execute_spsr_restore); \ generate_mov(a0, rv); \ generate_indirect_branch_dual(); \ } \ typedef enum { CONDITION_TRUE, CONDITION_FALSE, CONDITION_EQUAL, CONDITION_NOT_EQUAL } condition_check_type; #define generate_condition_eq(ireg_a, ireg_b) \ generate_load_reg(ireg_a, REG_Z_FLAG); \ condition_check = CONDITION_TRUE \ #define generate_condition_ne(ireg_a, ireg_b) \ generate_load_reg(ireg_a, REG_Z_FLAG); \ condition_check = CONDITION_FALSE \ #define generate_condition_cs(ireg_a, ireg_b) \ generate_load_reg(ireg_a, REG_C_FLAG); \ condition_check = CONDITION_TRUE \ #define generate_condition_cc(ireg_a, ireg_b) \ generate_load_reg(ireg_a, REG_C_FLAG); \ condition_check = CONDITION_FALSE \ #define generate_condition_mi(ireg_a, ireg_b) \ generate_load_reg(ireg_a, REG_N_FLAG); \ condition_check = CONDITION_TRUE \ #define generate_condition_pl(ireg_a, ireg_b) \ generate_load_reg(ireg_a, REG_N_FLAG); \ condition_check = CONDITION_FALSE \ #define generate_condition_vs(ireg_a, ireg_b) \ generate_load_reg(ireg_a, REG_V_FLAG); \ condition_check = CONDITION_TRUE \ #define generate_condition_vc(ireg_a, ireg_b) \ generate_load_reg(ireg_a, REG_V_FLAG); \ condition_check = CONDITION_FALSE \ #define generate_condition_hi(ireg_a, ireg_b) \ generate_load_reg(ireg_a, REG_C_FLAG); \ generate_xor_imm(ireg_a, 1); \ generate_load_reg(ireg_b, REG_Z_FLAG); \ generate_or(ireg_a, ireg_b); \ condition_check = CONDITION_FALSE \ #define generate_condition_ls(ireg_a, ireg_b) \ generate_load_reg(ireg_a, REG_C_FLAG); \ generate_xor_imm(ireg_a, 1); \ generate_load_reg(ireg_b, REG_Z_FLAG); \ generate_or(ireg_a, ireg_b); \ condition_check = CONDITION_TRUE \ #define generate_condition_ge(ireg_a, ireg_b) \ generate_load_reg(ireg_a, REG_N_FLAG); \ generate_load_reg(ireg_b, REG_V_FLAG); \ condition_check = CONDITION_EQUAL \ #define generate_condition_lt(ireg_a, ireg_b) \ generate_load_reg(ireg_a, REG_N_FLAG); \ generate_load_reg(ireg_b, REG_V_FLAG); \ condition_check = CONDITION_NOT_EQUAL \ #define generate_condition_gt(ireg_a, ireg_b) \ generate_load_reg(ireg_a, REG_N_FLAG); \ generate_load_reg(ireg_b, REG_V_FLAG); \ generate_xor(ireg_b, ireg_a); \ generate_load_reg(a0, REG_Z_FLAG); \ generate_or(ireg_a, ireg_b); \ condition_check = CONDITION_FALSE \ #define generate_condition_le(ireg_a, ireg_b) \ generate_load_reg(ireg_a, REG_N_FLAG); \ generate_load_reg(ireg_b, REG_V_FLAG); \ generate_xor(ireg_b, ireg_a); \ generate_load_reg(a0, REG_Z_FLAG); \ generate_or(ireg_a, ireg_b); \ condition_check = CONDITION_TRUE \ #define generate_condition(ireg_a, ireg_b) \ switch(condition) \ { \ case 0x0: \ generate_condition_eq(ireg_a, ireg_b); \ break; \ \ case 0x1: \ generate_condition_ne(ireg_a, ireg_b); \ break; \ \ case 0x2: \ generate_condition_cs(ireg_a, ireg_b); \ break; \ \ case 0x3: \ generate_condition_cc(ireg_a, ireg_b); \ break; \ \ case 0x4: \ generate_condition_mi(ireg_a, ireg_b); \ break; \ \ case 0x5: \ generate_condition_pl(ireg_a, ireg_b); \ break; \ \ case 0x6: \ generate_condition_vs(ireg_a, ireg_b); \ break; \ \ case 0x7: \ generate_condition_vc(ireg_a, ireg_b); \ break; \ \ case 0x8: \ generate_condition_hi(ireg_a, ireg_b); \ break; \ \ case 0x9: \ generate_condition_ls(ireg_a, ireg_b); \ break; \ \ case 0xA: \ generate_condition_ge(ireg_a, ireg_b); \ break; \ \ case 0xB: \ generate_condition_lt(ireg_a, ireg_b); \ break; \ \ case 0xC: \ generate_condition_gt(ireg_a, ireg_b); \ break; \ \ case 0xD: \ generate_condition_le(ireg_a, ireg_b); \ break; \ \ case 0xE: \ /* AL */ \ break; \ \ case 0xF: \ /* Reserved */ \ break; \ } \ generate_cycle_update() \ #define generate_conditional_branch_type(ireg_a, ireg_b) \ switch(condition_check) \ { \ case CONDITION_TRUE: \ generate_conditional_branch(ireg_a, ireg_b, true, backpatch_address); \ break; \ \ case CONDITION_FALSE: \ generate_conditional_branch(ireg_a, ireg_b, false, backpatch_address); \ break; \ \ case CONDITION_EQUAL: \ generate_conditional_branch(ireg_a, ireg_b, equal, backpatch_address); \ break; \ \ case CONDITION_NOT_EQUAL: \ generate_conditional_branch(ireg_a, ireg_b, not_equal, \ backpatch_address); \ break; \ } \ #define generate_branch() \ { \ if(condition == 0x0E) \ { \ generate_branch_cycle_update( \ block_exits[block_exit_position].branch_source, \ block_exits[block_exit_position].branch_target); \ } \ else \ { \ generate_branch_no_cycle_update( \ block_exits[block_exit_position].branch_source, \ block_exits[block_exit_position].branch_target); \ } \ block_exit_position++; \ } \ #define rm_op_reg rm #define rm_op_imm imm #define arm_data_proc_reg_flags() \ arm_decode_data_proc_reg(opcode); \ if(flag_status & 0x02) \ { \ generate_load_rm_sh(flags) \ } \ else \ { \ generate_load_rm_sh(no_flags); \ } \ #define arm_data_proc_reg() \ arm_decode_data_proc_reg(opcode); \ generate_load_rm_sh(no_flags) \ #define arm_data_proc_imm() \ arm_decode_data_proc_imm(opcode); \ ror(imm, imm, imm_ror); \ generate_load_imm(a0, imm) \ #define arm_data_proc_imm_flags() \ arm_decode_data_proc_imm(opcode); \ if((flag_status & 0x02) && (imm_ror != 0)) \ { \ /* Generate carry flag from integer rotation */ \ generate_load_imm(a0, ((imm >> (imm_ror - 1)) & 0x01)); \ generate_store_reg(a0, REG_C_FLAG); \ } \ ror(imm, imm, imm_ror); \ generate_load_imm(a0, imm) \ #define arm_data_proc(name, type, flags_op) \ { \ arm_data_proc_##type(); \ generate_load_reg_pc(a1, rn, 8); \ generate_function_call(execute_##name); \ generate_store_reg_pc_##flags_op(rv, rd); \ } \ #define arm_data_proc_test(name, type) \ { \ arm_data_proc_##type(); \ generate_load_reg_pc(a1, rn, 8); \ generate_function_call(execute_##name); \ } \ #define arm_data_proc_unary(name, type, flags_op) \ { \ arm_data_proc_##type(); \ generate_function_call(execute_##name); \ generate_store_reg_pc_##flags_op(rv, rd); \ } \ #define arm_data_proc_mov(type) \ { \ arm_data_proc_##type(); \ generate_store_reg_pc_no_flags(a0, rd); \ } \ static void function_cc execute_mul_flags(u32 dest) { calculate_z_flag(dest); calculate_n_flag(dest); } #define arm_multiply_flags_yes() \ generate_function_call(execute_mul_flags) \ #define arm_multiply_flags_no(_dest) \ #define arm_multiply_add_no() \ #define arm_multiply_add_yes() \ generate_load_reg(a1, rn); \ generate_add(a0, a1) \ #define arm_multiply(add_op, flags) \ { \ arm_decode_multiply(); \ generate_load_reg(a0, rm); \ generate_load_reg(a1, rs); \ generate_multiply(a1); \ arm_multiply_add_##add_op(); \ generate_store_reg(a0, rd); \ arm_multiply_flags_##flags(); \ } \ static void function_cc execute_mul_long_flags(u32 dest_lo, u32 dest_hi) { reg[REG_Z_FLAG] = (dest_lo == 0) & (dest_hi == 0); calculate_n_flag(dest_hi); } #define arm_multiply_long_flags_yes() \ generate_function_call(execute_mul_long_flags) \ #define arm_multiply_long_flags_no(_dest) \ #define arm_multiply_long_add_yes(name) \ generate_load_reg(a2, rdlo); \ generate_load_reg(s0, rdhi); \ generate_multiply_##name(a1, a2, s0) \ #define arm_multiply_long_add_no(name) \ generate_multiply_##name(a1) \ #define arm_multiply_long(name, add_op, flags) \ { \ arm_decode_multiply_long(); \ generate_load_reg(a0, rm); \ generate_load_reg(a1, rs); \ arm_multiply_long_add_##add_op(name); \ generate_store_reg(a0, rdlo); \ generate_store_reg(a1, rdhi); \ arm_multiply_long_flags_##flags(); \ } \ u32 function_cc execute_read_cpsr(void) { collapse_flags(); return reg[REG_CPSR]; } u32 function_cc execute_read_spsr(void) { collapse_flags(); return spsr[reg[CPU_MODE]]; } #define arm_psr_read(op_type, psr_reg) \ generate_function_call(execute_read_##psr_reg); \ generate_store_reg(rv, rd) \ // store_mask and address are stored in the SAVE slots, since there's no real // register space to nicely pass them. u32 function_cc execute_store_cpsr_body(u32 _cpsr) { reg[REG_CPSR] = _cpsr; if(reg[REG_SAVE] & 0xFF) { set_cpu_mode(cpu_modes[_cpsr & 0x1F]); if((io_registers[REG_IE] & io_registers[REG_IF]) && io_registers[REG_IME] && ((_cpsr & 0x80) == 0)) { reg_mode[MODE_IRQ][6] = reg[REG_SAVE2] + 4; spsr[MODE_IRQ] = _cpsr; reg[REG_CPSR] = (_cpsr & 0xFFFFFF00) | 0xD2; set_cpu_mode(MODE_IRQ); return 0x00000018; } } return 0; } void function_cc execute_store_spsr(u32 