aboutsummaryrefslogtreecommitdiff
path: root/audio/softsynth/opl
diff options
context:
space:
mode:
Diffstat (limited to 'audio/softsynth/opl')
-rw-r--r--audio/softsynth/opl/dbopl.cpp1536
-rw-r--r--audio/softsynth/opl/dbopl.h283
-rw-r--r--audio/softsynth/opl/dosbox.cpp335
-rw-r--r--audio/softsynth/opl/dosbox.h110
-rw-r--r--audio/softsynth/opl/mame.cpp1234
-rw-r--r--audio/softsynth/opl/mame.h202
6 files changed, 3700 insertions, 0 deletions
diff --git a/audio/softsynth/opl/dbopl.cpp b/audio/softsynth/opl/dbopl.cpp
new file mode 100644
index 0000000000..47e263b6b9
--- /dev/null
+++ b/audio/softsynth/opl/dbopl.cpp
@@ -0,0 +1,1536 @@
+/*
+ * Copyright (C) 2002-2010 The DOSBox Team
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+
+/*
+ DOSBox implementation of a combined Yamaha YMF262 and Yamaha YM3812 emulator.
+ Enabling the opl3 bit will switch the emulator to stereo opl3 output instead of regular mono opl2
+ Except for the table generation it's all integer math
+ Can choose different types of generators, using muls and bigger tables, try different ones for slower platforms
+ The generation was based on the MAME implementation but tried to have it use less memory and be faster in general
+ MAME uses much bigger envelope tables and this will be the biggest cause of it sounding different at times
+
+ //TODO Don't delay first operator 1 sample in opl3 mode
+ //TODO Maybe not use class method pointers but a regular function pointers with operator as first parameter
+ //TODO Fix panning for the Percussion channels, would any opl3 player use it and actually really change it though?
+ //TODO Check if having the same accuracy in all frequency multipliers sounds better or not
+
+ //DUNNO Keyon in 4op, switch to 2op without keyoff.
+*/
+
+// Last synch with DOSBox SVN trunk r3556
+
+#include "dbopl.h"
+
+#ifndef DISABLE_DOSBOX_OPL
+
+namespace OPL {
+namespace DOSBox {
+
+#ifndef PI
+#define PI 3.14159265358979323846
+#endif
+
+namespace DBOPL {
+
+#define OPLRATE ((double)(14318180.0 / 288.0))
+#define TREMOLO_TABLE 52
+
+//Try to use most precision for frequencies
+//Else try to keep different waves in synch
+//#define WAVE_PRECISION 1
+#ifndef WAVE_PRECISION
+//Wave bits available in the top of the 32bit range
+//Original adlib uses 10.10, we use 10.22
+#define WAVE_BITS 10
+#else
+//Need some extra bits at the top to have room for octaves and frequency multiplier
+//We support to 8 times lower rate
+//128 * 15 * 8 = 15350, 2^13.9, so need 14 bits
+#define WAVE_BITS 14
+#endif
+#define WAVE_SH ( 32 - WAVE_BITS )
+#define WAVE_MASK ( ( 1 << WAVE_SH ) - 1 )
+
+//Use the same accuracy as the waves
+#define LFO_SH ( WAVE_SH - 10 )
+//LFO is controlled by our tremolo 256 sample limit
+#define LFO_MAX ( 256 << ( LFO_SH ) )
+
+
+//Maximum amount of attenuation bits
+//Envelope goes to 511, 9 bits
+#if (DBOPL_WAVE == WAVE_TABLEMUL )
+//Uses the value directly
+#define ENV_BITS ( 9 )
+#else
+//Add 3 bits here for more accuracy and would have to be shifted up either way
+#define ENV_BITS ( 9 )
+#endif
+//Limits of the envelope with those bits and when the envelope goes silent
+#define ENV_MIN 0
+#define ENV_EXTRA ( ENV_BITS - 9 )
+#define ENV_MAX ( 511 << ENV_EXTRA )
+#define ENV_LIMIT ( ( 12 * 256) >> ( 3 - ENV_EXTRA ) )
+#define ENV_SILENT( _X_ ) ( (_X_) >= ENV_LIMIT )
+
+//Attack/decay/release rate counter shift
+#define RATE_SH 24
+#define RATE_MASK ( ( 1 << RATE_SH ) - 1 )
+//Has to fit within 16bit lookuptable
+#define MUL_SH 16
+
+//Check some ranges
+#if ENV_EXTRA > 3
+#error Too many envelope bits
+#endif
+
+
+//How much to substract from the base value for the final attenuation
+static const Bit8u KslCreateTable[16] = {
+ //0 will always be be lower than 7 * 8
+ 64, 32, 24, 19,
+ 16, 12, 11, 10,
+ 8, 6, 5, 4,
+ 3, 2, 1, 0,
+};
+
+#define M(_X_) ((Bit8u)( (_X_) * 2))
+static const Bit8u FreqCreateTable[16] = {
+ M(0.5), M(1 ), M(2 ), M(3 ), M(4 ), M(5 ), M(6 ), M(7 ),
+ M(8 ), M(9 ), M(10), M(10), M(12), M(12), M(15), M(15)
+};
+#undef M
+
+//We're not including the highest attack rate, that gets a special value
+static const Bit8u AttackSamplesTable[13] = {
+ 69, 55, 46, 40,
+ 35, 29, 23, 20,
+ 19, 15, 11, 10,
+ 9
+};
+//On a real opl these values take 8 samples to reach and are based upon larger tables
+static const Bit8u EnvelopeIncreaseTable[13] = {
+ 4, 5, 6, 7,
+ 8, 10, 12, 14,
+ 16, 20, 24, 28,
+ 32,
+};
+
+#if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG )
+static Bit16u ExpTable[ 256 ];
+#endif
+
+#if ( DBOPL_WAVE == WAVE_HANDLER )
+//PI table used by WAVEHANDLER
+static Bit16u SinTable[ 512 ];
+#endif
+
+#if ( DBOPL_WAVE > WAVE_HANDLER )
+//Layout of the waveform table in 512 entry intervals
+//With overlapping waves we reduce the table to half it's size
+
+// | |//\\|____|WAV7|//__|/\ |____|/\/\|
+// |\\//| | |WAV7| | \/| | |
+// |06 |0126|17 |7 |3 |4 |4 5 |5 |
+
+//6 is just 0 shifted and masked
+
+static Bit16s WaveTable[ 8 * 512 ];
+//Distance into WaveTable the wave starts
+static const Bit16u WaveBaseTable[8] = {
+ 0x000, 0x200, 0x200, 0x800,
+ 0xa00, 0xc00, 0x100, 0x400,
+
+};
+//Mask the counter with this
+static const Bit16u WaveMaskTable[8] = {
+ 1023, 1023, 511, 511,
+ 1023, 1023, 512, 1023,
+};
+
+//Where to start the counter on at keyon
+static const Bit16u WaveStartTable[8] = {
+ 512, 0, 0, 0,
+ 0, 512, 512, 256,
+};
+#endif
+
+#if ( DBOPL_WAVE == WAVE_TABLEMUL )
+static Bit16u MulTable[ 384 ];
+#endif
+
+static Bit8u KslTable[ 8 * 16 ];
+static Bit8u TremoloTable[ TREMOLO_TABLE ];
+//Start of a channel behind the chip struct start
+static Bit16u ChanOffsetTable[32];
+//Start of an operator behind the chip struct start
+static Bit16u OpOffsetTable[64];
+
+//The lower bits are the shift of the operator vibrato value
+//The highest bit is right shifted to generate -1 or 0 for negation
+//So taking the highest input value of 7 this gives 3, 7, 3, 0, -3, -7, -3, 0
+static const Bit8s VibratoTable[ 8 ] = {
+ 1 - 0x00, 0 - 0x00, 1 - 0x00, 30 - 0x00,
+ 1 - 0x80, 0 - 0x80, 1 - 0x80, 30 - 0x80
+};
+
+//Shift strength for the ksl value determined by ksl strength
+static const Bit8u KslShiftTable[4] = {
+ 31,1,2,0
+};
+
+//Generate a table index and table shift value using input value from a selected rate
+static void EnvelopeSelect( Bit8u val, Bit8u& index, Bit8u& shift ) {
+ if ( val < 13 * 4 ) { //Rate 0 - 12
+ shift = 12 - ( val >> 2 );
+ index = val & 3;
+ } else if ( val < 15 * 4 ) { //rate 13 - 14
+ shift = 0;
+ index = val - 12 * 4;
+ } else { //rate 15 and up
+ shift = 0;
+ index = 12;
+ }
+}
+
+#if ( DBOPL_WAVE == WAVE_HANDLER )
+/*
+ Generate the different waveforms out of the sine/exponetial table using handlers
+*/
+static inline Bits MakeVolume( Bitu wave, Bitu volume ) {
+ Bitu total = wave + volume;
+ Bitu index = total & 0xff;
+ Bitu sig = ExpTable[ index ];
+ Bitu exp = total >> 8;
+#if 0
+ //Check if we overflow the 31 shift limit
+ if ( exp >= 32 ) {
+ LOG_MSG( "WTF %d %d", total, exp );
+ }
+#endif
+ return (sig >> exp);
+}
+
+static Bits DB_FASTCALL WaveForm0( Bitu i, Bitu volume ) {
+ Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
+ Bitu wave = SinTable[i & 511];
+ return (MakeVolume( wave, volume ) ^ neg) - neg;
+}
+static Bits DB_FASTCALL WaveForm1( Bitu i, Bitu volume ) {
+ Bit32u wave = SinTable[i & 511];
+ wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
+ return MakeVolume( wave, volume );
+}
+static Bits DB_FASTCALL WaveForm2( Bitu i, Bitu volume ) {
+ Bitu wave = SinTable[i & 511];
+ return MakeVolume( wave, volume );
+}
+static Bits DB_FASTCALL WaveForm3( Bitu i, Bitu volume ) {
+ Bitu wave = SinTable[i & 255];
+ wave |= ( ( (i ^ 256 ) & 256) - 1) >> ( 32 - 12 );
+ return MakeVolume( wave, volume );
+}
+static Bits DB_FASTCALL WaveForm4( Bitu i, Bitu volume ) {
+ //Twice as fast
+ i <<= 1;
+ Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
+ Bitu wave = SinTable[i & 511];
+ wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
+ return (MakeVolume( wave, volume ) ^ neg) - neg;
+}
+static Bits DB_FASTCALL WaveForm5( Bitu i, Bitu volume ) {
+ //Twice as fast
+ i <<= 1;
+ Bitu wave = SinTable[i & 511];
+ wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 );
+ return MakeVolume( wave, volume );
+}
+static Bits DB_FASTCALL WaveForm6( Bitu i, Bitu volume ) {
+ Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0
+ return (MakeVolume( 0, volume ) ^ neg) - neg;
+}
+static Bits DB_FASTCALL WaveForm7( Bitu i, Bitu volume ) {
+ //Negative is reversed here
+ Bits neg = (( i >> 9) & 1) - 1;
+ Bitu wave = (i << 3);
+ //When negative the volume also runs backwards
+ wave = ((wave ^ neg) - neg) & 4095;
+ return (MakeVolume( wave, volume ) ^ neg) - neg;
+}
+
+static const WaveHandler WaveHandlerTable[8] = {
+ WaveForm0, WaveForm1, WaveForm2, WaveForm3,
+ WaveForm4, WaveForm5, WaveForm6, WaveForm7
+};
+
+#endif
+
+/*
+ Operator
+*/
+
+//We zero out when rate == 0
+inline void Operator::UpdateAttack( const Chip* chip ) {
+ Bit8u rate = reg60 >> 4;
+ if ( rate ) {
+ Bit8u val = (rate << 2) + ksr;
+ attackAdd = chip->attackRates[ val ];
+ rateZero &= ~(1 << ATTACK);
+ } else {
+ attackAdd = 0;
+ rateZero |= (1 << ATTACK);
+ }
+}
+inline void Operator::UpdateDecay( const Chip* chip ) {
+ Bit8u rate = reg60 & 0xf;
+ if ( rate ) {
+ Bit8u val = (rate << 2) + ksr;
+ decayAdd = chip->linearRates[ val ];
+ rateZero &= ~(1 << DECAY);
+ } else {
+ decayAdd = 0;
+ rateZero |= (1 << DECAY);
+ }
+}
+inline void Operator::UpdateRelease( const Chip* chip ) {
+ Bit8u rate = reg80 & 0xf;
+ if ( rate ) {
+ Bit8u val = (rate << 2) + ksr;
+ releaseAdd = chip->linearRates[ val ];
+ rateZero &= ~(1 << RELEASE);
+ if ( !(reg20 & MASK_SUSTAIN ) ) {
+ rateZero &= ~( 1 << SUSTAIN );
+ }
+ } else {
+ rateZero |= (1 << RELEASE);
+ releaseAdd = 0;
+ if ( !(reg20 & MASK_SUSTAIN ) ) {
+ rateZero |= ( 1 << SUSTAIN );
+ }
+ }
+}
+
+inline void Operator::UpdateAttenuation( ) {
+ Bit8u kslBase = (Bit8u)((chanData >> SHIFT_KSLBASE) & 0xff);
+ Bit32u tl = reg40 & 0x3f;
+ Bit8u kslShift = KslShiftTable[ reg40 >> 6 ];
+ //Make sure the attenuation goes to the right bits
+ totalLevel = tl << ( ENV_BITS - 7 ); //Total level goes 2 bits below max
+ totalLevel += ( kslBase << ENV_EXTRA ) >> kslShift;
+}
+
+void Operator::UpdateFrequency( ) {
+ Bit32u freq = chanData & (( 1 << 10 ) - 1);
+ Bit32u block = (chanData >> 10) & 0xff;
+#ifdef WAVE_PRECISION
+ block = 7 - block;
+ waveAdd = ( freq * freqMul ) >> block;
+#else
+ waveAdd = ( freq << block ) * freqMul;
+#endif
+ if ( reg20 & MASK_VIBRATO ) {
+ vibStrength = (Bit8u)(freq >> 7);
+
+#ifdef WAVE_PRECISION
+ vibrato = ( vibStrength * freqMul ) >> block;
+#else
+ vibrato = ( vibStrength << block ) * freqMul;
+#endif
+ } else {
+ vibStrength = 0;
+ vibrato = 0;
+ }
+}
+
+void Operator::UpdateRates( const Chip* chip ) {
+ //Mame seems to reverse this where enabling ksr actually lowers
+ //the rate, but pdf manuals says otherwise?
+ Bit8u newKsr = (Bit8u)((chanData >> SHIFT_KEYCODE) & 0xff);
+ if ( !( reg20 & MASK_KSR ) ) {
+ newKsr >>= 2;
+ }
+ if ( ksr == newKsr )
+ return;
+ ksr = newKsr;
+ UpdateAttack( chip );
+ UpdateDecay( chip );
+ UpdateRelease( chip );
+}
+
+INLINE Bit32s Operator::RateForward( Bit32u add ) {
+ rateIndex += add;
+ Bit32s ret = rateIndex >> RATE_SH;
+ rateIndex = rateIndex & RATE_MASK;
+ return ret;
+}
+
+template< Operator::State yes>
+Bits Operator::TemplateVolume( ) {
+ Bit32s vol = volume;
+ Bit32s change;
+ switch ( yes ) {
+ case OFF:
+ return ENV_MAX;
+ case ATTACK:
+ change = RateForward( attackAdd );
+ if ( !change )
+ return vol;
+ vol += ( (~vol) * change ) >> 3;
+ if ( vol < ENV_MIN ) {
+ volume = ENV_MIN;
+ rateIndex = 0;
+ SetState( DECAY );
+ return ENV_MIN;
+ }
+ break;
+ case DECAY:
+ vol += RateForward( decayAdd );
+ if ( GCC_UNLIKELY(vol >= sustainLevel) ) {
+ //Check if we didn't overshoot max attenuation, then just go off
+ if ( GCC_UNLIKELY(vol >= ENV_MAX) ) {
+ volume = ENV_MAX;
+ SetState( OFF );
+ return ENV_MAX;
+ }
+ //Continue as sustain
+ rateIndex = 0;
+ SetState( SUSTAIN );
+ }
+ break;
+ case SUSTAIN:
+ if ( reg20 & MASK_SUSTAIN ) {
+ return vol;
+ }
+ //In sustain phase, but not sustaining, do regular release
+ case RELEASE:
+ vol += RateForward( releaseAdd );
+ if ( GCC_UNLIKELY(vol >= ENV_MAX) ) {
+ volume = ENV_MAX;
+ SetState( OFF );
+ return ENV_MAX;
+ }
+ break;
+ }
+ volume = vol;
+ return vol;
+}
+
+static const VolumeHandler VolumeHandlerTable[5] = {
+ &Operator::TemplateVolume< Operator::OFF >,
+ &Operator::TemplateVolume< Operator::RELEASE >,
+ &Operator::TemplateVolume< Operator::SUSTAIN >,
+ &Operator::TemplateVolume< Operator::DECAY >,
+ &Operator::TemplateVolume< Operator::ATTACK >
+};
+
+INLINE Bitu Operator::ForwardVolume() {
+ return currentLevel + (this->*volHandler)();
+}
+
+
+INLINE Bitu Operator::ForwardWave() {
+ waveIndex += waveCurrent;
+ return waveIndex >> WAVE_SH;
+}
+
+void Operator::Write20( const Chip* chip, Bit8u val ) {
+ Bit8u change = (reg20 ^ val );
+ if ( !change )
+ return;
+ reg20 = val;
+ //Shift the tremolo bit over the entire register, saved a branch, YES!
