diff options
Diffstat (limited to 'engines/sci/sfx/softseq/mt32/tables.cpp')
-rw-r--r-- | engines/sci/sfx/softseq/mt32/tables.cpp | 749 |
1 files changed, 749 insertions, 0 deletions
diff --git a/engines/sci/sfx/softseq/mt32/tables.cpp b/engines/sci/sfx/softseq/mt32/tables.cpp new file mode 100644 index 0000000000..4591ea22e3 --- /dev/null +++ b/engines/sci/sfx/softseq/mt32/tables.cpp @@ -0,0 +1,749 @@ +/* Copyright (c) 2003-2005 Various contributors + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + * IN THE SOFTWARE. + */ + +#include <stdlib.h> +#include <string.h> +#include <math.h> + +#include "mt32emu.h" + +#ifdef MACOSX +// Older versions of Mac OS X didn't supply a powf function. To ensure +// binary compatibility, we force using pow instead of powf (the only +// potential drawback is that it might be a little bit slower). +#define powf pow +#endif + +#define FIXEDPOINT_MAKE(x, point) ((Bit32u)((1 << point) * x)) + +namespace MT32Emu { + +//Amplitude time velocity follow exponential coefficients +static const double tvcatconst[5] = {0.0, 0.002791309, 0.005942882, 0.012652792, 0.026938637}; +static const double tvcatmult[5] = {1.0, 1.072662811, 1.169129367, 1.288579123, 1.229630539}; + +// These are division constants for the TVF depth key follow +static const Bit32u depexp[5] = {3000, 950, 485, 255, 138}; + +//Envelope time keyfollow exponential coefficients +static const double tkcatconst[5] = {0.0, 0.005853144, 0.011148054, 0.019086143, 0.043333215}; +static const double tkcatmult[5] = {1.0, 1.058245688, 1.048488989, 1.016049301, 1.097538067}; + +// Begin filter stuff + +// Pre-warp the coefficients of a numerator or denominator. +// Note that a0 is assumed to be 1, so there is no wrapping +// of it. +static void prewarp(double *a1, double *a2, double fc, double fs) { + double wp; + + wp = 2.0 * fs * tan(DOUBLE_PI * fc / fs); + + *a2 = *a2 / (wp * wp); + *a1 = *a1 / wp; +} + +// Transform the numerator and denominator coefficients +// of s-domain biquad section into corresponding +// z-domain coefficients. +// +// Store the 4 IIR coefficients in array pointed by coef +// in following order: +// beta1, beta2 (denominator) +// alpha1, alpha2 (numerator) +// +// Arguments: +// a0-a2 - s-domain numerator coefficients +// b0-b2 - s-domain denominator coefficients +// k - filter gain factor. initially set to 1 +// and modified by each biquad section in such +// a way, as to make it the coefficient by +// which to multiply the overall filter gain +// in order to achieve a desired overall filter gain, +// specified in initial value of k. +// fs - sampling rate (Hz) +// coef - array of z-domain coefficients to be filled in. +// +// Return: +// On return, set coef z-domain coefficients +static void bilinear(double a0, double a1, double a2, double b0, double b1, double b2, double *k, double fs, float *coef) { + double ad, bd; + + // alpha (Numerator in s-domain) + ad = 4. * a2 * fs * fs + 2. * a1 * fs + a0; + // beta (Denominator in s-domain) + bd = 4. * b2 * fs * fs + 2. * b1* fs + b0; + + // update gain constant for this section + *k *= ad/bd; + + // Denominator + *coef++ = (float)((2. * b0 - 8. * b2 * fs * fs) / bd); // beta1 + *coef++ = (float)((4. * b2 * fs * fs - 2. * b1 * fs + b0) / bd); // beta2 + + // Nominator + *coef++ = (float)((2. * a0 - 8. * a2 * fs * fs) / ad); // alpha1 + *coef = (float)((4. * a2 * fs * fs - 2. * a1 * fs + a0) / ad); // alpha2 +} + +// a0-a2: numerator coefficients +// b0-b2: denominator coefficients +// fc: Filter cutoff frequency +// fs: sampling rate +// k: overall gain factor +// coef: pointer to 4 iir coefficients +static void szxform(double *a0, double *a1, double *a2, double *b0, double *b1, double *b2, double fc, double fs, double *k, float *coef) { + // Calculate a1 and a2 and overwrite the original values + prewarp(a1, a2, fc, fs); + prewarp(b1, b2, fc, fs); + bilinear(*a0, *a1, *a2, *b0, *b1, *b2, k, fs, coef); +} + +static void initFilter(float fs, float fc, float *icoeff, float Q) { + float *coef; + double a0, a1, a2, b0, b1, b2; + + double k = 1.5; // Set overall filter gain factor + coef = icoeff + 1; // Skip k, or gain + + // Section 1 + a0 = 1.0; + a1 = 0; + a2 = 0; + b0 = 1.0; + b1 = 0.765367 / Q; // Divide by resonance or Q + b2 = 1.0; + szxform(&a0, &a1, &a2, &b0, &b1, &b2, fc, fs, &k, coef); + coef += 4; // Point to next filter section + + // Section 2 + a0 = 1.0; + a1 = 0; + a2 = 0; + b0 = 1.0; + b1 = 1.847759 / Q; + b2 = 1.0; + szxform(&a0, &a1, &a2, &b0, &b1, &b2, fc, fs, &k, coef); + + icoeff[0] = (float)k; +} + +void Tables::initFiltCoeff(float samplerate) { + for (int j = 0; j < FILTERGRAN; j++) { + for (int res = 0; res < 31; res++) { + float tres = resonanceFactor[res]; + initFilter((float)samplerate, (((float)(j+1.0)/FILTERGRAN)) * ((float)samplerate/2), filtCoeff[j][res], tres); + } + } +} + +void Tables::initEnvelopes(float samplerate) { + for (int lf = 0; lf <= 100; lf++) { + float elf = (float)lf; + + // General envelope + // This formula fits observation of the CM-32L by +/- 0.03s or so for the second time value in the filter, + // when all other times were 0 and all levels were 100. Note that variations occur depending on the level + // delta of the section, which we're not fully emulating. + float seconds = powf(2.0f, (elf / 8.0f) + 7.0f) / 32768.0f; + int samples = (int)(seconds * samplerate); + envTime[lf] = samples; + + // Cap on envelope times depending on the level delta + if (elf == 0) { + envDeltaMaxTime[lf] = 63; + } else { + float cap = 11.0f * (float)log(elf) + 64; + if (cap > 100.0f) { + cap = 100.0f; + } + envDeltaMaxTime[lf] = (int)cap; + } + + + // This (approximately) represents the time durations when the target level is 0. + // Not sure why this is a special case, but it's seen to be from the real thing. + seconds = powf(2, (elf / 8.0f) + 6) / 32768.0f; + envDecayTime[lf] = (int)(seconds * samplerate); + + // I am certain of this: Verified by hand LFO log + lfoPeriod[lf] = (Bit32u)(((float)samplerate) / (powf(1.088883372f, (float)lf) * 0.021236044f)); + } +} + +void Tables::initMT32ConstantTables(Synth *synth) { + int lf; + synth->printDebug("Initialising Pitch Tables"); + for (lf = -108; lf <= 108; lf++) { + tvfKeyfollowMult[lf + 108] = (int)(256 * powf(2.0f, (float)(lf / 24.0f))); + //synth->printDebug("KT %d = %d", f, keytable[f+108]); + } + + for (int res = 0; res < 31; res++) { + resonanceFactor[res] = powf((float)res / 30.0f, 5.0f) + 1.0f; + } + + int period = 65536; + + for (int ang = 0; ang < period; ang++) { + int halfang = (period / 2); + int angval = ang % halfang; + float tval = (((float)angval / (float)halfang) - 0.5f) * 2; + if (ang >= halfang) + tval = -tval; + sintable[ang] = (Bit16s)(tval * 50.0f) + 50; + } + + int velt, dep; + float tempdep; + for (velt = 0; velt < 128; velt++) { + for (dep = 0; dep < 5; dep++) { + if (dep > 0) { + float ff = (float)(exp(3.5f * tvcatconst[dep] * (59.0f - (float)velt)) * tvcatmult[dep]); + tempdep = 256.0f * ff; + envTimeVelfollowMult[dep][velt] = (int)tempdep; + //if ((velt % 16) == 0) { + // synth->printDebug("Key %d, depth %d, factor %d", velt, dep, (int)tempdep); + //} + } else + envTimeVelfollowMult[dep][velt] = 256; + } + + for (dep = -7; dep < 8; dep++) { + float fldep = (float)abs(dep) / 7.0f; + fldep = powf(fldep,2.5f); + if (dep < 0) + fldep = fldep * -1.0f; + pwVelfollowAdd[dep+7][velt] = Bit32s((fldep * (float)velt * 100) / 128.0); + } + } + + for (dep = 0; dep <= 100; dep++) { + for (velt = 0; velt < 128; velt++) { + float fdep = (float)dep * 0.000347013f; // Another MT-32 constant + float fv = ((float)velt - 64.0f)/7.26f; + float flogdep = powf(10, fdep * fv); + float fbase; + + if (velt > 64) + synth->tables.tvfVelfollowMult[velt][dep] = (int)(flogdep * 256.0); + else { + //lff = 1 - (pow(((128.0 - (float)lf) / 64.0),.25) * ((float)velt / 96)); + fbase = 1 - (powf(((float)dep / 100.0f),.25f) * ((float)(64-velt) / 96.0f)); + synth->tables.tvfVelfollowMult[velt][dep] = (int)(fbase * 256.0); + } + //synth->printDebug("Filvel dep %d velt %d = %x", dep, velt, filveltable[velt][dep]); + } + } + + for (lf = 0; lf < 128; lf++) { + float veloFract = lf / 127.0f; + for (int velsens = 0; velsens <= 100; velsens++) { + float sensFract = (velsens - 50) / 50.0f; + if (velsens < 50) { + tvaVelfollowMult[lf][velsens] = FIXEDPOINT_MAKE(1.0f / powf(2.0f, veloFract * -sensFract * 127.0f / 20.0f), 8); + } else { + tvaVelfollowMult[lf][velsens] = FIXEDPOINT_MAKE(1.0f / powf(2.0f, (1.0f - veloFract) * sensFract * 127.0f / 20.0f), 8); + } + } + } + + for (lf = 0; lf <= 100; lf++) { + // Converts the 0-100 range used by the MT-32 to volume multiplier + volumeMult[lf] = FIXEDPOINT_MAKE(powf((float)lf / 100.0f, FLOAT_LN), 7); + } + + for (lf = 0; lf <= 100; lf++) { + float mv = lf / 100.0f; + float pt = mv - 0.5f; + if (pt < 0) + pt = 0; + + // Original (CC version) + //pwFactor[lf] = (int)(pt * 210.04f) + 128; + + // Approximation from sample comparison + pwFactor[lf] = (int)(pt * 179.0f) + 128; + } + + for (unsigned int i = 0; i < MAX_SAMPLE_OUTPUT; i++) { + int myRand; + myRand = rand(); + //myRand = ((myRand - 16383) * 7168) >> 16; + // This one is slower but works with all values of RAND_MAX + myRand = (int)((myRand - RAND_MAX / 2) / (float)RAND_MAX * (7168 / 2)); + //FIXME:KG: Original ultimately set the lowest two bits to 0, for no obvious reason + noiseBuf[i] = (Bit16s)myRand; + } + + float tdist; + float padjtable[51]; + for (lf = 0; lf <= 50; lf++) { + if (lf == 0) + padjtable[lf] = 7; + else if (lf == 1) + padjtable[lf] = 6; + else if (lf == 2) + padjtable[lf] = 5; + else if (lf == 3) + padjtable[lf] = 4; + else if (lf == 4) + padjtable[lf] = 4 - (0.333333f); + else if (lf == 5) + padjtable[lf] = 4 - (0.333333f * 2); + else if (lf == 6) + padjtable[lf] = 3; + else if ((lf > 6) && (lf <= 12)) { + tdist = (lf-6.0f) / 6.0f; + padjtable[lf] = 3.0f - tdist; + } else if ((lf > 12) && (lf <= 