new_spsr, u32 store_mask) { u32 _spsr = spsr[reg[CPU_MODE]]; spsr[reg[CPU_MODE]] = (new_spsr & store_mask) | (_spsr & (~store_mask)); } #define arm_psr_load_new_reg() \ generate_load_reg(a0, rm) \ #define arm_psr_load_new_imm() \ ror(imm, imm, imm_ror); \ generate_load_imm(a0, imm) \ #define arm_psr_store(op_type, psr_reg) \ arm_psr_load_new_##op_type(); \ generate_load_imm(a1, psr_masks[psr_field]); \ generate_load_pc(a2, (pc + 4)); \ generate_function_call(execute_store_##psr_reg) \ #define arm_psr(op_type, transfer_type, psr_reg) \ { \ arm_decode_psr_##op_type(opcode); \ arm_psr_##transfer_type(op_type, psr_reg); \ } \ #define aligned_address_mask8 0xF0000000 #define aligned_address_mask16 0xF0000001 #define aligned_address_mask32 0xF0000003 #define read_memory(size, type, address, dest) \ { \ u8 *map; \ \ if(((address >> 24) == 0) && (reg[REG_PC] >= 0x4000)) \ { \ dest = *((type *)((u8 *)&bios_read_protect + (address & 0x03))); \ } \ else \ \ if(((address & aligned_address_mask##size) == 0) && \ (map = memory_map_read[address >> 15])) \ { \ dest = *((type *)((u8 *)map + (address & 0x7FFF))); \ } \ else \ { \ dest = (type)read_memory##size(address); \ } \ } \ #define read_memory_s16(address, dest) \ { \ u8 *map; \ \ if(((address >> 24) == 0) && (reg[REG_PC] >= 0x4000)) \ { \ dest = *((s16 *)((u8 *)&bios_read_protect + (address & 0x03))); \ } \ else \ \ if(((address & aligned_address_mask16) == 0) && \ (map = memory_map_read[address >> 15])) \ { \ dest = *((s16 *)((u8 *)map + (address & 0x7FFF))); \ } \ else \ { \ dest = (s16)read_memory16_signed(address); \ } \ } \ #define access_memory_generate_read_function(mem_size, mem_type) \ u32 function_cc execute_load_##mem_type(u32 address) \ { \ u32 dest; \ read_memory(mem_size, mem_type, address, dest); \ return dest; \ } \ access_memory_generate_read_function(8, u8); access_memory_generate_read_function(8, s8); access_memory_generate_read_function(16, u16); access_memory_generate_read_function(32, u32); u32 function_cc execute_load_s16(u32 address) { u32 dest; read_memory_s16(address, dest); return dest; } #define arm_access_memory_load(mem_type) \ cycle_count += 2; \ generate_function_call(execute_load_##mem_type); \ generate_store_reg_pc_no_flags(rv, rd) \ #define arm_access_memory_store(mem_type) \ cycle_count++; \ generate_load_reg_pc(a1, rd, 12); \ generate_load_pc(a2, (pc + 4)); \ generate_function_call(execute_store_##mem_type) \ #define no_op \ #define arm_access_memory_writeback_yes(off_op) \ reg[rn] = address off_op \ #define arm_access_memory_writeback_no(off_op) \ #define load_reg_op reg[rd] \ #define store_reg_op reg_op \ #define arm_access_memory_adjust_op_up add #define arm_access_memory_adjust_op_down sub #define arm_access_memory_reverse_op_up sub #define arm_access_memory_reverse_op_down add #define arm_access_memory_reg_pre(adjust_dir_op, reverse_dir_op) \ generate_load_reg_pc(a0, rn, 8); \ generate_##adjust_dir_op(a0, a1) \ #define arm_access_memory_reg_pre_wb(adjust_dir_op, reverse_dir_op) \ arm_access_memory_reg_pre(adjust_dir_op, reverse_dir_op); \ generate_store_reg(a0, rn) \ #define arm_access_memory_reg_post(adjust_dir_op, reverse_dir_op) \ generate_load_reg(a0, rn); \ generate_##adjust_dir_op(a0, a1); \ generate_store_reg(a0, rn); \ generate_##reverse_dir_op(a0, a1) \ #define arm_access_memory_imm_pre(adjust_dir_op, reverse_dir_op) \ generate_load_reg_pc(a0, rn, 8); \ generate_##adjust_dir_op##_imm(a0, offset) \ #define arm_access_memory_imm_pre_wb(adjust_dir_op, reverse_dir_op) \ arm_access_memory_imm_pre(adjust_dir_op, reverse_dir_op); \ generate_store_reg(a0, rn) \ #define arm_access_memory_imm_post(adjust_dir_op, reverse_dir_op) \ generate_load_reg(a0, rn); \ generate_##adjust_dir_op##_imm(a0, offset); \ generate_store_reg(a0, rn); \ generate_##reverse_dir_op##_imm(a0, offset) \ #define arm_data_trans_reg(adjust_op, adjust_dir_op, reverse_dir_op) \ arm_decode_data_trans_reg(); \ generate_load_offset_sh(); \ arm_access_memory_reg_##adjust_op(adjust_dir_op, reverse_dir_op) \ #define