+ tremoloMask = (Bit8s)(val) >> 7;
+ tremoloMask &= ~(( 1 << ENV_EXTRA ) -1);
+ //Update specific features based on changes
+ if ( change & MASK_KSR ) {
+ UpdateRates( chip );
+ }
+ //With sustain enable the volume doesn't change
+ if ( reg20 & MASK_SUSTAIN || ( !releaseAdd ) ) {
+ rateZero |= ( 1 << SUSTAIN );
+ } else {
+ rateZero &= ~( 1 << SUSTAIN );
+ }
+ //Frequency multiplier or vibrato changed
+ if ( change & (0xf | MASK_VIBRATO) ) {
+ freqMul = chip->freqMul[ val & 0xf ];
+ UpdateFrequency();
+ }
+}
+
+void Operator::Write40( const Chip* /*chip*/, Bit8u val ) {
+ if (!(reg40 ^ val ))
+ return;
+ reg40 = val;
+ UpdateAttenuation( );
+}
+
+void Operator::Write60( const Chip* chip, Bit8u val ) {
+ Bit8u change = reg60 ^ val;
+ reg60 = val;
+ if ( change & 0x0f ) {
+ UpdateDecay( chip );
+ }
+ if ( change & 0xf0 ) {
+ UpdateAttack( chip );
+ }
+}
+
+void Operator::Write80( const Chip* chip, Bit8u val ) {
+ Bit8u change = (reg80 ^ val );
+ if ( !change )
+ return;
+ reg80 = val;
+ Bit8u sustain = val >> 4;
+ //Turn 0xf into 0x1f
+ sustain |= ( sustain + 1) & 0x10;
+ sustainLevel = sustain << ( ENV_BITS - 5 );
+ if ( change & 0x0f ) {
+ UpdateRelease( chip );
+ }
+}
+
+void Operator::WriteE0( const Chip* chip, Bit8u val ) {
+ if ( !(regE0 ^ val) )
+ return;
+ //in opl3 mode you can always selet 7 waveforms regardless of waveformselect
+ Bit8u waveForm = val & ( ( 0x3 & chip->waveFormMask ) | (0x7 & chip->opl3Active ) );
+ regE0 = val;
+#if ( DBOPL_WAVE == WAVE_HANDLER )
+ waveHandler = WaveHandlerTable[ waveForm ];
+#else
+ waveBase = WaveTable + WaveBaseTable[ waveForm ];
+ waveStart = WaveStartTable[ waveForm ] << WAVE_SH;
+ waveMask = WaveMaskTable[ waveForm ];
+#endif
+}
+
+INLINE void Operator::SetState( Bit8u s ) {
+ state = s;
+ volHandler = VolumeHandlerTable[ s ];
+}
+
+INLINE bool Operator::Silent() const {
+ if ( !ENV_SILENT( totalLevel + volume ) )
+ return false;
+ if ( !(rateZero & ( 1 << state ) ) )
+ return false;
+ return true;
+}
+
+INLINE void Operator::Prepare( const Chip* chip ) {
+ currentLevel = totalLevel + (chip->tremoloValue & tremoloMask);
+ waveCurrent = waveAdd;
+ if ( vibStrength >> chip->vibratoShift ) {
+ Bit32s add = vibrato >> chip->vibratoShift;
+ //Sign extend over the shift value
+ Bit32s neg = chip->vibratoSign;
+ //Negate the add with -1 or 0
+ add = ( add ^ neg ) - neg;
+ waveCurrent += add;
+ }
+}
+
+void Operator::KeyOn( Bit8u mask ) {
+ if ( !keyOn ) {
+ //Restart the frequency generator
+#if ( DBOPL_WAVE > WAVE_HANDLER )
+ waveIndex = waveStart;
+#else
+ waveIndex = 0;
+#endif
+ rateIndex = 0;
+ SetState( ATTACK );
+ }
+ keyOn |= mask;
+}
+
+void Operator::KeyOff( Bit8u mask ) {
+ keyOn &= ~mask;
+ if ( !keyOn ) {
+ if ( state != OFF ) {
+ SetState( RELEASE );
+ }
+ }
+}
+
+INLINE Bits Operator::GetWave( Bitu index, Bitu vol ) {
+#if ( DBOPL_WAVE == WAVE_HANDLER )
+ return waveHandler( index, vol << ( 3 - ENV_EXTRA ) );
+#elif ( DBOPL_WAVE == WAVE_TABLEMUL )
+ return (waveBase[ index & waveMask ] * MulTable[ vol >> ENV_EXTRA ]) >> MUL_SH;
+#elif ( DBOPL_WAVE == WAVE_TABLELOG )
+ Bit32s wave = waveBase[ index & waveMask ];
+ Bit32u total = ( wave & 0x7fff ) + ( vol << ( 3 - ENV_EXTRA ) );
+ Bit32s sig = ExpTable[ total & 0xff ];
+ Bit32u exp = total >> 8;
+ Bit32s neg = wave >> 16;
+ return ((sig ^ neg) - neg) >> exp;
+#else
+#error "No valid wave routine"
+#endif
+}
+
+INLINE Bits Operator::GetSample( Bits modulation ) {
+ Bitu vol = ForwardVolume();
+ if ( ENV_SILENT( vol ) ) {
+ //Simply forward the wave
+ waveIndex += waveCurrent;
+ return 0;
+ } else {
+ Bitu index = ForwardWave();
+ index += modulation;
+ return GetWave( index, vol );
+ }
+}
+
+Operator::Operator() {
+ chanData = 0;
+ freqMul = 0;
+ waveIndex = 0;
+ waveAdd = 0;
+ waveCurrent = 0;
+ keyOn = 0;
+ ksr = 0;
+ reg20 = 0;
+ reg40 = 0;
+ reg60 = 0;
+ reg80 = 0;
+ regE0 = 0;
+ SetState( OFF );
+ rateZero = (1 << OFF);
+ sustainLevel = ENV_MAX;
+ currentLevel = ENV_MAX;
+ totalLevel = ENV_MAX;
+ volume = ENV_MAX;
+ releaseAdd = 0;
+}
+
+/*
+ Channel
+*/
+
+Channel::Channel() {
+ old[0] = old[1] = 0;
+ chanData = 0;
+ regB0 = 0;
+ regC0 = 0;
+ maskLeft = -1;
+ maskRight = -1;
+ feedback = 31;
+ fourMask = 0;
+ synthHandler = &Channel::BlockTemplate< sm2FM >;
+}
+
+void Channel::SetChanData( const Chip* chip, Bit32u data ) {
+ Bit32u change = chanData ^ data;
+ chanData = data;
+ Op( 0 )->chanData = data;
+ Op( 1 )->chanData = data;
+ //Since a frequency update triggered this, always update frequency
+ Op( 0 )->UpdateFrequency();
+ Op( 1 )->UpdateFrequency();
+ if ( change & ( 0xff << SHIFT_KSLBASE ) ) {
+ Op( 0 )->UpdateAttenuation();
+ Op( 1 )->UpdateAttenuation();
+ }
+ if ( change & ( 0xff << SHIFT_KEYCODE ) ) {
+ Op( 0 )->UpdateRates( chip );
+ Op( 1 )->UpdateRates( chip );
+ }
+}
+
+void Channel::UpdateFrequency( const Chip* chip, Bit8u fourOp ) {
+ //Extrace the frequency bits
+ Bit32u data = chanData & 0xffff;
+ Bit32u kslBase = KslTable[ data >> 6 ];
+ Bit32u keyCode = ( data & 0x1c00) >> 9;
+ if ( chip->reg08 & 0x40 ) {
+ keyCode |= ( data & 0x100)>>8; /* notesel == 1 */
+ } else {
+ keyCode |= ( data & 0x200)>>9; /* notesel == 0 */
+ }
+ //Add the keycode and ksl into the highest bits of chanData
+ data |= (keyCode << SHIFT_KEYCODE) | ( kslBase << SHIFT_KSLBASE );
+ ( this + 0 )->SetChanData( chip, data );
+ if ( fourOp & 0x3f ) {
+ ( this + 1 )->SetChanData( chip, data );
+ }
+}
+
+void Channel::WriteA0( const Chip* chip, Bit8u val ) {
+ Bit8u fourOp = chip->reg104 & chip->opl3Active & fourMask;
+ //Don't handle writes to silent fourop channels
+ if ( fourOp > 0x80 )
+ return;
+ Bit32u change = (chanData ^ val ) & 0xff;
+ if ( change ) {
+ chanData ^= change;
+ UpdateFrequency( chip, fourOp );
+ }
+}
+
+void Channel::WriteB0( const Chip* chip, Bit8u val ) {
+ Bit8u fourOp = chip->reg104 & chip->opl3Active & fourMask;
+ //Don't handle writes to silent fourop channels
+ if ( fourOp > 0x80 )
+ return;
+ Bitu change = (chanData ^ ( val << 8 ) ) & 0x1f00;
+ if ( change ) {
+ chanData ^= change;
+ UpdateFrequency( chip, fourOp );
+ }
+ //Check for a change in the keyon/off state
+ if ( !(( val ^ regB0) & 0x20))
+ return;
+ regB0 = val;
+ if ( val & 0x20 ) {
+ Op(0)->KeyOn( 0x1 );
+ Op(1)->KeyOn( 0x1 );
+ if ( fourOp & 0x3f ) {
+ ( this + 1 )->Op(0)->KeyOn( 1 );
+ ( this + 1 )->Op(1)->KeyOn( 1 );
+ }
+ } else {
+ Op(0)->KeyOff( 0x1 );
+ Op(1)->KeyOff( 0x1 );
+ if ( fourOp & 0x3f ) {
+ ( this + 1 )->Op(0)->KeyOff( 1 );
+ ( this + 1 )->Op(1)->KeyOff( 1 );
+ }
+ }
+}
+
+void Channel::WriteC0( const Chip* chip, Bit8u val ) {
+ Bit8u change = val ^ regC0;
+ if ( !change )
+ return;
+ regC0 = val;
+ feedback = ( val >> 1 ) & 7;
+ if ( feedback ) {
+ //We shift the input to the right 10 bit wave index value
+ feedback = 9 - feedback;
+ } else {
+ feedback = 31;
+ }
+ //Select the new synth mode
+ if ( chip->opl3Active ) {
+ //4-op mode enabled for this channel
+ if ( (chip->reg104 & fourMask) & 0x3f ) {
+ Channel* chan0, *chan1;
+ //Check if it's the 2nd channel in a 4-op
+ if ( !(fourMask & 0x80 ) ) {
+ chan0 = this;
+ chan1 = this + 1;
+ } else {
+ chan0 = this - 1;
+ chan1 = this;
+ }
+
+ Bit8u synth = ( (chan0->regC0 & 1) << 0 )| (( chan1->regC0 & 1) << 1 );
+ switch ( synth ) {
+ case 0:
+ chan0->synthHandler = &Channel::BlockTemplate< sm3FMFM >;
+ break;
+ case 1:
+ chan0->synthHandler = &Channel::BlockTemplate< sm3AMFM >;
+ break;
+ case 2:
+ chan0->synthHandler = &Channel::BlockTemplate< sm3FMAM >;
+ break;
+ case 3:
+ chan0->synthHandler = &Channel::BlockTemplate< sm3AMAM >;
+ break;
+ }
+ //Disable updating percussion channels
+ } else if ((fourMask & 0x40) && ( chip->regBD & 0x20) ) {
+
+ //Regular dual op, am or fm
+ } else if ( val & 1 ) {
+ synthHandler = &Channel::BlockTemplate< sm3AM >;
+ } else {
+ synthHandler = &Channel::BlockTemplate< sm3FM >;
+ }
+ maskLeft = ( val & 0x10 ) ? -1 : 0;
+ maskRight = ( val & 0x20 ) ? -1 : 0;
+ //opl2 active
+ } else {
+ //Disable updating percussion channels
+ if ( (fourMask & 0x40) && ( chip->regBD & 0x20 ) ) {
+
+ //Regular dual op, am or fm
+ } else if ( val & 1 ) {
+ synthHandler = &Channel::BlockTemplate< sm2AM >;
+ } else {
+ synthHandler = &Channel::BlockTemplate< sm2FM >;
+ }
+ }
+}
+
+void Channel::ResetC0( const Chip* chip ) {
+ Bit8u val = regC0;
+ regC0 ^= 0xff;
+ WriteC0( chip, val );
+}
+
+template< bool opl3Mode>
+INLINE void Channel::GeneratePercussion( Chip* chip, Bit32s* output ) {
+ Channel* chan = this;
+
+ //BassDrum
+ Bit32s mod = (Bit32u)((old[0] + old[1])) >> feedback;
+ old[0] = old[1];
+ old[1] = Op(0)->GetSample( mod );
+
+ //When bassdrum is in AM mode first operator is ignoed
+ if ( chan->regC0 & 1 ) {
+ mod = 0;
+ } else {
+ mod = old[0];
+ }
+ Bit32s sample = Op(1)->GetSample( mod );
+
+
+ //Precalculate stuff used by other outputs
+ Bit32u noiseBit = chip->ForwardNoise() & 0x1;
+ Bit32u c2 = Op(2)->ForwardWave();
+ Bit32u c5 = Op(5)->ForwardWave();
+ Bit32u phaseBit = (((c2 & 0x88) ^ ((c2<<5) & 0x80)) | ((c5 ^ (c5<<2)) & 0x20)) ? 0x02 : 0x00;
+
+ //Hi-Hat
+ Bit32u hhVol = Op(2)->ForwardVolume();
+ if ( !ENV_SILENT( hhVol ) ) {
+ Bit32u hhIndex = (phaseBit<<8) | (0x34 << ( phaseBit ^ (noiseBit << 1 )));
+ sample += Op(2)->GetWave( hhIndex, hhVol );
+ }
+ //Snare Drum
+ Bit32u sdVol = Op(3)->ForwardVolume();
+ if ( !ENV_SILENT( sdVol ) ) {
+ Bit32u sdIndex = ( 0x100 + (c2 & 0x100) ) ^ ( noiseBit << 8 );
+ sample += Op(3)->GetWave( sdIndex, sdVol );
+ }
+ //Tom-tom
+ sample += Op(4)->GetSample( 0 );
+
+ //Top-Cymbal
+ Bit32u tcVol = Op(5)->ForwardVolume();
+ if ( !ENV_SILENT( tcVol ) ) {
+ Bit32u tcIndex = (1 + phaseBit) << 8;
+ sample += Op(5)->GetWave( tcIndex, tcVol );
+ }
+ sample <<= 1;
+ if ( opl3Mode ) {
+ output[0] += sample;
+ output[1] += sample;
+ } else {
+ output[0] += sample;
+ }
+}
+
+template<SynthMode mode>
+Channel* Channel::BlockTemplate( Chip* chip, Bit32u samples, Bit32s* output ) {
+ switch( mode ) {
+ case sm2AM:
+ case sm3AM:
+ if ( Op(0)->Silent() && Op(1)->Silent() ) {
+ old[0] = old[1] = 0;
+ return (this + 1);
+ }
+ break;
+ case sm2FM:
+ case sm3FM:
+ if ( Op(1)->Silent() ) {
+ old[0] = old[1] = 0;
+ return (this + 1);
+ }
+ break;
+ case sm3FMFM:
+ if ( Op(3)->Silent() ) {
+ old[0] = old[1] = 0;
+ return (this + 2);
+ }
+ break;
+ case sm3AMFM:
+ if ( Op(0)->Silent() && Op(3)->Silent() ) {
+ old[0] = old[1] = 0;
+ return (this + 2);
+ }
+ break;
+ case sm3FMAM:
+ if ( Op(1)->Silent() && Op(3)->Silent() ) {
+ old[0] = old[1] = 0;
+ return (this + 2);
+ }
+ break;
+ case sm3AMAM:
+ if ( Op(0)->Silent() && Op(2)->Silent() && Op(3)->Silent() ) {
+ old[0] = old[1] = 0;
+ return (this + 2);
+ }
+ break;
+ case sm2Percussion:
+ // This case was not handled in the DOSBox code either
+ // thus we leave this blank.
+ // TODO: Consider checking this.