25)) { + tdist = (lf - 12.0f) / 13.0f; + padjtable[lf] = 2.0f - tdist; + } else { + tdist = (lf - 25.0f) / 25.0f; + padjtable[lf] = 1.0f - tdist; + } + //synth->printDebug("lf %d = padj %f", lf, padjtable[lf]); + } + + float lfp, depf, finalval, tlf; + int depat, pval, depti; + for (lf = 0; lf <= 10; lf++) { + // I believe the depth is cubed or something + + for (depat = 0; depat <= 100; depat++) { + if (lf > 0) { + depti = abs(depat - 50); + tlf = (float)lf - padjtable[depti]; + if (tlf < 0) + tlf = 0; + lfp = (float)exp(0.713619942f * tlf) / 407.4945111f; + + if (depat < 50) + finalval = 4096.0f * powf(2, -lfp); + else + finalval = 4096.0f * powf(2, lfp); + pval = (int)finalval; + + pitchEnvVal[lf][depat] = pval; + //synth->printDebug("lf %d depat %d pval %d tlf %f lfp %f", lf,depat,pval, tlf, lfp); + } else { + pitchEnvVal[lf][depat] = 4096; + //synth->printDebug("lf %d depat %d pval 4096", lf, depat); + } + } + } + for (lf = 0; lf <= 100; lf++) { + // It's linear - verified on MT-32 - one of the few things linear + lfp = ((float)lf * 0.1904f) / 310.55f; + + for (depat = 0; depat <= 100; depat++) { + depf = ((float)depat - 50.0f) / 50.0f; + //finalval = pow(2, lfp * depf * .5); + finalval = 4096.0f + (4096.0f * lfp * depf); + + pval = (int)finalval; + + lfoShift[lf][depat] = pval; + + //synth->printDebug("lf %d depat %d pval %x", lf,depat,pval); + } + } + + for (lf = 0; lf <= 12; lf++) { + for (int distval = 0; distval < 128; distval++) { + float amplog, dval; + if (lf == 0) { + amplog = 0; + dval = 1; + tvaBiasMult[lf][distval] = 256; + } else { + /* + amplog = powf(1.431817011f, (float)lf) / FLOAT_PI; + dval = ((128.0f - (float)distval) / 128.0f); + amplog = exp(amplog); + dval = powf(amplog, dval) / amplog; + tvaBiasMult[lf][distval] = (int)(dval * 256.0); + */ + // Lets assume for a second it's linear + + // Distance of full volume reduction + amplog = (float)(12.0f / (float)lf) * 24.0f; + if (distval > amplog) { + tvaBiasMult[lf][distval] = 0; + } else { + dval = (amplog - (float)distval) / amplog; + tvaBiasMult[lf][distval] = (int)(dval * 256.0f); + } + } + //synth->printDebug("Ampbias lf %d distval %d = %f (%x) %f", lf, distval, dval, tvaBiasMult[lf][distval],amplog); + } + } + + for (lf = 0; lf <= 14; lf++) { + for (int distval = 0; distval < 128; distval++) { + float filval = fabsf((float)((lf - 7) * 12) / 7.0f); + float amplog, dval; + if (lf == 7) { + amplog = 0; + dval = 1; + tvfBiasMult[lf][distval] = 256; + } else { + //amplog = pow(1.431817011, filval) / FLOAT_PI; + amplog = powf(1.531817011f, filval) / FLOAT_PI; + dval = (128.0f - (float)distval) / 128.0f; + amplog = (float)exp(amplog); + dval = powf(amplog,dval)/amplog; + if (lf < 8) { + tvfBiasMult[lf][distval] = (int)(dval * 256.0f); + } else { + dval = powf(dval, 0.3333333f); + if (dval < 0.01f) + dval = 0.01f; + dval = 1 / dval; + tvfBiasMult[lf][distval] = (int)(dval * 256.0f); + } + } + //synth->printDebug("Fbias lf %d distval %d = %f (%x) %f", lf, distval, dval, tvfBiasMult[lf][distval],amplog); + } + } +} + +// Per-note table initialisation follows + +static void initSaw(NoteLookup *noteLookup, Bit32s div2) { + int tmpdiv = div2 << 16; + for (int rsaw = 0; rsaw <= 100; rsaw++) { + float fsaw; + if (rsaw < 50) + fsaw = 50.0f; + else + fsaw = (float)rsaw; + + //(66 - (((A8 - 50) / 50) ^ 0.63) * 50) / 132 + float sawfact = (66.0f - (powf((fsaw - 50.0f) / 50.0f, 0.63f) * 50.0f)) / 132.0f; + noteLookup->sawTable[rsaw] = (int)(sawfact * (float)tmpdiv) >> 16; + //synth->printDebug("F %d divtable %d saw %d sawtable %d", f, div, rsaw, sawtable[f][rsaw]); + } +} + +static void initDep(KeyLookup *keyLookup, float f) { + for (int dep = 0; dep < 5; dep++) { + if (dep == 0) { + keyLookup->envDepthMult[dep] = 256; + keyLookup->envTimeMult[dep] = 256; + } else { + float depfac = 3000.0f; + float ff, tempdep; + depfac = (float)depexp[dep]; + + ff = (f - (float)MIDDLEC) / depfac; + tempdep = powf(2, ff) * 256.0f; + keyLookup->envDepthMult[dep] = (int)tempdep; + + ff = (float)(exp(tkcatconst[dep] * ((float)MIDDLEC - f)) * tkcatmult[dep]); + keyLookup->envTimeMult[dep] = (int)(ff * 256.0f); + } + } + //synth->printDebug("F %f d1 %x d2 %x d3 %x d4 %x d5 %x", f, noteLookup->fildepTable[0], noteLookup->fildepTable[1], noteLookup->fildepTable[2], noteLookup->fildepTable[3], noteLookup->fildepTable[4]); +} + +Bit16s Tables::clampWF(Synth *synth, const char *n, float ampVal, double input) { + Bit32s x = (Bit32s)(input * ampVal); + if (x < -ampVal - 1) { + synth->printDebug("%s==%d<-WGAMP-1!", n, x); + x = (Bit32s)(-ampVal - 1); + } else if (x > ampVal) { + synth->printDebug("%s==%d>WGAMP!", n, x); + x = (Bit32s)ampVal; + } + return (Bit16s)x; +} + +File *Tables::initWave(Synth *synth, NoteLookup *noteLookup, float ampVal, float div2, File *file) { + int iDiv2 = (int)div2; + noteLookup->waveformSize[0] = iDiv2 << 1; + noteLookup->waveformSize[1] = iDiv2 << 1; + noteLookup->waveformSize[2] = iDiv2 << 2; + for (int i = 0; i < 3; i++) { + if (noteLookup->waveforms[i] == NULL) { + noteLookup->waveforms[i] = new Bit16s[noteLookup->waveformSize[i]]; + } + } + if (file != NULL) { + for (int i = 0; i < 3 && file != NULL; i++) { + size_t len = noteLookup->waveformSize[i]; + for (unsigned int j = 0; j < len; j++) { + if (!file->readBit16u((Bit16u *)¬eLookup->waveforms[i][j])) { + synth->printDebug("Error reading wave file cache!"); + file->close(); + file = NULL; + break; + } + } + } + } + if (file == NULL) { + double sd = DOUBLE_PI / div2; + + for (int fa = 0; fa < (iDiv2 << 1); fa++) { + // sa ranges from 0 to 2PI + double sa = fa * sd; + + // Calculate a sample for the bandlimited sawtooth wave + double saw = 0.0; + int sincs = iDiv2 >> 1; + double sinus = 1.0; + for (int sincNum = 1; sincNum <= sincs; sincNum++) { + saw += sin(sinus * sa) / sinus; + sinus++; + } + + // This works pretty well + // Multiplied by 0.84 so that the spikes caused by bandlimiting don't overdrive the amplitude + noteLookup->waveforms[0][fa] = clampWF(synth, "saw", ampVal, -saw / (0.5 * DOUBLE_PI) * 0.84); + noteLookup->waveforms[1][fa] = clampWF(synth, "cos", ampVal, -cos(sa / 2.0)); + noteLookup->waveforms[2][fa * 2] = clampWF(synth, "cosoff_0", ampVal, -cos(sa - DOUBLE_PI)); + noteLookup->waveforms[2][fa * 2 + 1] = clampWF(synth, "cosoff_1", ampVal, -cos((sa + (sd / 2)) - DOUBLE_PI)); + } + } + return file; +} + +static void initFiltTable(NoteLookup *noteLookup, float freq, float rate) { + for (int tr = 0; tr <= 200; tr++) { + float ftr = (float)tr; + + // Verified exact on MT-32 + if (tr > 100) + ftr = 100.0f + (powf((ftr - 100.0f) / 100.0f, 3.0f) * 100.0f); + + // I