arm_data_trans_imm(adjust_op, adjust_dir_op, reverse_dir_op) \ arm_decode_data_trans_imm(); \ arm_access_memory_imm_##adjust_op(adjust_dir_op, reverse_dir_op) \ #define arm_data_trans_half_reg(adjust_op, adjust_dir_op, reverse_dir_op) \ arm_decode_half_trans_r(); \ generate_load_reg(a1, rm); \ arm_access_memory_reg_##adjust_op(adjust_dir_op, reverse_dir_op) \ #define arm_data_trans_half_imm(adjust_op, adjust_dir_op, reverse_dir_op) \ arm_decode_half_trans_of(); \ arm_access_memory_imm_##adjust_op(adjust_dir_op, reverse_dir_op) \ #define arm_access_memory(access_type, direction, adjust_op, mem_type, \ offset_type) \ { \ arm_data_trans_##offset_type(adjust_op, \ arm_access_memory_adjust_op_##direction, \ arm_access_memory_reverse_op_##direction); \ \ arm_access_memory_##access_type(mem_type); \ } \ #define word_bit_count(word) \ (bit_count[word >> 8] + bit_count[word & 0xFF]) \ #define sprint_no(access_type, pre_op, post_op, wb) \ #define sprint_yes(access_type, pre_op, post_op, wb) \ printf("sbit on %s %s %s %s\n", #access_type, #pre_op, #post_op, #wb) \ u32 function_cc execute_aligned_load32(u32 address) { u8 *map; if(!(address & 0xF0000000) && (map = memory_map_read[address >> 15])) return address32(map, address & 0x7FFF); else return read_memory32(address); } #define arm_block_memory_load() \ generate_function_call(execute_aligned_load32); \ generate_store_reg(rv, i) \ #define arm_block_memory_store() \ generate_load_reg_pc(a1, i, 8); \ generate_function_call(write_memory32) \ #define arm_block_memory_final_load() \ arm_block_memory_load() \ #define arm_block_memory_final_store() \ generate_load_reg_pc(a1, i, 12); \ generate_load_pc(a2, (pc + 4)); \ generate_function_call(execute_store_u32) \ #define arm_block_memory_adjust_pc_store() \ #define arm_block_memory_adjust_pc_load() \ if(reg_list & 0x8000) \ { \ generate_mov(a0, rv); \ generate_indirect_branch_arm(); \ } \ #define arm_block_memory_offset_down_a() \ generate_add_imm(s0, -((word_bit_count(reg_list) * 4) - 4)) \ #define arm_block_memory_offset_down_b() \ generate_add_imm(s0, -(word_bit_count(reg_list) * 4)) \ #define arm_block_memory_offset_no() \ #define arm_block_memory_offset_up() \ generate_add_imm(s0, 4) \ #define arm_block_memory_writeback_down() \ generate_load_reg(a0, rn) \ generate_add_imm(a0, -(word_bit_count(reg_list) * 4)); \ generate_store_reg(a0, rn) \ #define arm_block_memory_writeback_up() \ generate_load_reg(a0, rn); \ generate_add_imm(a0, (word_bit_count(reg_list) * 4)); \ generate_store_reg(a0, rn) \ #define arm_block_memory_writeback_no() // Only emit writeback if the register is not in the list #define arm_block_memory_writeback_load(writeback_type) \ if(!((reg_list >> rn) & 0x01)) \ { \ arm_block_memory_writeback_##writeback_type(); \ } \ #define arm_block_memory_writeback_store(writeback_type) \ arm_block_memory_writeback_##writeback_type() \ #define arm_block_memory(access_type, offset_type, writeback_type, s_bit) \ { \ arm_decode_block_trans(); \ u32 offset = 0; \ u32 i; \ \ generate_load_reg(s0, rn); \ arm_block_memory_offset_##offset_type(); \ arm_block_memory_writeback_##access_type(writeback_type); \ generate_and_imm(s0, ~0x03); \ \ for(i = 0; i < 16; i++) \ { \ if((reg_list >> i) & 0x01) \ { \ cycle_count++; \ generate_add_reg_reg_imm(a0, s0, offset) \ if(reg_list & ~((2 << i) - 1)) \ { \ arm_block_memory_##access_type(); \ offset += 4; \ } \ else \ { \ arm_block_memory_final_##access_type(); \ } \ } \ } \ \ arm_block_memory_adjust_pc_##access_type(); \ } \ #define arm_swap(type) \ { \ arm_decode_swap(); \ cycle_count += 3; \ generate_load_reg(a0, rn); \ generate_function_call(execute_load_##type); \ generate_mov(s0, rv); \ generate_load_reg(a0, rn); \ generate_load_reg(a1, rm); \ generate_function_call(execute_store_##type); \ generate_store_reg(s0, rd); \ } \ #define thumb_rn_op_reg(_rn) \ generate_load_reg(a0, _rn) \ #define thumb_rn_op_imm(_imm) \ generate_load_imm(a0, _imm) \ // Types: add_sub, add_sub_imm, alu_op, imm // Affects N/Z/C/V flags #define thumb_data_proc(type, name, rn_type, _rd, _rs, _rn) \ { \ thumb_decode_##type(); \ thumb_rn_op_##rn_type(_rn); \ generate_load_reg(a1, _rs); \ generate_function_call(execute_##name); \ generate_store_reg(rv, _rd); \ } \ #define thumb_data_proc_test(type, name, rn_type, _rs, _rn) \ { \ thumb_decode_##type(); \ thumb_rn_op_##rn_type(_rn); \ generate_load_reg(a1, _rs); \ generate_function_call(execute_##name); \ } \ #define thumb_data_proc_unary(type, name, rn_type, _rd, _rn) \ { \ thumb_decode_##type(); \ thumb_rn_op_##rn_type(_rn); \ generate_function_call(execute_##name); \ generate_store_reg(rv, _rd); \ } \ #define thumb_data_proc_mov(type, rn_type, _rd, _rn) \ { \ thumb_decode_##type(); \ thumb_rn_op_##rn_type(_rn); \ generate_store_reg(a0, _rd); \ } \ #define generate_store_reg_pc_thumb(ireg) \ generate_store_reg(ireg, rd); \ if(rd == 15) \ { \ generate_indirect_branch_cycle_update(thumb); \ } \ #define thumb_data_proc_hi(name) \ { \ thumb_decode_hireg_op(); \ generate_load_reg_pc(a0, rs, 4); \ generate_load_reg_pc(a1, rd, 4); \ generate_function_call(execute_##name); \ generate_store_reg_pc_thumb(rv); \ } \ #define thumb_data_proc_test_hi(name) \ { \ thumb_decode_hireg_op(); \ generate_load_reg_pc(a0, rs, 4); \ generate_load_reg_pc(a1, rd, 4); \ generate_function_call(execute_##name); \ } \ #define thumb_data_proc_unary_hi(name) \ { \ thumb_decode_hireg_op(); \ generate_load_reg_pc(a0, rn, 4); \ generate_function_call(execute_##name); \ generate_store_reg_pc_thumb(rv); \ } \ #define thumb_data_proc_mov_hi() \ { \ thumb_decode_hireg_op(); \ generate_load_reg_pc(a0, rs, 4); \ generate_store_reg_pc_thumb(a0); \ } \ #define thumb_load_pc(_rd) \ { \ thumb_decode_imm(); \ generate_load_pc(a0, (((pc & ~2) + 4) + (imm * 4))); \ generate_store_reg(a0, _rd); \ } \ #define thumb_load_sp(_rd) \ { \ thumb_decode_imm(); \ generate_load_reg(a0, 13); \ generate_add_imm(a0, (imm * 4)); \ generate_store_reg(a0, _rd); \ } \ #define thumb_adjust_sp_up() \ generate_add_imm(a0, imm * 4) \ #define thumb_adjust_sp_down() \ generate_sub_imm(a0, imm * 4) \ #define thumb_adjust_sp(direction) \ { \ thumb_decode_add_sp(); \ generate_load_reg(a0, REG_SP); \ thumb_adjust_sp_##direction(); \ generate_store_reg(a0, REG_SP); \ } \ // Decode types: shift, alu_op // Operation types: lsl, lsr, asr, ror // Affects N/Z/C flags u32 function_cc execute_lsl_reg_op(u32 value, u32 shift) { if(shift != 0) { if(shift > 31) { if(shift == 32) reg[REG_C_FLAG] = value & 0x01; else reg[REG_C_FLAG] = 0; value = 0; } else { reg[REG_C_FLAG] = (value >> (32 - shift)) & 0x01; value <<= shift; } } calculate_flags_logic(value); return value; } u32 function_cc execute_lsr_reg_op(u32 value, u32 shift) { if(shift != 0) { if(shift > 31) { if(shift == 32) reg[REG_C_FLAG] = (value >> 31) & 0x01; else reg[REG_C_FLAG] = 0; value = 0; } else { reg[REG_C_FLAG] = (value >> (shift - 1)) & 0x01; value >>= shift; } } calculate_flags_logic(value); return value; } u32 function_cc execute_asr_reg_op(u32 value, u32 shift) { if(shift != 0) { if(shift > 31) { value = (s32)value >> 31; reg[REG_C_FLAG] = value & 0x01; } else { reg[REG_C_FLAG] = (value >> (shift - 1)) & 0x01; value = (s32)value >> shift; } } calculate_flags_logic(value); return value; } u32 function_cc execute_ror_reg_op(u32 value, u32 shift) { if(shift != 0) { reg[REG_C_FLAG] = (value >> (shift - 1)) & 0x01; ror(value, value, shift); } calculate_flags_logic(value); return value; } u32 function_cc execute_lsl_imm_op(u32 value, u32 shift) { if(shift != 0) { reg[REG_C_FLAG] = (value >> (32 - shift)) & 0x01; value <<= shift; } calculate_flags_logic(value); return value; } u32 function_cc execute_lsr_imm_op(u32 value, u32 shift) { if(shift != 0) { reg[REG_C_FLAG] = (value >> (shift - 1)) & 0x01; value >>= shift; } else { reg[REG_C_FLAG] = value >> 31; value = 0; } calculate_flags_logic(value); return value; } u32 function_cc execute_asr_imm_op(u32 value, u32 shift) { if(shift != 0) { reg[REG_C_FLAG] = (value >> (shift - 1)) & 0x01; value = (s32)value >> shift; } else { value = (s32)value >> 31; reg[REG_C_FLAG] = value & 0x01; } calculate_flags_logic(value); return value; } u32 