+ break;
+ case sm3Percussion:
+ // This case was not handled in the DOSBox code either
+ // thus we leave this blank.
+ // TODO: Consider checking this.
+ break;
+ case sm4Start:
+ // This case was not handled in the DOSBox code either
+ // thus we leave this blank.
+ // TODO: Consider checking this.
+ break;
+ case sm6Start:
+ // This case was not handled in the DOSBox code either
+ // thus we leave this blank.
+ // TODO: Consider checking this.
+ break;
+ }
+ //Init the operators with the the current vibrato and tremolo values
+ Op( 0 )->Prepare( chip );
+ Op( 1 )->Prepare( chip );
+ if ( mode > sm4Start ) {
+ Op( 2 )->Prepare( chip );
+ Op( 3 )->Prepare( chip );
+ }
+ if ( mode > sm6Start ) {
+ Op( 4 )->Prepare( chip );
+ Op( 5 )->Prepare( chip );
+ }
+ for ( Bitu i = 0; i < samples; i++ ) {
+ //Early out for percussion handlers
+ if ( mode == sm2Percussion ) {
+ GeneratePercussion<false>( chip, output + i );
+ continue; //Prevent some unitialized value bitching
+ } else if ( mode == sm3Percussion ) {
+ GeneratePercussion<true>( chip, output + i * 2 );
+ continue; //Prevent some unitialized value bitching
+ }
+
+ //Do unsigned shift so we can shift out all bits but still stay in 10 bit range otherwise
+ Bit32s mod = (Bit32u)((old[0] + old[1])) >> feedback;
+ old[0] = old[1];
+ old[1] = Op(0)->GetSample( mod );
+ Bit32s sample;
+ Bit32s out0 = old[0];
+ if ( mode == sm2AM || mode == sm3AM ) {
+ sample = out0 + Op(1)->GetSample( 0 );
+ } else if ( mode == sm2FM || mode == sm3FM ) {
+ sample = Op(1)->GetSample( out0 );
+ } else if ( mode == sm3FMFM ) {
+ Bits next = Op(1)->GetSample( out0 );
+ next = Op(2)->GetSample( next );
+ sample = Op(3)->GetSample( next );
+ } else if ( mode == sm3AMFM ) {
+ sample = out0;
+ Bits next = Op(1)->GetSample( 0 );
+ next = Op(2)->GetSample( next );
+ sample += Op(3)->GetSample( next );
+ } else if ( mode == sm3FMAM ) {
+ sample = Op(1)->GetSample( out0 );
+ Bits next = Op(2)->GetSample( 0 );
+ sample += Op(3)->GetSample( next );
+ } else if ( mode == sm3AMAM ) {
+ sample = out0;
+ Bits next = Op(1)->GetSample( 0 );
+ sample += Op(2)->GetSample( next );
+ sample += Op(3)->GetSample( 0 );
+ }
+ switch( mode ) {
+ case sm2AM:
+ case sm2FM:
+ output[ i ] += sample;
+ break;
+ case sm3AM:
+ case sm3FM:
+ case sm3FMFM:
+ case sm3AMFM:
+ case sm3FMAM:
+ case sm3AMAM:
+ output[ i * 2 + 0 ] += sample & maskLeft;
+ output[ i * 2 + 1 ] += sample & maskRight;
+ break;
+ case sm2Percussion:
+ // This case was not handled in the DOSBox code either
+ // thus we leave this blank.
+ // TODO: Consider checking this.
+ break;
+ case sm3Percussion:
+ // This case was not handled in the DOSBox code either
+ // thus we leave this blank.
+ // TODO: Consider checking this.
+ break;
+ case sm4Start:
+ // This case was not handled in the DOSBox code either
+ // thus we leave this blank.
+ // TODO: Consider checking this.
+ break;
+ case sm6Start:
+ // This case was not handled in the DOSBox code either
+ // thus we leave this blank.
+ // TODO: Consider checking this.
+ break;
+ }
+ }
+ switch( mode ) {
+ case sm2AM:
+ case sm2FM:
+ case sm3AM:
+ case sm3FM:
+ return ( this + 1 );
+ case sm3FMFM:
+ case sm3AMFM:
+ case sm3FMAM:
+ case sm3AMAM:
+ return( this + 2 );
+ case sm2Percussion:
+ case sm3Percussion:
+ return( this + 3 );
+ case sm4Start:
+ // This case was not handled in the DOSBox code either
+ // thus we leave this blank.
+ // TODO: Consider checking this.
+ break;
+ case sm6Start:
+ // This case was not handled in the DOSBox code either
+ // thus we leave this blank.
+ // TODO: Consider checking this.
+ break;
+ }
+ return 0;
+}
+
+/*
+ Chip
+*/
+
+Chip::Chip() {
+ reg08 = 0;
+ reg04 = 0;
+ regBD = 0;
+ reg104 = 0;
+ opl3Active = 0;
+}
+
+INLINE Bit32u Chip::ForwardNoise() {
+ noiseCounter += noiseAdd;
+ Bitu count = noiseCounter >> LFO_SH;
+ noiseCounter &= WAVE_MASK;
+ for ( ; count > 0; --count ) {
+ //Noise calculation from mame
+ noiseValue ^= ( 0x800302 ) & ( 0 - (noiseValue & 1 ) );
+ noiseValue >>= 1;
+ }
+ return noiseValue;
+}
+
+INLINE Bit32u Chip::ForwardLFO( Bit32u samples ) {
+ //Current vibrato value, runs 4x slower than tremolo
+ vibratoSign = ( VibratoTable[ vibratoIndex >> 2] ) >> 7;
+ vibratoShift = ( VibratoTable[ vibratoIndex >> 2] & 7) + vibratoStrength;
+ tremoloValue = TremoloTable[ tremoloIndex ] >> tremoloStrength;
+
+ //Check hom many samples there can be done before the value changes
+ Bit32u todo = LFO_MAX - lfoCounter;
+ Bit32u count = (todo + lfoAdd - 1) / lfoAdd;
+ if ( count > samples ) {
+ count = samples;
+ lfoCounter += count * lfoAdd;
+ } else {
+ lfoCounter += count * lfoAdd;
+ lfoCounter &= (LFO_MAX - 1);
+ //Maximum of 7 vibrato value * 4
+ vibratoIndex = ( vibratoIndex + 1 ) & 31;
+ //Clip tremolo to the the table size
+ if ( tremoloIndex + 1 < TREMOLO_TABLE )
+ ++tremoloIndex;
+ else
+ tremoloIndex = 0;
+ }
+ return count;
+}
+
+
+void Chip::WriteBD( Bit8u val ) {
+ Bit8u change = regBD ^ val;
+ if ( !change )
+ return;
+ regBD = val;
+ //TODO could do this with shift and xor?
+ vibratoStrength = (val & 0x40) ? 0x00 : 0x01;
+ tremoloStrength = (val & 0x80) ? 0x00 : 0x02;
+ if ( val & 0x20 ) {
+ //Drum was just enabled, make sure channel 6 has the right synth
+ if ( change & 0x20 ) {
+ if ( opl3Active ) {
+ chan[6].synthHandler = &Channel::BlockTemplate< sm3Percussion >;
+ } else {
+ chan[6].synthHandler = &Channel::BlockTemplate< sm2Percussion >;
+ }
+ }
+ //Bass Drum
+ if ( val & 0x10 ) {
+ chan[6].op[0].KeyOn( 0x2 );
+ chan[6].op[1].KeyOn( 0x2 );
+ } else {
+ chan[6].op[0].KeyOff( 0x2 );
+ chan[6].op[1].KeyOff( 0x2 );
+ }
+ //Hi-Hat
+ if ( val & 0x1 ) {
+ chan[7].op[0].KeyOn( 0x2 );
+ } else {
+ chan[7].op[0].KeyOff( 0x2 );
+ }
+ //Snare
+ if ( val & 0x8 ) {
+ chan[7].op[1].KeyOn( 0x2 );
+ } else {
+ chan[7].op[1].KeyOff( 0x2 );
+ }
+ //Tom-Tom
+ if ( val & 0x4 ) {
+ chan[8].op[0].KeyOn( 0x2 );
+ } else {
+ chan[8].op[0].KeyOff( 0x2 );
+ }
+ //Top Cymbal
+ if ( val & 0x2 ) {
+ chan[8].op[1].KeyOn( 0x2 );
+ } else {
+ chan[8].op[1].KeyOff( 0x2 );
+ }
+ //Toggle keyoffs when we turn off the percussion
+ } else if ( change & 0x20 ) {
+ //Trigger a reset to setup the original synth handler
+ chan[6].ResetC0( this );
+ chan[6].op[0].KeyOff( 0x2 );
+ chan[6].op[1].KeyOff( 0x2 );
+ chan[7].op[0].KeyOff( 0x2 );
+ chan[7].op[1].KeyOff( 0x2 );
+ chan[8].op[0].KeyOff( 0x2 );
+ chan[8].op[1].KeyOff( 0x2 );
+ }
+}
+
+
+#define REGOP( _FUNC_ ) \
+ index = ( ( reg >> 3) & 0x20 ) | ( reg & 0x1f ); \
+ if ( OpOffsetTable[ index ] ) { \
+ Operator* regOp = (Operator*)( ((char *)this ) + OpOffsetTable[ index ] ); \
+ regOp->_FUNC_( this, val ); \
+ }
+
+#define REGCHAN( _FUNC_ ) \
+ index = ( ( reg >> 4) & 0x10 ) | ( reg & 0xf ); \
+ if ( ChanOffsetTable[ index ] ) { \
+ Channel* regChan = (Channel*)( ((char *)this ) + ChanOffsetTable[ index ] ); \
+ regChan->_FUNC_( this, val ); \
+ }
+
+void Chip::WriteReg( Bit32u reg, Bit8u val ) {
+ Bitu index;
+ switch ( (reg & 0xf0) >> 4 ) {
+ case 0x00 >> 4:
+ if ( reg == 0x01 ) {
+ waveFormMask = ( val & 0x20 ) ? 0x7 : 0x0;
+ } else if ( reg == 0x104 ) {
+ //Only detect changes in lowest 6 bits
+ if ( !((reg104 ^ val) & 0x3f) )
+ return;
+ //Always keep the highest bit enabled, for checking > 0x80
+ reg104 = 0x80 | ( val & 0x3f );
+ } else if ( reg == 0x105 ) {
+ //MAME says the real opl3 doesn't reset anything on opl3 disable/enable till the next write in another register
+ if ( !((opl3Active ^ val) & 1 ) )
+ return;
+ opl3Active = ( val & 1 ) ? 0xff : 0;
+ //Update the 0xc0 register for all channels to signal the switch to mono/stereo handlers
+ for ( int i = 0; i < 18;i++ ) {
+ chan[i].ResetC0( this );
+ }
+ } else if ( reg == 0x08 ) {
+ reg08 = val;
+ }
+ case 0x10 >> 4:
+ break;
+ case 0x20 >> 4:
+ case 0x30 >> 4:
+ REGOP( Write20 );
+ break;
+ case 0x40 >> 4:
+ case 0x50 >> 4:
+ REGOP( Write40 );
+ break;
+ case 0x60 >> 4:
+ case 0x70 >> 4:
+ REGOP( Write60 );
+ break;
+ case 0x80 >> 4:
+ case 0x90 >> 4:
+ REGOP( Write80 );
+ break;
+ case 0xa0 >> 4:
+ REGCHAN( WriteA0 );
+ break;
+ case 0xb0 >> 4:
+ if ( reg == 0xbd ) {
+ WriteBD( val );
+ } else {
+ REGCHAN( WriteB0 );
+ }
+ break;
+ case 0xc0 >> 4:
+ REGCHAN( WriteC0 );
+ case 0xd0 >> 4:
+ break;
+ case 0xe0 >> 4:
+ case 0xf0 >> 4:
+ REGOP( WriteE0 );
+ break;
+ }
+}
+
+
+Bit32u Chip::WriteAddr( Bit32u port, Bit8u val ) {
+ switch ( port & 3 ) {
+ case 0:
+ return val;
+ case 2:
+ if ( opl3Active || (val == 0x05) )
+ return 0x100 | val;
+ else
+ return val;
+ }
+ return 0;
+}
+
+void Chip::GenerateBlock2( Bitu total, Bit32s* output ) {
+ while ( total > 0 ) {
+ Bit32u samples = ForwardLFO( total );
+ memset(output, 0, sizeof(Bit32s) * samples);
+ int count = 0;
+ for( Channel* ch = chan; ch < chan + 9; ) {
+ count++;
+ ch = (ch->*(ch->synthHandler))( this, samples, output );
+ }
+ total -= samples;
+ output += samples;
+ }
+}
+
+void Chip::GenerateBlock3( Bitu total, Bit32s* output ) {
+ while ( total > 0 ) {
+ Bit32u samples = ForwardLFO( total );
+ memset(output, 0, sizeof(Bit32s) * 2 * samples);
+ int count = 0;
+ for( Channel* ch = chan; ch < chan + 18; ) {
+ count++;
+ ch = (ch->*(ch->synthHandler))( this, samples, output );
+ }
+ total -= samples;
+ output += samples * 2;
+ }
+}
+
+void Chip::Setup( Bit32u rate ) {
+ double scale = OPLRATE / (double)rate;
+
+ //Noise counter is run at the same precision as general waves
+ noiseAdd = (Bit32u)( 0.5 + scale * ( 1 << LFO_SH ) );
+ noiseCounter = 0;
+ noiseValue = 1; //Make sure it triggers the noise xor the first time
+ //The low frequency oscillation counter
+ //Every time his overflows vibrato and tremoloindex are increased
+ lfoAdd = (Bit32u)( 0.5 + scale * ( 1 << LFO_SH ) );
+ lfoCounter = 0;
+ vibratoIndex = 0;
+ tremoloIndex = 0;
+
+ //With higher octave this gets shifted up
+ //-1 since the freqCreateTable = *2
+#ifdef WAVE_PRECISION
+ double freqScale = ( 1 << 7 ) * scale * ( 1 << ( WAVE_SH - 1 - 10));
+ for ( int i = 0; i < 16; i++ ) {
+ freqMul[i] = (Bit32u)( 0.5 + freqScale * FreqCreateTable[ i ] );
+ }
+#else
+ Bit32u freqScale = (Bit32u)( 0.5 + scale * ( 1 << ( WAVE_SH - 1 - 10)));
+ for ( int i = 0; i < 16; i++ ) {
+ freqMul[i] = freqScale * FreqCreateTable[ i ];
+ }
+#endif
+
+ //-3 since the real envelope takes 8 steps to reach the single value we supply
+ for ( Bit8u i = 0; i < 76; i++ ) {
+ Bit8u index, shift;
+ EnvelopeSelect( i, index, shift );
+ linearRates[i] = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH + ENV_EXTRA - shift - 3 )));
+ }
+ //Generate the best matching attack rate
+ for ( Bit8u i = 0; i < 62; i++ ) {
+ Bit8u index, shift;
+ EnvelopeSelect( i, index, shift );
+ //Original amount of samples the attack would take
+ Bit32s original = (Bit32u)( (AttackSamplesTable[ index ] << shift) / scale);
+
+ Bit32s guessAdd = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH - shift - 3 )));
+ Bit32s bestAdd = guessAdd;
+ Bit32u bestDiff = 1 << 30;
+ for( Bit32u passes = 0; passes < 16; passes ++ ) {
+ Bit32s volume = ENV_MAX;
+ Bit32s samples = 0;
+ Bit32u count = 0;
+ while ( volume > 0 && samples < original * 2 ) {
+ count += guessAdd;
+ Bit32s change = count >> RATE_SH;
+ count &= RATE_MASK;
+ if ( GCC_UNLIKELY(change) ) { // less than 1 %
+ volume += ( ~volume * change ) >> 3;
+ }
+ samples++;
+
+ }
+ Bit32s diff = original - samples;
+ Bit32u lDiff = labs( diff );
+ //Init last on first pass
+ if ( lDiff < bestDiff ) {
+ bestDiff = lDiff;
+ bestAdd = guessAdd;
+ if ( !bestDiff )
+ break;
+ }
+ //Below our target
+ if ( diff < 0 ) {
+ //Better than the last time
+ Bit32s mul = ((original - diff) << 12) / original;
+ guessAdd = ((guessAdd * mul) >> 12);
+ guessAdd++;
+ } else if ( diff > 0 ) {
+ Bit32s mul = ((original - diff) << 12) / original;
+ guessAdd = (guessAdd * mul) >> 12;
+ guessAdd--;
+ }
+ }
+ attackRates[i] = bestAdd;
+ }
+ for ( Bit8u i = 62; i < 76; i++ ) {
+ //This should provide instant volume maximizing
+ attackRates[i] = 8 << RATE_SH;
+ }
+ //Setup the channels with the correct four op flags
+ //Channels are accessed through a table so they appear linear here
+ chan[ 0].fourMask = 0x00 | ( 1 << 0 );
+ chan[ 1].fourMask = 0x80 | ( 1 << 0 );
+ chan[ 2].fourMask = 0x00 | ( 1 << 1 );
+ chan[ 3].fourMask = 0x80 | ( 1 << 1 );
+ chan[ 4].fourMask = 0x00 | ( 1 << 2 );
+ chan[ 5].fourMask = 0x80 | ( 1 << 2 );
+
+ chan[ 9].fourMask = 0x00 | ( 1 << 3 );
+ chan[10].fourMask = 0x80 | ( 1 << 3 );
+ chan[11].fourMask = 0x00 | ( 1 << 4 );
+ chan[12].fourMask = 0x80 | ( 1 << 4 );
+ chan[13].fourMask = 0x00 | ( 1 << 5 );
+ chan[14].fourMask = 0x80 | ( 1 << 5 );
+
+ //mark the percussion channels
+ chan[ 6].fourMask = 0x40;
+ chan[ 7].fourMask = 0x40;
+ chan[ 8].fourMask = 0x40;
+
+ //Clear Everything in opl3 mode
+ WriteReg( 0x105, 0x1 );
+ for ( int i = 0; i < 512; i++ ) {
+ if ( i == 0x105 )
+ continue;
+ WriteReg( i, 0xff );
+ WriteReg( i, 0x0 );
+ }
+ WriteReg( 0x105, 0x0 );
+ //Clear everything in opl2 mode
+ for ( int i = 0; i < 255; i++ ) {
+ WriteReg( i, 0xff );
+ WriteReg( i, 0x0 );
+ }
+}
+
+static bool doneTables = false;
+void InitTables( void ) {
+ if ( doneTables )
+ return;
+ doneTables = true;
+#if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG )
+ //Exponential volume table, same as the real adlib
+ for ( int i = 0; i < 256; i++ ) {
+ //Save them in reverse
+ ExpTable[i] = (int)( 0.5 + ( pow(2.0, ( 255 - i) * ( 1.0 /256 ) )-1) * 1024 );
+ ExpTable[i] += 1024; //or remove the -1 oh well :)
+ //Preshift to the left once so the final volume can shift to the right
+ ExpTable[i] *= 2;
+ }
+#endif
+#if ( DBOPL_WAVE == WAVE_HANDLER )
+ //Add 0.5 for the trunc rounding of the integer cast
+ //Do a PI sinetable instead of the original 0.5 PI
+ for ( int i = 0; i < 512; i++ ) {
+ SinTable[i] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 );
+ }
+#endif
+#if ( DBOPL_WAVE == WAVE_TABLEMUL )
+ //Multiplication based tables
+ for ( int i = 0; i < 384; i++ ) {
+ int s = i * 8;
+ //TODO maybe keep some of the precision errors of the original table?