think this is the one + float brsq = powf(10.0f, (tr / 50.0f) - 1.0f); + noteLookup->filtTable[0][tr] = (int)((freq * brsq) / (rate / 2) * FILTERGRAN); + if (noteLookup->filtTable[0][tr]>=((FILTERGRAN*15)/16)) + noteLookup->filtTable[0][tr] = ((FILTERGRAN*15)/16); + + float brsa = powf(10.0f, ((tr / 55.0f) - 1.0f)) / 2.0f; + noteLookup->filtTable[1][tr] = (int)((freq * brsa) / (rate / 2) * FILTERGRAN); + if (noteLookup->filtTable[1][tr]>=((FILTERGRAN*15)/16)) + noteLookup->filtTable[1][tr] = ((FILTERGRAN*15)/16); + } +} + +static void initNFiltTable(NoteLookup *noteLookup, float freq, float rate) { + for (int cf = 0; cf <= 100; cf++) { + float cfmult = (float)cf; + + for (int tf = 0;tf <= 100; tf++) { + float tfadd = (float)tf; + + //float freqsum = exp((cfmult + tfadd) / 30.0f) / 4.0f; + //float freqsum = 0.15f * exp(0.45f * ((cfmult + tfadd) / 10.0f)); + + float freqsum = powf(2.0f, ((cfmult + tfadd) - 40.0f) / 16.0f); + + noteLookup->nfiltTable[cf][tf] = (int)((freq * freqsum) / (rate / 2) * FILTERGRAN); + if (noteLookup->nfiltTable[cf][tf] >= ((FILTERGRAN * 15) / 16)) + noteLookup->nfiltTable[cf][tf] = ((FILTERGRAN * 15) / 16); + } + } +} + +File *Tables::initNote(Synth *synth, NoteLookup *noteLookup, float note, float rate, float masterTune, PCMWaveEntry *pcmWaves, File *file) { + float freq = (float)(masterTune * pow(2.0, ((double)note - MIDDLEA) / 12.0)); + float div2 = rate * 2.0f / freq; + noteLookup->div2 = (int)div2; + + if (noteLookup->div2 == 0) + noteLookup->div2 = 1; + + initSaw(noteLookup, noteLookup->div2); + + //synth->printDebug("Note %f; freq=%f, div=%f", note, freq, rate / freq); + file = initWave(synth, noteLookup, (const float)WGAMP, div2, file); + + // Create the pitch tables + if (noteLookup->wavTable == NULL) + noteLookup->wavTable = new Bit32u[synth->controlROMMap->pcmCount]; + double rateMult = 32000.0 / rate; + double tuner = freq * 65536.0f; + for (int pc = 0; pc < synth->controlROMMap->pcmCount; pc++) { + noteLookup->wavTable[pc] = (int)(tuner / pcmWaves[pc].tune * rateMult); + } + + initFiltTable(noteLookup, freq, rate); + initNFiltTable(noteLookup, freq, rate); + return file; +} + +bool Tables::initNotes(Synth *synth, PCMWaveEntry *pcmWaves, float rate, float masterTune) { + const char *NoteNames[12] = { + "C ", "C#", "D ", "D#", "E ", "F ", "F#", "G ", "G#", "A ", "A#", "B " + }; + char filename[64]; + int intRate = (int)rate; + char version[4] = {0, 0, 0, 5}; + sprintf(filename, "waveformcache-%d-%.2f.raw", intRate, masterTune); + + File *file = NULL; + char header[20]; + strncpy(header, "MT32WAVE", 8); + int pos = 8; + // Version... + for (int i = 0; i < 4; i++) + header[pos++] = version[i]; + header[pos++] = (char)((intRate >> 24) & 0xFF); + header[pos++] = (char)((intRate >> 16) & 0xFF); + header[pos++] = (char)((intRate >> 8) & 0xFF); + header[pos++] = (char)(intRate & 0xFF); + int intTuning = (int)masterTune; + header[pos++] = (char)((intTuning >> 8) & 0xFF); + header[pos++] = (char)(intTuning & 0xFF); + header[pos++] = 0; + header[pos] = (char)((masterTune - intTuning) * 10); +#if MT32EMU_WAVECACHEMODE < 2 + bool reading = false; + file = synth->openFile(filename, File::OpenMode_read); + if (file != NULL) { + char fileHeader[20]; + if (file->read(fileHeader, 20) == 20) { + if (memcmp(fileHeader, header, 