function_cc execute_ror_imm_op(u32 value, u32 shift) { if(shift != 0) { reg[REG_C_FLAG] = (value >> (shift - 1)) & 0x01; ror(value, value, shift); } else { u32 c_flag = reg[REG_C_FLAG]; reg[REG_C_FLAG] = value & 0x01; value = (value >> 1) | (c_flag << 31); } calculate_flags_logic(value); return value; } #define generate_shift_load_operands_reg() \ generate_load_reg(a0, rd); \ generate_load_reg(a1, rs) \ #define generate_shift_load_operands_imm() \ generate_load_reg(a0, rs); \ generate_load_imm(a1, imm) \ #define thumb_shift(decode_type, op_type, value_type) \ { \ thumb_decode_##decode_type(); \ generate_shift_load_operands_##value_type(); \ generate_function_call(execute_##op_type##_##value_type##_op); \ generate_store_reg(rv, rd); \ } \ // Operation types: imm, mem_reg, mem_imm #define thumb_access_memory_load(mem_type, reg_rd) \ cycle_count += 2; \ generate_function_call(execute_load_##mem_type); \ generate_store_reg(rv, reg_rd) \ #define thumb_access_memory_store(mem_type, reg_rd) \ cycle_count++; \ generate_load_reg(a1, reg_rd); \ generate_load_pc(a2, (pc + 2)); \ generate_function_call(execute_store_##mem_type) \ #define thumb_access_memory_generate_address_pc_relative(offset, _rb, _ro) \ generate_load_pc(a0, (offset)) \ #define thumb_access_memory_generate_address_reg_imm_sp(offset, _rb, _ro) \ generate_load_reg(a0, _rb); \ generate_add_imm(a0, (offset * 4)) \ #define thumb_access_memory_generate_address_reg_imm(offset, _rb, _ro) \ generate_load_reg(a0, _rb); \ generate_add_imm(a0, (offset)) \ #define thumb_access_memory_generate_address_reg_reg(offset, _rb, _ro) \ generate_load_reg(a0, _rb); \ generate_load_reg(a1, _ro); \ generate_add(a0, a1) \ #define thumb_access_memory(access_type, op_type, _rd, _rb, _ro, \ address_type, offset, mem_type) \ { \ thumb_decode_##op_type(); \ thumb_access_memory_generate_address_##address_type(offset, _rb, _ro); \ thumb_access_memory_##access_type(mem_type, _rd); \ } \ #define thumb_block_address_preadjust_up() \ generate_add_imm(s0, (bit_count[reg_list] * 4)) \ #define thumb_block_address_preadjust_down() \ generate_sub_imm(s0, (bit_count[reg_list] * 4)) \ #define thumb_block_address_preadjust_push_lr() \ generate_sub_imm(s0, ((bit_count[reg_list] + 1) * 4)) \ #define thumb_block_address_preadjust_no() \ #define thumb_block_address_postadjust_no(base_reg) \ generate_store_reg(s0, base_reg) \ #define thumb_block_address_postadjust_up(base_reg) \ generate_add_reg_reg_imm(a0, s0, (bit_count[reg_list] * 4)); \ generate_store_reg(a0, base_reg) \ #define thumb_block_address_postadjust_down(base_reg) \ generate_mov(a0, s0); \ generate_sub_imm(a0, (bit_count[reg_list] * 4)); \ generate_store_reg(a0, base_reg) \ #define thumb_block_address_postadjust_pop_pc(base_reg) \ generate_add_reg_reg_imm(a0, s0, ((bit_count[reg_list] + 1) * 4)); \ generate_store_reg(a0, base_reg) \ #define thumb_block_address_postadjust_push_lr(base_reg) \ generate_store_reg(s0, base_reg) \ #define thumb_block_memory_extra_no() \ #define thumb_block_memory_extra_up() \ #define thumb_block_memory_extra_down() \ #define thumb_block_memory_extra_pop_pc() \ generate_add_reg_reg_imm(a0, s0, (bit_count[reg_list] * 4)); \ generate_function_call(execute_aligned_load32); \ generate_store_reg(rv, REG_PC); \ generate_mov(a0, rv); \ generate_indirect_branch_cycle_update(thumb) \ #define thumb_block_memory_extra_push_lr(base_reg) \ generate_add_reg_reg_imm(a0, s0, (bit_count[reg_list] * 4)); \ generate_load_reg(a1, REG_LR); \ generate_function_call(write_memory32) \ #define thumb_block_memory_load() \ generate_function_call(execute_aligned_load32); \ generate_store_reg(rv, i) \ #define thumb_block_memory_store() \ generate_load_reg(a1, i); \ generate_function_call(write_memory32) \ #define thumb_block_memory_final_load() \ thumb_block_memory_load() \ #define thumb_block_memory_final_store() \ generate_load_reg(a1, i); \ generate_load_pc(a2, (pc + 2)); \ generate_function_call(execute_store_u32) \ #define thumb_block_memory_final_no(access_type) \ thumb_block_memory_final_##access_type() \ #define