+ double val = ( 0.5 + ( pow(2.0, -1.0 + ( 255 - s) * ( 1.0 /256 ) )) * ( 1 << MUL_SH ));
+ MulTable[i] = (Bit16u)(val);
+ }
+
+ //Sine Wave Base
+ for ( int i = 0; i < 512; i++ ) {
+ WaveTable[ 0x0200 + i ] = (Bit16s)(sin( (i + 0.5) * (PI / 512.0) ) * 4084);
+ WaveTable[ 0x0000 + i ] = -WaveTable[ 0x200 + i ];
+ }
+ //Exponential wave
+ for ( int i = 0; i < 256; i++ ) {
+ WaveTable[ 0x700 + i ] = (Bit16s)( 0.5 + ( pow(2.0, -1.0 + ( 255 - i * 8) * ( 1.0 /256 ) ) ) * 4085 );
+ WaveTable[ 0x6ff - i ] = -WaveTable[ 0x700 + i ];
+ }
+#endif
+#if ( DBOPL_WAVE == WAVE_TABLELOG )
+ //Sine Wave Base
+ for ( int i = 0; i < 512; i++ ) {
+ WaveTable[ 0x0200 + i ] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 );
+ WaveTable[ 0x0000 + i ] = ((Bit16s)0x8000) | WaveTable[ 0x200 + i];
+ }
+ //Exponential wave
+ for ( int i = 0; i < 256; i++ ) {
+ WaveTable[ 0x700 + i ] = i * 8;
+ WaveTable[ 0x6ff - i ] = ((Bit16s)0x8000) | i * 8;
+ }
+#endif
+
+ // | |//\\|____|WAV7|//__|/\ |____|/\/\|
+ // |\\//| | |WAV7| | \/| | |
+ // |06 |0126|27 |7 |3 |4 |4 5 |5 |
+
+#if (( DBOPL_WAVE == WAVE_TABLELOG ) || ( DBOPL_WAVE == WAVE_TABLEMUL ))
+ for ( int i = 0; i < 256; i++ ) {
+ //Fill silence gaps
+ WaveTable[ 0x400 + i ] = WaveTable[0];
+ WaveTable[ 0x500 + i ] = WaveTable[0];
+ WaveTable[ 0x900 + i ] = WaveTable[0];
+ WaveTable[ 0xc00 + i ] = WaveTable[0];
+ WaveTable[ 0xd00 + i ] = WaveTable[0];
+ //Replicate sines in other pieces
+ WaveTable[ 0x800 + i ] = WaveTable[ 0x200 + i ];
+ //double speed sines
+ WaveTable[ 0xa00 + i ] = WaveTable[ 0x200 + i * 2 ];
+ WaveTable[ 0xb00 + i ] = WaveTable[ 0x000 + i * 2 ];
+ WaveTable[ 0xe00 + i ] = WaveTable[ 0x200 + i * 2 ];
+ WaveTable[ 0xf00 + i ] = WaveTable[ 0x200 + i * 2 ];
+ }
+#endif
+
+ //Create the ksl table
+ for ( int oct = 0; oct < 8; oct++ ) {
+ int base = oct * 8;
+ for ( int i = 0; i < 16; i++ ) {
+ int val = base - KslCreateTable[i];
+ if ( val < 0 )
+ val = 0;
+ //*4 for the final range to match attenuation range
+ KslTable[ oct * 16 + i ] = val * 4;
+ }
+ }
+ //Create the Tremolo table, just increase and decrease a triangle wave
+ for ( Bit8u i = 0; i < TREMOLO_TABLE / 2; i++ ) {
+ Bit8u val = i << ENV_EXTRA;
+ TremoloTable[i] = val;
+ TremoloTable[TREMOLO_TABLE - 1 - i] = val;
+ }
+ //Create a table with offsets of the channels from the start of the chip
+ DBOPL::Chip* chip = 0;
+ for ( Bitu i = 0; i < 32; i++ ) {
+ Bitu index = i & 0xf;
+ if ( index >= 9 ) {
+ ChanOffsetTable[i] = 0;
+ continue;
+ }
+ //Make sure the four op channels follow eachother
+ if ( index < 6 ) {
+ index = (index % 3) * 2 + ( index / 3 );
+ }
+ //Add back the bits for highest ones
+ if ( i >= 16 )
+ index += 9;
+ Bitu blah = reinterpret_cast<size_t>( &(chip->chan[ index ]) );
+ ChanOffsetTable[i] = blah;
+ }
+ //Same for operators
+ for ( Bitu i = 0; i < 64; i++ ) {
+ if ( i % 8 >= 6 || ( (i / 8) % 4 == 3 ) ) {
+ OpOffsetTable[i] = 0;
+ continue;
+ }
+ Bitu chNum = (i / 8) * 3 + (i % 8) % 3;
+ //Make sure we use 16 and up for the 2nd range to match the chanoffset gap
+ if ( chNum >= 12 )
+ chNum += 16 - 12;
+ Bitu opNum = ( i % 8 ) / 3;
+ DBOPL::Channel* chan = 0;
+ Bitu blah = reinterpret_cast<size_t>( &(chan->op[opNum]) );
+ OpOffsetTable[i] = ChanOffsetTable[ chNum ] + blah;
+ }
+#if 0
+ //Stupid checks if table's are correct
+ for ( Bitu i = 0; i < 18; i++ ) {
+ Bit32u find = (Bit16u)( &(chip->chan[ i ]) );
+ for ( Bitu c = 0; c < 32; c++ ) {
+ if ( ChanOffsetTable[c] == find ) {
+ find = 0;
+ break;
+ }
+ }
+ if ( find ) {
+ find = find;
+ }
+ }
+ for ( Bitu i = 0; i < 36; i++ ) {
+ Bit32u find = (Bit16u)( &(chip->chan[ i / 2 ].op[i % 2]) );
+ for ( Bitu c = 0; c < 64; c++ ) {
+ if ( OpOffsetTable[c] == find ) {
+ find = 0;
+ break;
+ }
+ }
+ if ( find ) {
+ find = find;
+ }
+ }
+#endif
+}
+
+} //Namespace DBOPL
+} // End of namespace DOSBox
+} // End of namespace OPL
+
+#endif // !DISABLE_DOSBOX_OPL
diff --git a/audio/softsynth/opl/dbopl.h b/audio/softsynth/opl/dbopl.h
new file mode 100644
index 0000000000..87d1045fab
--- /dev/null
+++ b/audio/softsynth/opl/dbopl.h
@@ -0,0 +1,283 @@
+/*
+ * Copyright (C) 2002-2010 The DOSBox Team
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ */
+
+// Last synch with DOSBox SVN trunk r3556
+
+#ifndef SOUND_SOFTSYNTH_OPL_DBOPL_H
+#define SOUND_SOFTSYNTH_OPL_DBOPL_H
+
+#include "common/scummsys.h"
+
+#ifndef DISABLE_DOSBOX_OPL
+
+namespace OPL {
+namespace DOSBox {
+
+//Use 8 handlers based on a small logatirmic wavetabe and an exponential table for volume
+#define WAVE_HANDLER 10
+//Use a logarithmic wavetable with an exponential table for volume
+#define WAVE_TABLELOG 11
+//Use a linear wavetable with a multiply table for volume
+#define WAVE_TABLEMUL 12
+
+//Select the type of wave generator routine
+#define DBOPL_WAVE WAVE_TABLEMUL
+
+namespace DBOPL {
+
+// Type aliases for the DBOPL code
+typedef int Bits;
+typedef uint Bitu;
+
+typedef int8 Bit8s;
+typedef uint8 Bit8u;
+
+typedef int16 Bit16s;
+typedef uint16 Bit16u;
+
+typedef int32 Bit32s;
+typedef uint32 Bit32u;
+
+#define DB_FASTCALL
+#define GCC_UNLIKELY(x) (x)
+#define INLINE inline
+// -------------------------------
+
+struct Chip;
+struct Operator;
+struct Channel;
+
+#if (DBOPL_WAVE == WAVE_HANDLER)
+typedef Bits ( DB_FASTCALL *WaveHandler) ( Bitu i, Bitu volume );
+#endif
+
+typedef Bits ( DBOPL::Operator::*VolumeHandler) ( );
+typedef Channel* ( DBOPL::Channel::*SynthHandler) ( Chip* chip, Bit32u samples, Bit32s* output );
+
+//Different synth modes that can generate blocks of data
+typedef enum {
+ sm2AM,
+ sm2FM,
+ sm3AM,
+ sm3FM,
+ sm4Start,
+ sm3FMFM,
+ sm3AMFM,
+ sm3FMAM,
+ sm3AMAM,
+ sm6Start,
+ sm2Percussion,
+ sm3Percussion
+} SynthMode;
+
+//Shifts for the values contained in chandata variable
+enum {
+ SHIFT_KSLBASE = 16,
+ SHIFT_KEYCODE = 24
+};
+
+struct Operator {
+public:
+ //Masks for operator 20 values
+ enum {
+ MASK_KSR = 0x10,
+ MASK_SUSTAIN = 0x20,
+ MASK_VIBRATO = 0x40,
+ MASK_TREMOLO = 0x80
+ };
+
+ typedef enum {
+ OFF,
+ RELEASE,
+ SUSTAIN,
+ DECAY,
+ ATTACK
+ } State;
+
+ VolumeHandler volHandler;
+
+#if (DBOPL_WAVE == WAVE_HANDLER)
+ WaveHandler waveHandler; //Routine that generate a wave
+#else
+ Bit16s* waveBase;
+ Bit32u waveMask;
+ Bit32u waveStart;
+#endif
+ Bit32u waveIndex; //WAVE_BITS shifted counter of the frequency index
+ Bit32u waveAdd; //The base frequency without vibrato
+ Bit32u waveCurrent; //waveAdd + vibratao
+
+ Bit32u chanData; //Frequency/octave and derived data coming from whatever channel controls this
+ Bit32u freqMul; //Scale channel frequency with this, TODO maybe remove?