20) == 0) { + Bit16u endianCheck; + if (file->readBit16u(&endianCheck)) { + if (endianCheck == 1) { + reading = true; + } else { + synth->printDebug("Endian check in %s does not match expected", filename); + } + } else { + synth->printDebug("Unable to read endian check in %s", filename); + } + } else { + synth->printDebug("Header of %s does not match expected", filename); + } + } else { + synth->printDebug("Error reading 16 bytes of %s", filename); + } + if (!reading) { + file->close(); + file = NULL; + } + } else { + synth->printDebug("Unable to open %s for reading", filename); + } +#endif + + float progress = 0.0f; + bool abort = false; + synth->report(ReportType_progressInit, &progress); + for (int f = LOWEST_NOTE; f <= HIGHEST_NOTE; f++) { + synth->printDebug("Initialising note %s%d", NoteNames[f % 12], (f / 12) - 2); + NoteLookup *noteLookup = ¬eLookups[f - LOWEST_NOTE]; + file = initNote(synth, noteLookup, (float)f, rate, masterTune, pcmWaves, file); + progress = (f - LOWEST_NOTE + 1) / (float)NUM_NOTES; + abort = synth->report(ReportType_progressInit, &progress) != 0; + if (abort) + break; + } + +#if MT32EMU_WAVECACHEMODE == 0 || MT32EMU_WAVECACHEMODE == 2 + if (file == NULL) { + file = synth->openFile(filename, File::OpenMode_write); + if (file != NULL) { + if (file->write(header, 20) == 20 && file->writeBit16u(1)) { + for (int f = 0; f < NUM_NOTES; f++) { + for (int i = 0; i < 3 && file != NULL; i++) { + int len = noteLookups[f].waveformSize[i]; + for (int j = 0; j < len; j++) { + if (!file->writeBit16u(noteLookups[f].waveforms[i][j])) { + synth->printDebug("Error writing waveform cache file"); + file->close(); + file = NULL; + break; + } + } + } + } + } else { + synth->printDebug("Error writing 16-byte header to %s - won't continue saving", filename); + } + } else { + synth->printDebug("Unable to open %s for writing - won't be created", filename); + } + } +#endif + + if (file != NULL) + synth->closeFile(file); + return !abort; +} + +void Tables::freeNotes() { + for (int t = 0; t < 3; t++) { + for (int m = 0; m < NUM_NOTES; m++) { + if (noteLookups[m].waveforms[t] != NULL) { + delete[] noteLookups[m].waveforms[t]; + noteLookups[m].waveforms[t] = NULL; + noteLookups[m].waveformSize[t] = 0; + } + if (noteLookups[m].wavTable != NULL) { + delete[] noteLookups[m].wavTable; + noteLookups[m].wavTable = NULL; + } + } + } + initialisedMasterTune = 0.0f; +} + +Tables::Tables() { + initialisedSampleRate = 0.0f; + initialisedMasterTune = 0.0f; + memset(¬eLookups, 0, sizeof(noteLookups)); +} + +bool Tables::init(Synth *synth, PCMWaveEntry *pcmWaves, float sampleRate, float masterTune) { + if (sampleRate <= 0.0f) { + synth->printDebug("Bad sampleRate (%d <= 0.0f)", sampleRate); + return false; + } + if (initialisedSampleRate == 0.0f) { + initMT32ConstantTables(synth); + } + if (initialisedSampleRate != sampleRate) { + initFiltCoeff(sampleRate); + initEnvelopes(sampleRate); + for (int key = 12; key <= 108; key++) { + initDep(&keyLookups[key - 12], (float)key); + } + } + if (initialisedSampleRate != sampleRate || initialisedMasterTune != masterTune) { + freeNotes(); + if (!initNotes(synth, pcmWaves, sampleRate, masterTune)) { + return false; + } + initialisedSampleRate = sampleRate; + initialisedMasterTune = masterTune; + } + return true; +} + +} |