thumb_block_memory_final_up(access_type) \ thumb_block_memory_final_##access_type() \ #define thumb_block_memory_final_down(access_type) \ thumb_block_memory_final_##access_type() \ #define thumb_block_memory_final_push_lr(access_type) \ thumb_block_memory_##access_type() \ #define thumb_block_memory_final_pop_pc(access_type) \ thumb_block_memory_##access_type() \ #define thumb_block_memory(access_type, pre_op, post_op, base_reg) \ { \ thumb_decode_rlist(); \ u32 i; \ u32 offset = 0; \ \ generate_load_reg(s0, base_reg); \ generate_and_imm(s0, ~0x03); \ thumb_block_address_preadjust_##pre_op(); \ thumb_block_address_postadjust_##post_op(base_reg); \ \ for(i = 0; i < 8; i++) \ { \ if((reg_list >> i) & 0x01) \ { \ cycle_count++; \ generate_add_reg_reg_imm(a0, s0, offset) \ if(reg_list & ~((2 << i) - 1)) \ { \ thumb_block_memory_##access_type(); \ offset += 4; \ } \ else \ { \ thumb_block_memory_final_##post_op(access_type); \ } \ } \ } \ \ thumb_block_memory_extra_##post_op(); \ } \ #define thumb_conditional_branch(condition) \ { \ condition_check_type condition_check = CONDITION_TRUE; \ generate_cycle_update(); \ generate_condition_##condition(a0, a1); \ generate_conditional_branch_type(a0, a1); \ generate_branch_no_cycle_update( \ block_exits[block_exit_position].branch_source, \ block_exits[block_exit_position].branch_target); \ generate_branch_patch_conditional(backpatch_address, translation_ptr); \ block_exit_position++; \ } \ #define flags_vars(src_a, src_b) \ u32 dest; \ const u32 _sa = src_a; \ const u32 _sb = src_b \ #define data_proc_generate_logic_function(name, expr) \ u32 function_cc execute_##name(u32 rm, u32 rn) \ { \ return expr; \ } \ \ u32 function_cc execute_##name##s(u32 rm, u32 rn) \ { \ u32 dest = expr; \ calculate_z_flag(dest); \ calculate_n_flag(dest); \ return expr; \ } \ #define data_proc_generate_logic_unary_function(name, expr) \ u32 function_cc execute_##name(u32 rm) \ { \ return expr; \ } \ \ u32 function_cc execute_##name##s(u32 rm) \ { \ u32 dest = expr; \ calculate_z_flag(dest); \ calculate_n_flag(dest); \ return expr; \ } \ #define data_proc_generate_sub_function(name, src_a, src_b) \ u32 function_cc execute_##name(u32 rm, u32 rn) \ { \ return (src_a) - (src_b); \ } \ \ u32 function_cc execute_##name##s(u32 rm, u32 rn) \ { \ flags_vars(src_a, src_b); \ dest = _sa - _sb; \ calculate_flags_sub(dest, _sa, _sb); \ return dest; \ } \ #define data_proc_generate_add_function(name, src_a, src_b) \ u32 function_cc execute_##name(u32 rm, u32 rn) \ { \ return (src_a) + (src_b); \ } \ \ u32 function_cc execute_##name##s(u32 rm, u32 rn) \ { \ flags_vars(src_a, src_b); \ dest = _sa + _sb; \ calculate_flags_add(dest, _sa, _sb); \ return dest; \ } \ #define data_proc_generate_sub_test_function(name, src_a, src_b) \ void function_cc execute_##name(u32 rm, u32 rn) \ { \ flags_vars(src_a, src_b); \ dest = _sa - _sb; \ calculate_flags_sub(dest, _sa, _sb); \ } \ #define data_proc_generate_add_test_function(name, src_a, src_b) \ void function_cc execute_##name(u32 rm, u32 rn) \ { \ flags_vars(src_a, src_b); \ dest = _sa + _sb; \ calculate_flags_add(dest, _sa, _sb); \ } \ #define data_proc_generate_logic_test_function(name, expr) \ void function_cc execute_##name(u32 rm, u32 rn) \ { \ u32 dest = expr; \ calculate_z_flag(dest); \ calculate_n_flag(dest); \ } \ u32 function_cc execute_neg(u32 rm) \ { \ u32 dest = 0 - rm; \ calculate_flags_sub(dest, 0, rm); \ return dest; \ } \ // Execute functions data_proc_generate_logic_function(and, rn & rm); data_proc_generate_logic_function(eor, rn ^ rm); data_proc_generate_logic_function(orr, rn | rm); data_proc_generate_logic_function(bic, rn & (~rm)); data_proc_generate_logic_function(mul, rn * rm); data_proc_generate_logic_unary_function(mov, rm); data_proc_generate_logic_unary_function(mvn, ~rm); data_proc_generate_sub_function(sub, rn, rm); data_proc_generate_sub_function(rsb, rm, rn); data_proc_generate_sub_function(sbc, rn, (rm + (reg[REG_C_FLAG] ^ 1))); data_proc_generate_sub_function(rsc, (rm + reg[REG_C_FLAG] - 