+ Bit32u vibrato; //Scaled up vibrato strength
+ Bit32s sustainLevel; //When stopping at sustain level stop here
+ Bit32s totalLevel; //totalLevel is added to every generated volume
+ Bit32u currentLevel; //totalLevel + tremolo
+ Bit32s volume; //The currently active volume
+
+ Bit32u attackAdd; //Timers for the different states of the envelope
+ Bit32u decayAdd;
+ Bit32u releaseAdd;
+ Bit32u rateIndex; //Current position of the evenlope
+
+ Bit8u rateZero; //Bits for the different states of the envelope having no changes
+ Bit8u keyOn; //Bitmask of different values that can generate keyon
+ //Registers, also used to check for changes
+ Bit8u reg20, reg40, reg60, reg80, regE0;
+ //Active part of the envelope we're in
+ Bit8u state;
+ //0xff when tremolo is enabled
+ Bit8u tremoloMask;
+ //Strength of the vibrato
+ Bit8u vibStrength;
+ //Keep track of the calculated KSR so we can check for changes
+ Bit8u ksr;
+private:
+ void SetState( Bit8u s );
+ void UpdateAttack( const Chip* chip );
+ void UpdateRelease( const Chip* chip );
+ void UpdateDecay( const Chip* chip );
+public:
+ void UpdateAttenuation();
+ void UpdateRates( const Chip* chip );
+ void UpdateFrequency( );
+
+ void Write20( const Chip* chip, Bit8u val );
+ void Write40( const Chip* chip, Bit8u val );
+ void Write60( const Chip* chip, Bit8u val );
+ void Write80( const Chip* chip, Bit8u val );
+ void WriteE0( const Chip* chip, Bit8u val );
+
+ bool Silent() const;
+ void Prepare( const Chip* chip );
+
+ void KeyOn( Bit8u mask);
+ void KeyOff( Bit8u mask);
+
+ template< State state>
+ Bits TemplateVolume( );
+
+ Bit32s RateForward( Bit32u add );
+ Bitu ForwardWave();
+ Bitu ForwardVolume();
+
+ Bits GetSample( Bits modulation );
+ Bits GetWave( Bitu index, Bitu vol );
+public:
+ Operator();
+};
+
+struct Channel {
+ Operator op[2];
+ inline Operator* Op( Bitu index ) {
+ return &( ( this + (index >> 1) )->op[ index & 1 ]);
+ }
+ SynthHandler synthHandler;
+ Bit32u chanData; //Frequency/octave and derived values
+ Bit32s old[2]; //Old data for feedback
+
+ Bit8u feedback; //Feedback shift
+ Bit8u regB0; //Register values to check for changes
+ Bit8u regC0;
+ //This should correspond with reg104, bit 6 indicates a Percussion channel, bit 7 indicates a silent channel
+ Bit8u fourMask;
+ Bit8s maskLeft; //Sign extended values for both channel's panning
+ Bit8s maskRight;
+
+ //Forward the channel data to the operators of the channel
+ void SetChanData( const Chip* chip, Bit32u data );
+ //Change in the chandata, check for new values and if we have to forward to operators
+ void UpdateFrequency( const Chip* chip, Bit8u fourOp );
+ void WriteA0( const Chip* chip, Bit8u val );
+ void WriteB0( const Chip* chip, Bit8u val );
+ void WriteC0( const Chip* chip, Bit8u val );
+ void ResetC0( const Chip* chip );
+
+ //call this for the first channel
+ template< bool opl3Mode >
+ void GeneratePercussion( Chip* chip, Bit32s* output );
+
+ //Generate blocks of data in specific modes
+ template<SynthMode mode>
+ Channel* BlockTemplate( Chip* chip, Bit32u samples, Bit32s* output );
+ Channel();
+};
+
+struct Chip {
+ //This is used as the base counter for vibrato and tremolo
+ Bit32u lfoCounter;
+ Bit32u lfoAdd;
+
+
+ Bit32u noiseCounter;
+ Bit32u noiseAdd;
+ Bit32u noiseValue;
+
+ //Frequency scales for the different multiplications
+ Bit32u freqMul[16];
+ //Rates for decay and release for rate of this chip
+ Bit32u linearRates[76];
+ //Best match attack rates for the rate of this chip
+ Bit32u attackRates[76];
+
+ //18 channels with 2 operators each
+ Channel chan[18];
+
+ Bit8u reg104;
+ Bit8u reg08;
+ Bit8u reg04;
+ Bit8u regBD;
+ Bit8u vibratoIndex;
+ Bit8u tremoloIndex;
+ Bit8s vibratoSign;
+ Bit8u vibratoShift;
+ Bit8u tremoloValue;
+ Bit8u vibratoStrength;
+ Bit8u tremoloStrength;
+ //Mask for allowed wave forms
+ Bit8u waveFormMask;
+ //0 or -1 when enabled
+ Bit8s opl3Active;
+
+ //Return the maximum amount of samples before and LFO change
+ Bit32u ForwardLFO( Bit32u samples );
+ Bit32u ForwardNoise();
+
+ void WriteBD( Bit8u val );
+ void WriteReg(Bit32u reg, Bit8u val );
+
+ Bit32u WriteAddr( Bit32u port, Bit8u val );
+
+ void GenerateBlock2( Bitu samples, Bit32s* output );
+ void GenerateBlock3( Bitu samples, Bit32s* output );
+
+ void Generate( Bit32u samples );
+ void Setup( Bit32u r );
+
+ Chip();
+};
+
+void InitTables();
+
+} //Namespace
+} // End of namespace DOSBox
+} // End of namespace OPL
+
+#endif // !DISABLE_DOSBOX_OPL
+
+#endif
diff --git a/audio/softsynth/opl/dosbox.cpp b/audio/softsynth/opl/dosbox.cpp
new file mode 100644
index 0000000000..29993ce3d8
--- /dev/null
+++ b/audio/softsynth/opl/dosbox.cpp
@@ -0,0 +1,335 @@
+/* ScummVM - Graphic Adventure Engine
+ *
+ * ScummVM is the legal property of its developers, whose names
+ * are too numerous to list here. Please refer to the COPYRIGHT
+ * file distributed with this source distribution.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * $URL$
+ * $Id$
+ */
+
+/*
+ * Based on AdLib emulation code of DOSBox
+ * Copyright (C) 2002-2009 The DOSBox Team
+ * Licensed under GPLv2+
+ * http://www.dosbox.com
+ */
+
+#ifndef DISABLE_DOSBOX_OPL
+
+#include "dosbox.h"
+#include "dbopl.h"
+
+#include "common/system.h"
+#include "common/scummsys.h"
+
+#include <math.h>
+#include <string.h>
+
+namespace OPL {
+namespace DOSBox {
+
+Timer::Timer() {
+ masked = false;
+ overflow = false;
+ enabled = false;
+ counter = 0;
+ delay = 0;
+}
+
+void Timer::update(double time) {
+ if (!enabled || !delay)
+ return;
+ double deltaStart = time - startTime;
+ // Only set the overflow flag when not masked
+ if (deltaStart >= 0 && !masked)
+ overflow = 1;
+}
+
+void Timer::reset(double time) {
+ overflow = false;
+ if (!delay || !enabled)
+ return;
+ double delta = (time - startTime);
+ double rem = fmod(delta, delay);
+ double next = delay - rem;
+ startTime = time + next;
+}
+
+void Timer::stop() {
+ enabled = false;
+}
+
+void Timer::start(double time, int scale) {
+ //Don't enable again
+ if (enabled)
+ return;
+ enabled = true;
+ delay = 0.001 * (256 - counter) * scale;
+ startTime = time + delay;
+}
+
+bool Chip::write(uint32 reg, uint8 val) {
+ switch (reg) {
+ case 0x02:
+ timer[0].counter = val;
+ return true;
+ case 0x03:
+ timer[1].counter = val;
+ return true;
+ case 0x04:
+ double time = g_system->getMillis() / 1000.0;
+
+ if (val & 0x80) {
+ timer[0].reset(time);
+ timer[1].reset(time);
+ } else {
+ timer[0].update(time);
+ timer[1].update(time);
+
+ if (val & 0x1)
+ timer[0].start(time, 80);
+ else
+ timer[0].stop();
+
+ timer[0].masked = (val & 0x40) > 0;
+
+ if (timer[0].masked)
+ timer[0].overflow = false;
+
+ if (val & 0x2)
+ timer[1].start(time, 320);
+ else
+ timer[1].stop();
+
+ timer[1].masked = (val & 0x20) > 0;
+
+ if (timer[1].masked)
+ timer[1].overflow = false;
+ }
+ return true;
+ }
+ return false;
+}
+
+uint8 Chip::read() {
+ double time = g_system->getMillis() / 1000.0;
+
+ timer[0].update(time);
+ timer[1].update(time);
+
+ uint8 ret = 0;
+ // Overflow won't be set if a channel is masked
+ if (timer[0].overflow) {
+ ret |= 0x40;
+ ret |= 0x80;
+ }
+ if (timer[1].overflow) {
+ ret |= 0x20;
+ ret |= 0x80;
+ }
+ return ret;
+}
+
+OPL::OPL(Config::OplType type) : _type(type), _rate(0), _emulator(0) {
+}
+
+OPL::~OPL() {
+ free();
+}
+
+void OPL::free() {
+ delete _emulator;
+ _emulator = 0;
+}
+
+bool OPL::init(int rate) {
+ free();
+
+ memset(&_reg, 0, sizeof(_reg));
+ memset(_chip, 0, sizeof(_chip));
+
+ _emulator = new DBOPL::Chip();
+ if (!_emulator)
+ return false;
+
+ DBOPL::InitTables();
+ _emulator->Setup(rate);
+
+ if (_type == Config::kDualOpl2) {
+ // Setup opl3 mode in the hander
+ _emulator->WriteReg(0x105, 1);
+ }
+
+ _rate = rate;
+ return true;
+}
+
+void OPL::reset() {
+ init(_rate);
+}
+
+void OPL::write(int port, int val) {
+ if (port&1) {
+ switch (_type) {
+ case Config::kOpl2:
+ case Config::kOpl3:
+ if (!_chip[0].write(_reg.normal, val))
+ _emulator->WriteReg(_reg.normal, val);
+ break;
+ case Config::kDualOpl2:
+ // Not a 0x??8 port, then write to a specific port
+ if (!(port & 0x8)) {
+ byte index = (port & 2) >> 1;
+ dualWrite(index, _reg.dual[index], val);
+ } else {
+ //Write to both ports
+ dualWrite(0, _reg.dual[0], val);
+ dualWrite(1, _reg.dual[1], val);
+ }
+ break;
+ }
+ } else {
+ // Ask the handler to write the address
+ // Make sure to clip them in the right range
+ switch (_type) {
+ case Config::kOpl2:
+ _reg.normal = _emulator->WriteAddr(port, val) & 0xff;
+ break;
+ case Config::kOpl3:
+ _reg.normal = _emulator->WriteAddr(port, val) & 0x1ff;
+ break;
+ case Config::kDualOpl2:
+ // Not a 0x?88 port, when write to a specific side
+ if (!(port & 0x8)) {
+ byte index = (port & 2) >> 1;
+ _reg.dual[index] = val & 0xff;
+ } else {
+ _reg.dual[0] = val & 0xff;
+ _reg.dual[1] = val & 0xff;
+ }
+ break;
+ }
+ }
+}
+
+byte OPL::read(int port) {
+ switch (_type) {
+ case Config::kOpl2:
+ if (!(port & 1))
+ //Make sure the low bits are 6 on opl2
+ return _chip[0].read() | 0x6;
+ break;
+ case Config::kOpl3:
+ if (!(port & 1))
+ return _chip[0].read();
+ break;
+ case Config::kDualOpl2:
+ // Only return for the lower ports
+ if (port & 1)
+ return 0xff;
+ // Make sure the low bits are 6 on opl2
+ return _chip[(port >> 1) & 1].read() | 0x6;
+ }
+ return 0;
+}
+
+void OPL::writeReg(int r, int v) {
+ byte tempReg = 0;
+ switch (_type) {
+ case Config::kOpl2:
+ case Config::kDualOpl2:
+ case Config::kOpl3:
+ // We can't use _handler->writeReg here directly, since it would miss timer changes.
+
+ // Backup old setup register
+ tempReg = _reg.normal;
+
+ // We need to set the register we want to write to via port 0x388
+ write(0x388, r);
+ // Do the real writing to the register
+ write(0x389, v);
+ // Restore the old register
+ write(0x388, tempReg);
+ break;
+ };
+}
+
+void OPL::dualWrite(uint8 index, uint8 reg, uint8 val) {
+ // Make sure you don't use opl3 features
+ // Don't allow write to disable opl3
+ if (reg == 5)
+ return;
+
+ // Only allow 4 waveforms
+ if (reg >= 0xE0 && reg <= 0xE8)
+ val &= 3;
+
+ // Write to the timer?
+ if (_chip[index].write(reg, val))
+ return;
+
+ // Enabling panning
+ if (reg >= 0xC0 && reg <= 0xC8) {
+ val &= 15;
+ val |= index ? 0xA0 : 0x50;
+ }
+
+ uint32 fullReg = reg + (index ? 0x100 : 0);
+ _emulator->WriteReg(fullReg, val);
+}
+
+void OPL::readBuffer(int16 *buffer, int length) {
+ // For stereo OPL cards, we divide the sample count by 2,
+ // to match stereo AudioStream behavior.
+ if (_type != Config::kOpl2)
+ length >>= 1;
+
+ const uint bufferLength = 512;
+ int32 tempBuffer[bufferLength * 2];
+
+ if (_emulator->opl3Active) {
+ while (length > 0) {
+ const uint readSamples = MIN<uint>(length, bufferLength);
+
+ _emulator->GenerateBlock3(readSamples, tempBuffer);
+
+ for (uint i = 0; i < (readSamples << 1); ++i)
+ buffer[i] = tempBuffer[i];
+
+ buffer += (readSamples << 1);
+ length -= readSamples;
+ }
+ } else {
+ while (length > 0) {
+ const uint readSamples = MIN<uint>(length, bufferLength << 1);
+
+ _emulator->GenerateBlock2(readSamples, tempBuffer);
+
+ for (uint i = 0; i < readSamples; ++i)
+ buffer[i] = tempBuffer[i];
+
+ buffer += readSamples;
+ length -= readSamples;
+ }
+ }
+}
+
+} // End of namespace DOSBox
+} // End of namespace OPL
+
+#endif // !DISABLE_DOSBOX_ADLIB
diff --git a/audio/softsynth/opl/dosbox.h b/audio/softsynth/opl/dosbox.h
new file mode 100644
index 0000000000..1e92c7f7c9
--- /dev/null
+++ b/audio/softsynth/opl/dosbox.h
@@ -0,0 +1,110 @@
+/* ScummVM - Graphic Adventure Engine
+ *
+ * ScummVM is the legal property of its developers, whose names
+ * are too numerous to list here. Please refer to the COPYRIGHT
+ * file distributed with this source distribution.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * $URL$
+ * $Id$
+ */
+
+/*
+ * Based on OPL emulation code of DOSBox
+ * Copyright (C) 2002-2009 The DOSBox Team
+ * Licensed under GPLv2+
+ * http://www.dosbox.com
+ */
+
+#ifndef SOUND_SOFTSYNTH_OPL_DOSBOX_H
+#define SOUND_SOFTSYNTH_OPL_DOSBOX_H
+
+#ifndef DISABLE_DOSBOX_OPL
+
+#include "audio/fmopl.h"
+
+namespace OPL {
+namespace DOSBox {
+
+struct Timer {
+ double startTime;
+ double delay;
+ bool enabled, overflow, masked;
+ uint8 counter;
+
+ Timer();
+
+ //Call update before making any further changes
+ void update(double time);
+
+ //On a reset make sure the start is in sync with the next cycle
+ void reset(double time);
+
+ void stop();
+
+ void start(double time, int scale);
+};
+
+struct Chip {
+ //Last selected register
+ Timer timer[2];
+ //Check for it being a write to the timer
+ bool write(uint32 addr, uint8 val);
+ //Read the current timer state, will use current double
+ uint8 read();
+};
+
+namespace DBOPL {
+struct Chip;
+} // end of namespace DBOPL
+
+class OPL : public ::OPL::OPL {
+private:
+ Config::OplType _type;
+ uint _rate;
+
+ DBOPL::Chip *_emulator;
+ Chip _chip[2];
+ union {
+ uint16 normal;
+ uint8 dual[2];
+ } _reg;
+
+ void free();
+ void dualWrite(uint8 index, uint8 reg, uint8 val);
+public:
+ OPL(Config::OplType type);
+ ~OPL();
+
+ bool init(int rate);
+ void reset();
+
+ void write(int a, int v);
+ byte read(int a);
+
+ void writeReg(int r, int v);
+
+ void readBuffer(int16 *buffer, int length);
+ bool isStereo() const { return _type != Config::kOpl2; }
+};
+
+} // End of namespace DOSBox
+} // End of namespace OPL
+
+#endif // !DISABLE_DOSBOX_OPL
+
+#endif
+
diff --git a/audio/softsynth/opl/mame.cpp b/audio/softsynth/opl/mame.cpp
new file mode 100644
index 0000000000..c875080e8f
--- /dev/null
+++ b/audio/softsynth/opl/mame.cpp
@@ -0,0 +1,1234 @@
+/* ScummVM - Graphic Adventure Engine
+ *
+ * ScummVM is the legal property of its developers, whose names
+ * are too numerous to list here. Please refer to the COPYRIGHT
+ * file distributed with this source distribution.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * $URL$
+ * $Id$
+ *
+ * LGPL licensed version of MAMEs fmopl (V0.37a modified) by
+ * Tatsuyuki Satoh. Included from LGPL'ed AdPlug.
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <stdarg.h>
+#include <math.h>
+
+#include "mame.h"
+
+#if defined (_WIN32_WCE) || defined (__SYMBIAN32__) || defined(__GP32__) || defined(GP2X) || defined (__MAEMO__) || defined(__DS__) || defined (__MINT__) || defined(__N64__)
+#include "common/config-manager.h"
+#endif
+
+#if defined(__DS__)
+#include "dsmain.h"
+#endif
+
+namespace OPL {
+namespace MAME {
+
+OPL::~OPL() {
+ MAME::OPLDestroy(_opl);
+ _opl = 0;
+}
+
+bool OPL::init(int rate) {
+ if (_opl)
+ MAME::OPLDestroy(_opl);
+
+ _opl = MAME::makeAdLibOPL(rate);
+ return (_opl != 0);
+}
+
+void OPL::reset() {
+ MAME::OPLResetChip(_opl);
+}
+
+void OPL::write(int a, int v) {
+ MAME::OPLWrite(_opl, a, v);
+}
+
+byte OPL::read(int a) {
+ return MAME::OPLRead(_opl, a);
+}
+
+void OPL::writeReg(int r, int v) {
+ MAME::OPLWriteReg(_opl, r, v);
+}
+
+void OPL::readBuffer(int16 *buffer, int length) {
+ MAME::YM3812UpdateOne(_opl, buffer, length);
+}
+
+/* -------------------- preliminary define section --------------------- */
+/* attack/decay rate time rate */
+#define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
+#define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
+
+#define FREQ_BITS 24 /* frequency turn */
+
+/* counter bits = 20 , octerve 7 */
+#define FREQ_RATE (1<<(FREQ_BITS-20))
+#define TL_BITS (FREQ_BITS+2)
+
+/* final output shift , limit minimum and maximum */
+#define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
+#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
+#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
+
+/* -------------------- quality selection --------------------- */
+
+/* sinwave entries */
+/* used static memory = SIN_ENT * 4 (byte) */
+#ifdef __DS__
+#define SIN_ENT_SHIFT 8
+#else
+#define SIN_ENT_SHIFT 11
+#endif
+#define SIN_ENT (1<<SIN_ENT_SHIFT)
+
+/* output level entries (envelope,sinwave) */
+/* envelope counter lower bits */
+int ENV_BITS;
+/* envelope output entries */
+int EG_ENT;
+
+/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
+/* used static memory = EG_ENT*4 (byte) */
+int EG_OFF; /* OFF */
+int EG_DED;
+int EG_DST; /* DECAY START */
+int EG_AED;
+#define EG_AST 0 /* ATTACK START */
+
+#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
+
+/* LFO table entries */
+#define VIB_ENT 512
+#define VIB_SHIFT (32-9)
+#define AMS_ENT 512
+#define AMS_SHIFT (32-9)
+
+#define VIB_RATE_SHIFT 8
+#define VIB_RATE (1<<VIB_RATE_SHIFT)
+
+/* -------------------- local defines , macros --------------------- */
+
+/* register number to channel number , slot offset */
+#define SLOT1 0
+#define SLOT2 1
+
+/* envelope phase */
+#define ENV_MOD_RR 0x00
+#define ENV_MOD_DR 0x01
+#define ENV_MOD_AR 0x02
+
+/* -------------------- tables --------------------- */
+static const int slot_array[32] = {
+ 0, 2, 4, 1, 3, 5,-1,-1,
+ 6, 8,10, 7, 9,11,-1,-1,
+ 12,14,16,13,15,17,-1,-1,
+ -1,-1,-1,-1,-1,-1,-1,-1
+};
+
+static uint KSL_TABLE[8 * 16];
+
+static const double KSL_TABLE_SEED[8 * 16] = {
+ /* OCT 0 */
+ 0.000, 0.000, 0.000, 0.000,
+ 0.000, 0.000, 0.000, 0.000,
+ 0.000, 0.000, 0.000, 0.000,
+ 0.000, 0.000, 0.000, 0.000,
+ /* OCT 1 */
+ 0.000, 0.000, 0.000, 0.000,
+ 0.000, 0.000, 0.000, 0.000,
+ 0.000, 0.750, 1.125, 1.500,
+ 1.875, 2.250, 2.625, 3.000,
+ /* OCT 2 */
+ 0.000, 0.000, 0.000, 0.000,
+ 0.000, 1.125, 1.875, 2.625,
+ 3.000, 3.750, 4.125, 4.500,
+ 4.875, 5.250, 5.625, 6.000,
+ /* OCT 3 */
+ 0.000, 0.000, 0.000, 1.875,
+ 3.000, 4.125, 4.875, 5.625,
+ 6.000, 6.750, 7.125, 7.500,
+ 7.875, 8.250, 8.625, 9.000,
+ /* OCT 4 */
+ 0.000, 0.000, 3.000, 4.875,
+ 6.000, 7.125, 7.875, 8.625,
+ 9.000, 9.750, 10.125, 10.500,
+ 10.875, 11.250, 11.625, 12.000,
+ /* OCT 5 */
+ 0.000, 3.000, 6.000, 7.875,
+ 9.000, 10.125, 10.875, 11.625,
+ 12.000, 12.750, 13.125, 13.500,
+ 13.875, 14.250, 14.625, 15.000,
+ /* OCT 6 */
+ 0.000, 6.000, 9.000, 10.875,
+ 12.000, 13.125, 13.875, 14.625,
+ 15.000, 15.750, 16.125, 16.500,
+ 16.875, 17.250, 17.625, 18.000,
+ /* OCT 7 */
+ 0.000, 9.000, 12.000, 13.875,
+ 15.000, 16.125, 16.875, 17.625,
+ 18.000, 18.750, 19.125, 19.500,
+ 19.875, 20.250, 20.625, 21.000
+};
+
+/* sustain level table (3db per step) */
+/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
+
+static int SL_TABLE[16];
+
+static const uint SL_TABLE_SEED[16] = {
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 31
+};
+
+#define TL_MAX (EG_ENT * 2) /* limit(tl + ksr + envelope) + sinwave */
+/* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
+/* TL_TABLE[ 0 to TL_MAX ] : plus section */
+/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
+static int *TL_TABLE;
+
+/* pointers to TL_TABLE with sinwave output offset */
+static int **SIN_TABLE;
+
+/* LFO table */
+static int *AMS_TABLE;
+static int *VIB_TABLE;
+
+/* envelope output curve table */
+/* attack + decay + OFF */
+//static int ENV_CURVE[2*EG_ENT+1];
+//static int ENV_CURVE[2 * 4096 + 1]; // to keep it static ...