1), rn); data_proc_generate_add_function(add, rn, rm); data_proc_generate_add_function(adc, rn, rm + reg[REG_C_FLAG]); data_proc_generate_logic_test_function(tst, rn & rm); data_proc_generate_logic_test_function(teq, rn ^ rm); data_proc_generate_sub_test_function(cmp, rn, rm); data_proc_generate_add_test_function(cmn, rn, rm); static void function_cc execute_swi(u32 pc) { reg_mode[MODE_SUPERVISOR][6] = pc; collapse_flags(); spsr[MODE_SUPERVISOR] = reg[REG_CPSR]; reg[REG_CPSR] = (reg[REG_CPSR] & ~0x3F) | 0x13; set_cpu_mode(MODE_SUPERVISOR); } #define arm_conditional_block_header() \ { \ condition_check_type condition_check = CONDITION_TRUE; \ generate_condition(a0, a1); \ generate_conditional_branch_type(a0, a1); \ } #define arm_b() \ generate_branch() \ #define arm_bl() \ generate_update_pc((pc + 4)); \ generate_store_reg(a0, REG_LR); \ generate_branch() \ #define arm_bx() \ arm_decode_branchx(opcode); \ generate_load_reg(a0, rn); \ generate_indirect_branch_dual(); \ #define arm_swi() \ generate_swi_hle_handler((opcode >> 16) & 0xFF); \ generate_update_pc((pc + 4)); \ generate_function_call(execute_swi); \ generate_branch() \ #define thumb_b() \ generate_branch_cycle_update( \ block_exits[block_exit_position].branch_source, \ block_exits[block_exit_position].branch_target); \ block_exit_position++ \ #define thumb_bl() \ generate_update_pc(((pc + 2) | 0x01)); \ generate_store_reg(a0, REG_LR); \ generate_branch_cycle_update( \ block_exits[block_exit_position].branch_source, \ block_exits[block_exit_position].branch_target); \ block_exit_position++ \ #define thumb_blh() \ { \ thumb_decode_branch(); \ generate_update_pc(((pc + 2) | 0x01)); \ generate_load_reg(a1, REG_LR); \ generate_store_reg(a0, REG_LR); \ generate_mov(a0, a1); \ generate_add_imm(a0, (offset * 2)); \ generate_indirect_branch_cycle_update(thumb); \ } \ #define thumb_bx() \ { \ thumb_decode_hireg_op(); \ generate_load_reg_pc(a0, rs, 4); \ generate_indirect_branch_cycle_update(dual); \ } \ #define thumb_swi() \ generate_swi_hle_handler(opcode & 0xFF); \ generate_update_pc((pc + 2)); \ generate_function_call(execute_swi); \ generate_branch_cycle_update( \ block_exits[block_exit_position].branch_source, \ block_exits[block_exit_position].branch_target); \ block_exit_position++ \ u8 swi_hle_handle[256] = { 0x0, // SWI 0: SoftReset 0x0, // SWI 1: RegisterRAMReset 0x0, // SWI 2: Halt 0x0, // SWI 3: Stop/Sleep 0x0, // SWI 4: IntrWait 0x0, // SWI 5: VBlankIntrWait 0x1, // SWI 6: Div 0x0, // SWI 7: DivArm 0x0, // SWI 8: Sqrt 0x0, // SWI 9: ArcTan 0x0, // SWI A: ArcTan2 0x0, // SWI B: CpuSet 0x0, // SWI C: CpuFastSet 0x0, // SWI D: GetBIOSCheckSum 0x0, // SWI E: BgAffineSet 0x0, // SWI F: ObjAffineSet 0x0, // SWI 10: BitUnpack 0x0, // SWI 11: LZ77UnCompWram 0x0, // SWI 12: LZ77UnCompVram 0x0, // SWI 13: HuffUnComp 0x0, // SWI 14: RLUnCompWram 0x0, // SWI 15: RLUnCompVram 0x0, // SWI 16: Diff8bitUnFilterWram 0x0, // SWI 17: Diff8bitUnFilterVram 0x0, // SWI 18: Diff16bitUnFilter 0x0, // SWI 19: SoundBias 0x0, // SWI 1A: SoundDriverInit 0x0, // SWI 1B: SoundDriverMode 0x0, // SWI 1C: SoundDriverMain 0x0, // SWI 1D: SoundDriverVSync 0x0, // SWI 1E: SoundChannelClear 0x0, // SWI 1F: MidiKey2Freq 0x0, // SWI 20: SoundWhatever0 0x0, // SWI 21: SoundWhatever1 0x0, // SWI 22: SoundWhatever2 0x0, // SWI 23: SoundWhatever3 0x0, // SWI 24: SoundWhatever4 0x0, // SWI 25: MultiBoot 0x0, // SWI 26: HardReset 0x0, // SWI 27: CustomHalt 0x0, // SWI 28: SoundDriverVSyncOff 0x0, // SWI 29: SoundDriverVSyncOn 0x0 // SWI 2A: SoundGetJumpList }; void function_cc swi_hle_div(void) { s32 result = (s32)reg[0] / (s32)reg[1]; reg[1] = (s32)reg[0] % (s32)reg[1]; reg[0] = result; reg[3] = (result ^ (result >> 31)) - (result >> 31); } #define generate_swi_hle_handler(_swi_number) \ { \ u32 swi_number = _swi_number; \ if(swi_hle_handle[swi_number]) \ { \ /* Div */ \ if(swi_number == 0x06) \ { \ generate_function_call(swi_hle_div); \ } \ break; \ } \ } \ #define generate_translation_gate(type) \ generate_update_pc(pc); \ generate_indirect_branch_no_cycle_update(type) \ void init_emitter(void) {} #endif