+static int *ENV_CURVE;
+
+
+/* multiple table */
+#define ML(a) (int)(a * 2)
+static const uint MUL_TABLE[16]= {
+/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
+ ML(0.50), ML(1.00), ML(2.00), ML(3.00), ML(4.00), ML(5.00), ML(6.00), ML(7.00),
+ ML(8.00), ML(9.00), ML(10.00), ML(10.00),ML(12.00),ML(12.00),ML(15.00),ML(15.00)
+};
+#undef ML
+
+/* dummy attack / decay rate ( when rate == 0 ) */
+static int RATE_0[16]=
+{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+
+/* -------------------- static state --------------------- */
+
+/* lock level of common table */
+static int num_lock = 0;
+
+/* work table */
+static void *cur_chip = NULL; /* current chip point */
+/* currenct chip state */
+/* static OPLSAMPLE *bufL,*bufR; */
+static OPL_CH *S_CH;
+static OPL_CH *E_CH;
+OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
+
+static int outd[1];
+static int ams;
+static int vib;
+int *ams_table;
+int *vib_table;
+static int amsIncr;
+static int vibIncr;
+static int feedback2; /* connect for SLOT 2 */
+
+/* --------------------- rebuild tables ------------------- */
+
+#define SC_KSL(mydb) ((uint) (mydb / (EG_STEP / 2)))
+#define SC_SL(db) (int)(db * ((3 / EG_STEP) * (1 << ENV_BITS))) + EG_DST
+
+void OPLBuildTables(int ENV_BITS_PARAM, int EG_ENT_PARAM) {
+ int i;
+
+ ENV_BITS = ENV_BITS_PARAM;
+ EG_ENT = EG_ENT_PARAM;
+ EG_OFF = ((2 * EG_ENT)<<ENV_BITS); /* OFF */
+ EG_DED = EG_OFF;
+ EG_DST = (EG_ENT << ENV_BITS); /* DECAY START */
+ EG_AED = EG_DST;
+ //EG_STEP = (96.0/EG_ENT);
+
+ for (i = 0; i < ARRAYSIZE(KSL_TABLE_SEED); i++)
+ KSL_TABLE[i] = SC_KSL(KSL_TABLE_SEED[i]);
+
+ for (i = 0; i < ARRAYSIZE(SL_TABLE_SEED); i++)
+ SL_TABLE[i] = SC_SL(SL_TABLE_SEED[i]);
+}
+
+#undef SC_KSL
+#undef SC_SL
+
+/* --------------------- subroutines --------------------- */
+
+/* status set and IRQ handling */
+inline void OPL_STATUS_SET(FM_OPL *OPL, int flag) {
+ /* set status flag */
+ OPL->status |= flag;
+ if (!(OPL->status & 0x80)) {
+ if (OPL->status & OPL->statusmask) { /* IRQ on */
+ OPL->status |= 0x80;
+ /* callback user interrupt handler (IRQ is OFF to ON) */
+ if (OPL->IRQHandler)
+ (OPL->IRQHandler)(OPL->IRQParam,1);
+ }
+ }
+}
+
+/* status reset and IRQ handling */
+inline void OPL_STATUS_RESET(FM_OPL *OPL, int flag) {
+ /* reset status flag */
+ OPL->status &= ~flag;
+ if ((OPL->status & 0x80)) {
+ if (!(OPL->status & OPL->statusmask)) {
+ OPL->status &= 0x7f;
+ /* callback user interrupt handler (IRQ is ON to OFF) */
+ if (OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
+ }
+ }
+}
+
+/* IRQ mask set */
+inline void OPL_STATUSMASK_SET(FM_OPL *OPL, int flag) {
+ OPL->statusmask = flag;
+ /* IRQ handling check */
+ OPL_STATUS_SET(OPL,0);
+ OPL_STATUS_RESET(OPL,0);
+}
+
+/* ----- key on ----- */
+inline void OPL_KEYON(OPL_SLOT *SLOT) {
+ /* sin wave restart */
+ SLOT->Cnt = 0;
+ /* set attack */
+ SLOT->evm = ENV_MOD_AR;
+ SLOT->evs = SLOT->evsa;
+ SLOT->evc = EG_AST;
+ SLOT->eve = EG_AED;
+}
+
+/* ----- key off ----- */
+inline void OPL_KEYOFF(OPL_SLOT *SLOT) {
+ if (SLOT->evm > ENV_MOD_RR) {
+ /* set envelope counter from envleope output */
+
+ // WORKAROUND: The Kyra engine does something very strange when
+ // starting a new song. For each channel:
+ //
+ // * The release rate is set to "fastest".
+ // * Any note is keyed off.
+ // * A very low-frequency note is keyed on.
+ //
+ // Usually, what happens next is that the real notes is keyed
+ // on immediately, in which case there's no problem.
+ //
+ // However, if the note is again keyed off (because the channel
+ // begins on a rest rather than a note), the envelope counter
+ // was moved from the very lowest point on the attack curve to
+ // the very highest point on the release curve.
+ //
+ // Again, this might not be a problem, if the release rate is
+ // still set to "fastest". But in many cases, it had already
+ // been increased. And, possibly because of inaccuracies in the
+ // envelope generator, that would cause the note to "fade out"
+ // for quite a long time.
+ //
+ // What we really need is a way to find the correct starting
+ // point for the envelope counter, and that may be what the
+ // commented-out line below is meant to do. For now, simply
+ // handle the pathological case.
+
+ if (SLOT->evm == ENV_MOD_AR && SLOT->evc == EG_AST)
+ SLOT->evc = EG_DED;
+ else if (!(SLOT->evc & EG_DST))
+ //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
+ SLOT->evc = EG_DST;
+ SLOT->eve = EG_DED;
+ SLOT->evs = SLOT->evsr;
+ SLOT->evm = ENV_MOD_RR;
+ }
+}
+
+/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
+
+/* return : envelope output */
+inline uint OPL_CALC_SLOT(OPL_SLOT *SLOT) {
+ /* calcrate envelope generator */
+ if ((SLOT->evc += SLOT->evs) >= SLOT->eve) {
+ switch (SLOT->evm) {
+ case ENV_MOD_AR: /* ATTACK -> DECAY1 */
+ /* next DR */
+ SLOT->evm = ENV_MOD_DR;
+ SLOT->evc = EG_DST;
+ SLOT->eve = SLOT->SL;
+ SLOT->evs = SLOT->evsd;
+ break;
+ case ENV_MOD_DR: /* DECAY -> SL or RR */
+ SLOT->evc = SLOT->SL;
+ SLOT->eve = EG_DED;
+ if (SLOT->eg_typ) {
+ SLOT->evs = 0;
+ } else {
+ SLOT->evm = ENV_MOD_RR;
+ SLOT->evs = SLOT->evsr;
+ }
+ break;
+ case ENV_MOD_RR: /* RR -> OFF */
+ SLOT->evc = EG_OFF;
+ SLOT->eve = EG_OFF + 1;
+ SLOT->evs = 0;
+ break;
+ }
+ }
+ /* calcrate envelope */
+ return SLOT->TLL + ENV_CURVE[SLOT->evc>>ENV_BITS] + (SLOT->ams ? ams : 0);
+}
+
+/* set algorythm connection */
+static void set_algorythm(OPL_CH *CH) {
+ int *carrier = &outd[0];
+ CH->connect1 = CH->CON ? carrier : &feedback2;
+ CH->connect2 = carrier;
+}
+
+/* ---------- frequency counter for operater update ---------- */
+inline void CALC_FCSLOT(OPL_CH *CH, OPL_SLOT *SLOT) {
+ int ksr;
+
+ /* frequency step counter */
+ SLOT->Incr = CH->fc * SLOT->mul;
+ ksr = CH->kcode >> SLOT->KSR;
+
+ if (SLOT->ksr != ksr) {
+ SLOT->ksr = ksr;
+ /* attack , decay rate recalcration */
+ SLOT->evsa = SLOT->AR[ksr];
+ SLOT->evsd = SLOT->DR[ksr];
+ SLOT->evsr = SLOT->RR[ksr];
+ }
+ SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
+}
+
+/* set multi,am,vib,EG-TYP,KSR,mul */
+inline void set_mul(FM_OPL *OPL, int slot, int v) {
+ OPL_CH *CH = &OPL->P_CH[slot>>1];
+ OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
+
+ SLOT->mul = MUL_TABLE[v & 0x0f];
+ SLOT->KSR = (v & 0x10) ? 0 : 2;
+ SLOT->eg_typ = (v & 0x20) >> 5;
+ SLOT->vib = (v & 0x40);
+ SLOT->ams = (v & 0x80);
+ CALC_FCSLOT(CH, SLOT);
+}
+
+/* set ksl & tl */
+inline void set_ksl_tl(FM_OPL *OPL, int slot, int v) {
+ OPL_CH *CH = &OPL->P_CH[slot>>1];
+ OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
+ int ksl = v >> 6; /* 0 / 1.5 / 3 / 6 db/OCT */
+
+ SLOT->ksl = ksl ? 3-ksl : 31;
+ SLOT->TL = (int)((v & 0x3f) * (0.75 / EG_STEP)); /* 0.75db step */
+
+ if (!(OPL->mode & 0x80)) { /* not CSM latch total level */
+ SLOT->TLL = SLOT->TL + (CH->ksl_base >> SLOT->ksl);
+ }
+}
+
+/* set attack rate & decay rate */
+inline void set_ar_dr(FM_OPL *OPL, int slot, int v) {
+ OPL_CH *CH = &OPL->P_CH[slot>>1];
+ OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
+ int ar = v >> 4;
+ int dr = v & 0x0f;
+
+ SLOT->AR = ar ? &OPL->AR_TABLE[ar << 2] : RATE_0;
+ SLOT->evsa = SLOT->AR[SLOT->ksr];
+ if (SLOT->evm == ENV_MOD_AR)
+ SLOT->evs = SLOT->evsa;
+
+ SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
+ SLOT->evsd = SLOT->DR[SLOT->ksr];
+ if (SLOT->evm == ENV_MOD_DR)
+ SLOT->evs = SLOT->evsd;
+}
+
+/* set sustain level & release rate */
+inline void set_sl_rr(FM_OPL *OPL, int slot, int v) {
+ OPL_CH *CH = &OPL->P_CH[slot>>1];
+ OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
+ int sl = v >> 4;
+ int rr = v & 0x0f;
+
+ SLOT->SL = SL_TABLE[sl];
+ if (SLOT->evm == ENV_MOD_DR)
+ SLOT->eve = SLOT->SL;
+ SLOT->RR = &OPL->DR_TABLE[rr<<2];
+ SLOT->evsr = SLOT->RR[SLOT->ksr];
+ if (SLOT->evm == ENV_MOD_RR)
+ SLOT->evs = SLOT->evsr;
+}
+
+/* operator output calcrator */
+
+#define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt + con)>>(24-SIN_ENT_SHIFT)) & (SIN_ENT-1)][env]
+/* ---------- calcrate one of channel ---------- */
+inline void OPL_CALC_CH(OPL_CH *CH) {
+ uint env_out;
+ OPL_SLOT *SLOT;
+
+ feedback2 = 0;
+ /* SLOT 1 */
+ SLOT = &CH->SLOT[SLOT1];
+ env_out=OPL_CALC_SLOT(SLOT);
+ if (env_out < (uint)(EG_ENT - 1)) {
+ /* PG */
+ if (SLOT->vib)
+ SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
+ else
+ SLOT->Cnt += SLOT->Incr;
+ /* connection */
+ if (CH->FB) {
+ int feedback1 = (CH->op1_out[0] + CH->op1_out[1]) >> CH->FB;
+ CH->op1_out[1] = CH->op1_out[0];
+ *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT, env_out, feedback1);
+ } else {
+ *CH->connect1 += OP_OUT(SLOT, env_out, 0);
+ }
+ } else {
+ CH->op1_out[1] = CH->op1_out[0];
+ CH->op1_out[0] = 0;
+ }
+ /* SLOT 2 */
+ SLOT = &CH->SLOT[SLOT2];
+ env_out=OPL_CALC_SLOT(SLOT);
+ if (env_out < (uint)(EG_ENT - 1)) {
+ /* PG */
+ if (SLOT->vib)
+ SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
+ else
+ SLOT->Cnt += SLOT->Incr;
+ /* connection */
+ outd[0] += OP_OUT(SLOT, env_out, feedback2);
+ }
+}
+
+/* ---------- calcrate rythm block ---------- */
+#define WHITE_NOISE_db 6.0
+inline void OPL_CALC_RH(FM_OPL *OPL, OPL_CH *CH) {
+ uint env_tam, env_sd, env_top, env_hh;
+ // This code used to do int(OPL->rnd.getRandomBit() * (WHITE_NOISE_db / EG_STEP)),
+ // but EG_STEP = 96.0/EG_ENT, and WHITE_NOISE_db=6.0. So, that's equivalent to
+ // int(OPL->rnd.getRandomBit() * EG_ENT/16). We know that EG_ENT is 4096, or 1024,
+ // or 128, so we can safely avoid any FP ops.
+ int whitenoise = OPL->rnd.getRandomBit() * (EG_ENT>>4);
+
+ int tone8;
+
+ OPL_SLOT *SLOT;
+ int env_out;
+
+ /* BD : same as FM serial mode and output level is large */
+ feedback2 = 0;
+ /* SLOT 1 */
+ SLOT = &CH[6].SLOT[SLOT1];
+ env_out = OPL_CALC_SLOT(SLOT);
+ if (env_out < EG_ENT-1) {
+ /* PG */
+ if (SLOT->vib)
+ SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
+ else
+ SLOT->Cnt += SLOT->Incr;
+ /* connection */
+ if (CH[6].FB) {
+ int feedback1 = (CH[6].op1_out[0] + CH[6].op1_out[1]) >> CH[6].FB;
+ CH[6].op1_out[1] = CH[6].op1_out[0];
+ feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT, env_out, feedback1);
+ }
+ else {
+ feedback2 = OP_OUT(SLOT, env_out, 0);
+ }
+ } else {
+ feedback2 = 0;
+ CH[6].op1_out[1] = CH[6].op1_out[0];
+ CH[6].op1_out[0] = 0;
+ }
+ /* SLOT 2 */
+ SLOT = &CH[6].SLOT[SLOT2];
+ env_out = OPL_CALC_SLOT(SLOT);
+ if (env_out < EG_ENT-1) {
+ /* PG */
+ if (SLOT->vib)
+ SLOT->Cnt += (SLOT->Incr * vib) >> VIB_RATE_SHIFT;
+ else
+ SLOT->Cnt += SLOT->Incr;
+ /* connection */
+ outd[0] += OP_OUT(SLOT, env_out, feedback2) * 2;
+ }
+
+ // SD (17) = mul14[fnum7] + white noise
+ // TAM (15) = mul15[fnum8]
+ // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
+ // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
+ env_sd = OPL_CALC_SLOT(SLOT7_2) + whitenoise;
+ env_tam =OPL_CALC_SLOT(SLOT8_1);
+ env_top = OPL_CALC_SLOT(SLOT8_2);
+ env_hh = OPL_CALC_SLOT(SLOT7_1) + whitenoise;
+
+ /* PG */
+ if (SLOT7_1->vib)
+ SLOT7_1->Cnt += (SLOT7_1->Incr * vib) >> (VIB_RATE_SHIFT-1);
+ else
+ SLOT7_1->Cnt += 2 * SLOT7_1->Incr;
+ if (SLOT7_2->vib)
+ SLOT7_2->Cnt += (CH[7].fc * vib) >> (VIB_RATE_SHIFT-3);
+ else
+ SLOT7_2->Cnt += (CH[7].fc * 8);
+ if (SLOT8_1->vib)
+ SLOT8_1->Cnt += (SLOT8_1->Incr * vib) >> VIB_RATE_SHIFT;
+ else
+ SLOT8_1->Cnt += SLOT8_1->Incr;
+ if (SLOT8_2->vib)
+ SLOT8_2->Cnt += ((CH[8].fc * 3) * vib) >> (VIB_RATE_SHIFT-4);
+ else
+ SLOT8_2->Cnt += (CH[8].fc * 48);
+
+ tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
+
+ /* SD */
+ if (env_sd < (uint)(EG_ENT - 1))
+ outd[0] += OP_OUT(SLOT7_1, env_sd, 0) * 8;
+ /* TAM */
+ if (env_tam < (uint)(EG_ENT - 1))
+ outd[0] += OP_OUT(SLOT8_1, env_tam, 0) * 2;
+ /* TOP-CY */
+ if (env_top < (uint)(EG_ENT - 1))
+ outd[0] += OP_OUT(SLOT7_2, env_top, tone8) * 2;
+ /* HH */
+ if (env_hh < (uint)(EG_ENT-1))
+ outd[0] += OP_OUT(SLOT7_2, env_hh, tone8) * 2;
+}
+
+/* ----------- initialize time tabls ----------- */
+static void init_timetables(FM_OPL *OPL, int ARRATE, int DRRATE) {
+ int i;
+ double rate;
+
+ /* make attack rate & decay rate tables */
+ for (i = 0; i < 4; i++)
+ OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
+ for (i = 4; i <= 60; i++) {
+ rate = OPL->freqbase; /* frequency rate */
+ if (i < 60)
+ rate *= 1.0 + (i & 3) * 0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
+ rate *= 1 << ((i >> 2) - 1); /* b2-5 : shift bit */
+ rate *= (double)(EG_ENT << ENV_BITS);
+ OPL->AR_TABLE[i] = (int)(rate / ARRATE);
+ OPL->DR_TABLE[i] = (int)(rate / DRRATE);
+ }
+ for (i = 60; i < 76; i++) {
+ OPL->AR_TABLE[i] = EG_AED-1;
+ OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
+ }
+}
+
+/* ---------- generic table initialize ---------- */
+static int OPLOpenTable(void) {
+ int s,t;
+ double rate;
+ int i,j;
+ double pom;
+
+#ifdef __DS__
+ DS::fastRamReset();
+
+ TL_TABLE = (int *) DS::fastRamAlloc(TL_MAX * 2 * sizeof(int *));
+ SIN_TABLE = (int **) DS::fastRamAlloc(SIN_ENT * 4 * sizeof(int *));
+#else
+
+ /* allocate dynamic tables */
+ if ((TL_TABLE = (int *)malloc(TL_MAX * 2 * sizeof(int))) == NULL)
+ return 0;
+
+ if ((SIN_TABLE = (int **)malloc(SIN_ENT * 4 * sizeof(int *))) == NULL) {
+ free(TL_TABLE);
+ return 0;
+ }
+#endif
+
+ if ((AMS_TABLE = (int *)malloc(AMS_ENT * 2 * sizeof(int))) == NULL) {
+ free(TL_TABLE);
+ free(SIN_TABLE);
+ return 0;
+ }
+
+ if ((VIB_TABLE = (int *)malloc(VIB_ENT * 2 * sizeof(int))) == NULL) {
+ free(TL_TABLE);
+ free(SIN_TABLE);
+ free(AMS_TABLE);
+ return 0;
+ }
+ /* make total level table */
+ for (t = 0; t < EG_ENT - 1; t++) {
+ rate = ((1 << TL_BITS) - 1) / pow(10.0, EG_STEP * t / 20); /* dB -> voltage */
+ TL_TABLE[ t] = (int)rate;
+ TL_TABLE[TL_MAX + t] = -TL_TABLE[t];
+ }
+ /* fill volume off area */
+ for (t = EG_ENT - 1; t < TL_MAX; t++) {
+ TL_TABLE[t] = TL_TABLE[TL_MAX + t] = 0;
+ }
+
+ /* make sinwave table (total level offet) */
+ /* degree 0 = degree 180 = off */
+ SIN_TABLE[0] = SIN_TABLE[SIN_ENT /2 ] = &TL_TABLE[EG_ENT - 1];
+ for (s = 1;s <= SIN_ENT / 4; s++) {
+ pom = sin(2 * PI * s / SIN_ENT); /* sin */
+ pom = 20 * log10(1 / pom); /* decibel */
+ j = int(pom / EG_STEP); /* TL_TABLE steps */
+
+ /* degree 0 - 90 , degree 180 - 90 : plus section */
+ SIN_TABLE[ s] = SIN_TABLE[SIN_ENT / 2 - s] = &TL_TABLE[j];
+ /* degree 180 - 270 , degree 360 - 270 : minus section */
+ SIN_TABLE[SIN_ENT / 2 + s] = SIN_TABLE[SIN_ENT - s] = &TL_TABLE[TL_MAX + j];
+ }
+ for (s = 0;s < SIN_ENT; s++) {
+ SIN_TABLE[SIN_ENT * 1 + s] = s < (SIN_ENT / 2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
+ SIN_TABLE[SIN_ENT * 2 + s] = SIN_TABLE[s % (SIN_ENT / 2)];
+ SIN_TABLE[SIN_ENT * 3 + s] = (s / (SIN_ENT / 4)) & 1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT * 2 + s];
+ }
+
+
+ ENV_CURVE = (int *)malloc(sizeof(int) * (2*EG_ENT+1));
+
+ /* envelope counter -> envelope output table */
+ for (i=0; i < EG_ENT; i++) {
+ /* ATTACK curve */
+ pom = pow(((double)(EG_ENT - 1 - i) / EG_ENT), 8) * EG_ENT;
+ /* if (pom >= EG_ENT) pom = EG_ENT-1; */
+ ENV_CURVE[i] = (int)pom;
+ /* DECAY ,RELEASE curve */
+ ENV_CURVE[(EG_DST >> ENV_BITS) + i]= i;
+ }
+ /* off */
+ ENV_CURVE[EG_OFF >> ENV_BITS]= EG_ENT - 1;
+ /* make LFO ams table */
+ for (i=0; i < AMS_ENT; i++) {
+ pom = (1.0 + sin(2 * PI * i / AMS_ENT)) / 2; /* sin */
+ AMS_TABLE[i] = (int)((1.0 / EG_STEP) * pom); /* 1dB */
+ AMS_TABLE[AMS_ENT + i] = (int)((4.8 / EG_STEP) * pom); /* 4.8dB */
+ }
+ /* make LFO vibrate table */
+ for (i=0; i < VIB_ENT; i++) {
+ /* 100cent = 1seminote = 6% ?? */
+ pom = (double)VIB_RATE * 0.06 * sin(2 * PI * i / VIB_ENT); /* +-100sect step */
+ VIB_TABLE[i] = (int)(VIB_RATE + (pom * 0.07)); /* +- 7cent */
+ VIB_TABLE[VIB_ENT + i] = (int)(VIB_RATE + (pom * 0.14)); /* +-14cent */
+ }
+ return 1;
+}
+
+static void OPLCloseTable(void) {
+ free(TL_TABLE);
+ free(SIN_TABLE);
+ free(AMS_TABLE);
+ free(VIB_TABLE);
+ free(ENV_CURVE);
+}
+
+/* CSM Key Controll */
+inline void CSMKeyControll(OPL_CH *CH) {
+ OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
+ OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
+ /* all key off */
+ OPL_KEYOFF(slot1);
+ OPL_KEYOFF(slot2);
+ /* total level latch */
+ slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
+ slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
+ /* key on */
+ CH->op1_out[0] = CH->op1_out[1] = 0;
+ OPL_KEYON(slot1);
+ OPL_KEYON(slot2);
+}
+
+/* ---------- opl initialize ---------- */
+static void OPL_initalize(FM_OPL *OPL) {
+ int fn;
+
+ /* frequency base */
+ OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0;
+ /* Timer base time */
+ OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
+ /* make time tables */
+ init_timetables(OPL, OPL_ARRATE, OPL_DRRATE);
+ /* make fnumber -> increment counter table */
+ for (fn=0; fn < 1024; fn++) {
+ OPL->FN_TABLE[fn] = (uint)(OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2);
+ }
+ /* LFO freq.table */
+ OPL->amsIncr = (int)(OPL->rate ? (double)AMS_ENT * (1 << AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0);
+ OPL->vibIncr = (int)(OPL->rate ? (double)VIB_ENT * (1 << VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0);
+}
+
+/* ---------- write a OPL registers ---------- */
+void OPLWriteReg(FM_OPL *OPL, int r, int v) {
+ OPL_CH *CH;
+ int slot;
+ uint block_fnum;
+
+ switch (r & 0xe0) {
+ case 0x00: /* 00-1f:controll */
+ switch (r & 0x1f) {
+ case 0x01:
+ /* wave selector enable */
+ if (OPL->type&OPL_TYPE_WAVESEL) {
+ OPL->wavesel = v & 0x20;
+ if (!OPL->wavesel) {
+ /* preset compatible mode */
+ int c;
+ for (c = 0; c < OPL->max_ch; c++) {
+ OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
+ OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
+ }
+ }
+ }
+ return;
+ case 0x02: /* Timer 1 */
+ OPL->T[0] = (256-v) * 4;
+ break;
+ case 0x03: /* Timer 2 */
+ OPL->T[1] = (256-v) * 16;
+ return;
+ case 0x04: /* IRQ clear / mask and Timer enable */
+ if (v & 0x80) { /* IRQ flag clear */
+ OPL_STATUS_RESET(OPL, 0x7f);
+ } else { /* set IRQ mask ,timer enable*/
+ uint8 st1 = v & 1;
+ uint8 st2 = (v >> 1) & 1;
+ /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
+ OPL_STATUS_RESET(OPL, v & 0x78);
+ OPL_STATUSMASK_SET(OPL,((~v) & 0x78) | 0x01);
+ /* timer 2 */
+ if (OPL->st[1] != st2) {
+ double interval = st2 ? (double)OPL->T[1] * OPL->TimerBase : 0.0;
+ OPL->st[1] = st2;
+ if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam + 1, interval);
+ }
+ /* timer 1 */
+ if (OPL->st[0] != st1) {
+ double interval = st1 ? (double)OPL->T[0] * OPL->TimerBase : 0.0;
+ OPL->st[0] = st1;
+ if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam + 0, interval);
+ }
+ }
+ return;
+ }
+ break;
+ case 0x20: /* am,vib,ksr,eg type,mul */
+ slot = slot_array[r&0x1f];
+ if (slot == -1)
+ return;
+ set_mul(OPL,slot,v);
+ return;
+ case 0x40:
+ slot = slot_array[r&0x1f];
+ if (slot == -1)
+ return;
+ set_ksl_tl(OPL,slot,v);
+ return;
+ case 0x60:
+ slot = slot_array[r&0x1f];
+ if (slot == -1)
+ return;
+ set_ar_dr(OPL,slot,v);
+ return;
+ case 0x80:
+ slot = slot_array[r&0x1f];
+ if (slot == -1)
+ return;
+ set_sl_rr(OPL,slot,v);
+ return;
+ case 0xa0:
+ switch (r) {
+ case 0xbd:
+ /* amsep,vibdep,r,bd,sd,tom,tc,hh */
+ {
+ uint8 rkey = OPL->rythm ^ v;
+ OPL->ams_table = &AMS_TABLE[v & 0x80 ? AMS_ENT : 0];
+ OPL->vib_table = &VIB_TABLE[v & 0x40 ? VIB_ENT : 0];
+ OPL->rythm = v & 0x3f;
+ if (OPL->rythm & 0x20) {
+ /* BD key on/off */
+ if (rkey & 0x10) {
+ if (v & 0x10) {
+ OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
+ OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
+ OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
+ } else {
+ OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
+ OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
+ }
+ }
+ /* SD key on/off */
+ if (rkey & 0x08) {
+ if (v & 0x08)
+ OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
+ else
+ OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
+ }/* TAM key on/off */
+ if (rkey & 0x04) {
+ if (v & 0x04)
+ OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
+ else
+ OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
+ }
+ /* TOP-CY key on/off */
+ if (rkey & 0x02) {
+ if (v & 0x02)
+ OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
+ else
+ OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
+ }
+ /* HH key on/off */
+ if (rkey & 0x01) {
+ if (v & 0x01)
+ OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
+ else
+ OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
+ }
+ }
+ }
+ return;
+
+ default:
+ break;
+ }
+ /* keyon,block,fnum */
+ if ((r & 0x0f) > 8)
+ return;
+ CH = &OPL->P_CH[r & 0x0f];
+ if (!(r&0x10)) { /* a0-a8 */
+ block_fnum = (CH->block_fnum & 0x1f00) | v;
+ } else { /* b0-b8 */
+ int keyon = (v >> 5) & 1;
+ block_fnum = ((v & 0x1f) << 8) | (CH->block_fnum & 0xff);
+ if (CH->keyon != keyon) {
+ if ((CH->keyon=keyon)) {
+ CH->op1_out[0] = CH->op1_out[1] = 0;
+ OPL_KEYON(&CH->SLOT[SLOT1]);
+ OPL_KEYON(&CH->SLOT[SLOT2]);
+ } else {
+ OPL_KEYOFF(&CH->SLOT[SLOT1]);
+ OPL_KEYOFF(&CH->SLOT[SLOT2]);
+ }
+ }
+ }
+ /* update */
+ if (CH->block_fnum != block_fnum) {
+ int blockRv = 7 - (block_fnum >> 10);
+ int fnum = block_fnum & 0x3ff;
+ CH->block_fnum = block_fnum;
+ CH->ksl_base = KSL_TABLE[block_fnum >> 6];
+ CH->fc = OPL->FN_TABLE[fnum] >> blockRv;
+ CH->kcode = CH->block_fnum >> 9;
+ if ((OPL->mode & 0x40) && CH->block_fnum & 0x100)
+ CH->kcode |=1;
+ CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
+ CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
+ }
+ return;
+ case 0xc0:
+ /* FB,C */
+ if ((r & 0x0f) > 8)
+ return;
+ CH = &OPL->P_CH[r&0x0f];
+ {
+ int feedback = (v >> 1) & 7;
+ CH->FB = feedback ? (8 + 1) - feedback : 0;
+ CH->CON = v & 1;
+ set_algorythm(CH);
+ }
+ return;
+ case 0xe0: /* wave type */
+ slot = slot_array[r & 0x1f];
+ if (slot == -1)
+ return;
+ CH = &OPL->P_CH[slot>>1];
+ if (OPL->wavesel) {
+ CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v & 0x03) * SIN_ENT];
+ }
+ return;
+ }
+}
+
+/* lock/unlock for common table */
+static int OPL_LockTable(void) {
+ num_lock++;
+ if (num_lock>1)
+ return 0;
+ /* first time */
+ cur_chip = NULL;
+ /* allocate total level table (128kb space) */
+ if (!OPLOpenTable()) {
+ num_lock--;
+ return -1;
+ }
+ return 0;
+}
+
+static void OPL_UnLockTable(void) {
+ if (num_lock)
+ num_lock--;
+ if (num_lock)
+ return;
+ /* last time */
+ cur_chip = NULL;
+ OPLCloseTable();
+}
+
+/*******************************************************************************/
+/* YM3812 local section */
+/*******************************************************************************/
+
+/* ---------- update one of chip ----------- */
+void YM3812UpdateOne(FM_OPL *OPL, int16 *buffer, int length) {
+ int i;
+ int data;
+ int16 *buf = buffer;
+ uint amsCnt = OPL->amsCnt;
+ uint vibCnt = OPL->vibCnt;
+ uint8 rythm = OPL->rythm & 0x20;
+ OPL_CH *CH, *R_CH;
+
+
+ if ((void *)OPL != cur_chip) {
+ cur_chip = (void *)OPL;
+ /* channel pointers */
+ S_CH = OPL->P_CH;
+ E_CH = &S_CH[9];
+ /* rythm slot */
+ SLOT7_1 = &S_CH[7].SLOT[SLOT1];
+ SLOT7_2 = &S_CH[7].SLOT[SLOT2];
+ SLOT8_1 = &S_CH[8].SLOT[SLOT1];
+ SLOT8_2 = &S_CH[8].SLOT[SLOT2];
+ /* LFO state */
+ amsIncr = OPL->amsIncr;
+ vibIncr = OPL->vibIncr;
+ ams_table = OPL->ams_table;
+ vib_table = OPL->vib_table;
+ }
+ R_CH = rythm ? &S_CH[6] : E_CH;
+ for (i = 0; i < length; i++) {
+ /* channel A channel B channel C */
+ /* LFO */
+ ams = ams_table[(amsCnt += amsIncr) >> AMS_SHIFT];
+ vib = vib_table[(vibCnt += vibIncr) >> VIB_SHIFT];
+ outd[0] = 0;
+ /* FM part */
+ for (CH = S_CH; CH < R_CH; CH++)
+ OPL_CALC_CH(CH);
+ /* Rythn part */
+ if (rythm)
+ OPL_CALC_RH(OPL, S_CH);
+ /* limit check */
+ data = CLIP(outd[0], OPL_MINOUT, OPL_MAXOUT);
+ /* store to sound buffer */
+ buf[i] = data >> OPL_OUTSB;
+ }
+
+ OPL->amsCnt = amsCnt;
+ OPL->vibCnt = vibCnt;
+}
+
+/* ---------- reset a chip ---------- */
+void OPLResetChip(FM_OPL *OPL) {
+ int c,s;
+ int i;
+
+ /* reset chip */
+ OPL->mode = 0; /* normal mode */
+ OPL_STATUS_RESET(OPL, 0x7f);
+ /* reset with register write */
+ OPLWriteReg(OPL, 0x01,0); /* wabesel disable */
+ OPLWriteReg(OPL, 0x02,0); /* Timer1 */
+ OPLWriteReg(OPL, 0x03,0); /* Timer2 */
+ OPLWriteReg(OPL, 0x04,0); /* IRQ mask clear */
+ for (i = 0xff; i >= 0x20; i--)
+ OPLWriteReg(OPL,i,0);
+ /* reset OPerator parameter */
+ for (c = 0; c < OPL->max_ch; c++) {
+ OPL_CH *CH = &OPL->P_CH[c];
+ /* OPL->P_CH[c].PAN = OPN_CENTER; */
+ for (s = 0; s < 2; s++) {
+ /* wave table */
+ CH->SLOT[s].wavetable = &SIN_TABLE[0];
+ /* CH->SLOT[s].evm = ENV_MOD_RR; */
+ CH->SLOT[s].evc = EG_OFF;
+ CH->SLOT[s].eve = EG_OFF + 1;
+ CH->SLOT[s].evs = 0;
+ }
+ }
+}
+
+/* ---------- Create a virtual YM3812 ---------- */
+/* 'rate' is sampling rate and 'bufsiz' is the size of the */
+FM_OPL *OPLCreate(int type, int clock, int rate) {
+ char *ptr;
+ FM_OPL *OPL;
+ int state_size;
+ int max_ch = 9; /* normaly 9 channels */
+
+ if (OPL_LockTable() == -1)
+ return NULL;
+ /* allocate OPL state space */
+ state_size = sizeof(FM_OPL);
+ state_size += sizeof(OPL_CH) * max_ch;
+
+ /* allocate memory block */
+ ptr = (char *)calloc(state_size, 1);
+ if (ptr == NULL)
+ return NULL;
+
+ /* clear */
+ memset(ptr, 0, state_size);
+ OPL = (FM_OPL *)ptr; ptr += sizeof(FM_OPL);
+ OPL->P_CH = (OPL_CH *)ptr; ptr += sizeof(OPL_CH) * max_ch;
+
+ /* set channel state pointer */
+ OPL->type = type;
+ OPL->clock = clock;
+ OPL->rate = rate;
+ OPL->max_ch = max_ch;
+
+ /* init grobal tables */
+ OPL_initalize(OPL);
+
+ /* reset chip */
+ OPLResetChip(OPL);
+ return OPL;
+}
+
+/* ---------- Destroy one of vietual YM3812 ---------- */
+void OPLDestroy(FM_OPL *OPL) {
+ OPL_UnLockTable();
+ free(OPL);
+}
+
+/* ---------- Option handlers ---------- */
+void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler,int channelOffset) {
+ OPL->TimerHandler = TimerHandler;
+ OPL->TimerParam = channelOffset;
+}
+
+void OPLSetIRQHandler(FM_OPL *OPL, OPL_IRQHANDLER IRQHandler, int param) {
+ OPL->IRQHandler = IRQHandler;
+ OPL->IRQParam = param;
+}
+
+void OPLSetUpdateHandler(FM_OPL *OPL, OPL_UPDATEHANDLER UpdateHandler,int param) {
+ OPL->UpdateHandler = UpdateHandler;
+ OPL->UpdateParam = param;
+}
+
+/* ---------- YM3812 I/O interface ---------- */
+int OPLWrite(FM_OPL *OPL,int a,int v) {
+ if (!(a & 1)) { /* address port */
+ OPL->address = v & 0xff;
+ } else { /* data port */
+ if (OPL->UpdateHandler)
+ OPL->UpdateHandler(OPL->UpdateParam,0);
+ OPLWriteReg(OPL, OPL->address,v);
+ }
+ return OPL->status >> 7;
+}
+
+unsigned char OPLRead(FM_OPL *OPL,int a) {
+ if (!(a & 1)) { /* status port */
+ return OPL->status & (OPL->statusmask | 0x80);
+ }
+ /* data port */
+ switch (OPL->address) {
+ case 0x05: /* KeyBoard IN */
+ warning("OPL:read unmapped KEYBOARD port");
+ return 0;
+ case 0x19: /* I/O DATA */
+ warning("OPL:read unmapped I/O port");
+ return 0;
+ case 0x1a: /* PCM-DATA */
+ return 0;
+ default:
+ break;
+ }
+ return 0;
+}
+
+int OPLTimerOver(FM_OPL *OPL, int c) {
+ if (c) { /* Timer B */
+ OPL_STATUS_SET(OPL, 0x20);
+ } else { /* Timer A */
+ OPL_STATUS_SET(OPL, 0x40);
+ /* CSM mode key,TL controll */
+ if (OPL->mode & 0x80) { /* CSM mode total level latch and auto key on */
+ int ch;
+ if (OPL->UpdateHandler)
+ OPL->UpdateHandler(OPL->UpdateParam,0);
+ for (ch = 0; ch < 9; ch++)
+ CSMKeyControll(&OPL->P_CH[ch]);
+ }
+ }
+ /* reload timer */
+ if (OPL->TimerHandler)
+ (OPL->TimerHandler)(OPL->TimerParam + c, (double)OPL->T[c] * OPL->TimerBase);
+ return OPL->status >> 7;
+}
+
+FM_OPL *makeAdLibOPL(int rate) {
+ // We need to emulate one YM3812 chip
+ int env_bits = FMOPL_ENV_BITS_HQ;
+ int eg_ent = FMOPL_EG_ENT_HQ;
+#if defined (_WIN32_WCE) || defined(__SYMBIAN32__) || defined(__GP32__) || defined (GP2X) || defined(__MAEMO__) || defined(__DS__) || defined (__MINT__) || defined(__N64__)
+ if (ConfMan.hasKey("FM_high_quality") && ConfMan.getBool("FM_high_quality")) {
+ env_bits = FMOPL_ENV_BITS_HQ;
+ eg_ent = FMOPL_EG_ENT_HQ;
+ } else if (ConfMan.hasKey("FM_medium_quality") && ConfMan.getBool("FM_medium_quality")) {
+ env_bits = FMOPL_ENV_BITS_MQ;
+ eg_ent = FMOPL_EG_ENT_MQ;
+ } else {
+ env_bits = FMOPL_ENV_BITS_LQ;
+ eg_ent = FMOPL_EG_ENT_LQ;
+ }
+#endif
+
+ OPLBuildTables(env_bits, eg_ent);
+ return OPLCreate(OPL_TYPE_YM3812, 3579545, rate);
+}
+
+} // End of namespace MAME
+} // End of namespace OPL
+
diff --git a/audio/softsynth/opl/mame.h b/audio/softsynth/opl/mame.h
new file mode 100644
index 0000000000..58ef5f18dc
--- /dev/null
+++ b/audio/softsynth/opl/mame.h
@@ -0,0 +1,202 @@
+/* ScummVM - Graphic Adventure Engine
+ *
+ * ScummVM is the legal property of its developers, whose names
+ * are too numerous to list here. Please refer to the COPYRIGHT
+ * file distributed with this source distribution.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * $URL$
+ * $Id$
+ *
+ * LGPL licensed version of MAMEs fmopl (V0.37a modified) by
+ * Tatsuyuki Satoh. Included from LGPL'ed AdPlug.
+ */
+
+
+#ifndef SOUND_SOFTSYNTH_OPL_MAME_H
+#define SOUND_SOFTSYNTH_OPL_MAME_H
+
+#include "common/scummsys.h"
+#include "common/util.h"
+#include "common/random.h"
+
+#include "audio/fmopl.h"
+
+namespace OPL {
+namespace MAME {
+
+enum {
+ FMOPL_ENV_BITS_HQ = 16,
+ FMOPL_ENV_BITS_MQ = 8,
+ FMOPL_ENV_BITS_LQ = 8,
+ FMOPL_EG_ENT_HQ = 4096,
+ FMOPL_EG_ENT_MQ = 1024,
+ FMOPL_EG_ENT_LQ = 128
+};
+
+
+typedef void (*OPL_TIMERHANDLER)(int channel,double interval_Sec);
+typedef void (*OPL_IRQHANDLER)(int param,int irq);
+typedef void (*OPL_UPDATEHANDLER)(int param,int min_interval_us);
+
+#define OPL_TYPE_WAVESEL 0x01 /* waveform select */
+
+/* Saving is necessary for member of the 'R' mark for suspend/resume */
+/* ---------- OPL one of slot ---------- */
+typedef struct fm_opl_slot {
+ int TL; /* total level :TL << 8 */
+ int TLL; /* adjusted now TL */
+ uint8 KSR; /* key scale rate :(shift down bit) */
+ int *AR; /* attack rate :&AR_TABLE[AR<<2] */
+ int *DR; /* decay rate :&DR_TABLE[DR<<2] */
+ int SL; /* sustain level :SL_TABLE[SL] */
+ int *RR; /* release rate :&DR_TABLE[RR<<2] */
+ uint8 ksl; /* keyscale level :(shift down bits) */
+ uint8 ksr; /* key scale rate :kcode>>KSR */
+ uint mul; /* multiple :ML_TABLE[ML] */
+ uint Cnt; /* frequency count */
+ uint Incr; /* frequency step */
+
+ /* envelope generator state */
+ uint8 eg_typ;/* envelope type flag */
+ uint8 evm; /* envelope phase */
+ int evc; /* envelope counter */
+ int eve; /* envelope counter end point */
+ int evs; /* envelope counter step */
+ int evsa; /* envelope step for AR :AR[ksr] */
+ int evsd; /* envelope step for DR :DR[ksr] */
+ int evsr; /* envelope step for RR :RR[ksr] */
+
+ /* LFO */
+ uint8 ams; /* ams flag */
+ uint8 vib; /* vibrate flag */
+ /* wave selector */
+ int **wavetable;
+} OPL_SLOT;
+
+/* ---------- OPL one of channel ---------- */
+typedef struct fm_opl_channel {
+ OPL_SLOT SLOT[2];
+ uint8 CON; /* connection type */
+ uint8 FB; /* feed back :(shift down bit)*/
+ int *connect1; /* slot1 output pointer */
+ int *connect2; /* slot2 output pointer */
+ int op1_out[2]; /* slot1 output for selfeedback */
+
+ /* phase generator state */
+ uint block_fnum; /* block+fnum */
+ uint8 kcode; /* key code : KeyScaleCode */
+ uint fc; /* Freq. Increment base */
+ uint ksl_base; /* KeyScaleLevel Base step */
+ uint8 keyon; /* key on/off flag */
+} OPL_CH;
+
+/* OPL state */
+typedef struct fm_opl_f {
+ uint8 type; /* chip type */
+ int clock; /* master clock (Hz) */
+ int rate; /* sampling rate (Hz) */
+ double freqbase; /* frequency base */
+ double TimerBase; /* Timer base time (==sampling time) */
+ uint8 address; /* address register */
+ uint8 status; /* status flag */
+ uint8 statusmask; /* status mask */
+ uint mode; /* Reg.08 : CSM , notesel,etc. */
+
+ /* Timer */
+ int T[2]; /* timer counter */
+ uint8 st[2]; /* timer enable */
+
+ /* FM channel slots */
+ OPL_CH *P_CH; /* pointer of CH */
+ int max_ch; /* maximum channel */
+
+ /* Rythm sention */
+ uint8 rythm; /* Rythm mode , key flag */
+
+ /* time tables */
+ int AR_TABLE[76]; /* atttack rate tables */
+ int DR_TABLE[76]; /* decay rate tables */
+ uint FN_TABLE[1024];/* fnumber -> increment counter */
+
+ /* LFO */
+ int *ams_table;
+ int *vib_table;
+ int amsCnt;
+ int amsIncr;
+ int vibCnt;
+ int vibIncr;
+
+ /* wave selector enable flag */
+ uint8 wavesel;
+
+ /* external event callback handler */
+ OPL_TIMERHANDLER TimerHandler; /* TIMER handler */
+ int TimerParam; /* TIMER parameter */
+ OPL_IRQHANDLER IRQHandler; /* IRQ handler */
+ int IRQParam; /* IRQ parameter */
+ OPL_UPDATEHANDLER UpdateHandler; /* stream update handler */
+ int UpdateParam; /* stream update parameter */
+
+ Common::RandomSource rnd;
+} FM_OPL;
+
+/* ---------- Generic interface section ---------- */
+#define OPL_TYPE_YM3526 (0)
+#define OPL_TYPE_YM3812 (OPL_TYPE_WAVESEL)
+
+void OPLBuildTables(int ENV_BITS_PARAM, int EG_ENT_PARAM);
+
+FM_OPL *OPLCreate(int type, int clock, int rate);
+void OPLDestroy(FM_OPL *OPL);
+void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler, int channelOffset);
+void OPLSetIRQHandler(FM_OPL *OPL, OPL_IRQHANDLER IRQHandler, int param);
+void OPLSetUpdateHandler(FM_OPL *OPL, OPL_UPDATEHANDLER UpdateHandler, int param);
+
+void OPLResetChip(FM_OPL *OPL);
+int OPLWrite(FM_OPL *OPL, int a, int v);
+unsigned char OPLRead(FM_OPL *OPL, int a);
+int OPLTimerOver(FM_OPL *OPL, int c);
+void OPLWriteReg(FM_OPL *OPL, int r, int v);
+void YM3812UpdateOne(FM_OPL *OPL, int16 *buffer, int length);
+
+// Factory method
+FM_OPL *makeAdLibOPL(int rate);
+
+// OPL API implementation
+class OPL : public ::OPL::OPL {
+private:
+ FM_OPL *_opl;
+public:
+ OPL() : _opl(0) {}
+ ~OPL();
+
+ bool init(int rate);
+ void reset();
+
+ void write(int a, int v);
+ byte read(int a);
+
+ void writeReg(int r, int v);
+
+ void readBuffer(int16 *buffer, int length);
+ bool isStereo() const { return false; }
+};
+
+} // End of namespace MAME
+} // End of namespace OPL
+
+#endif