aboutsummaryrefslogtreecommitdiff
path: root/sound/fmopl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'sound/fmopl.cpp')
-rw-r--r--sound/fmopl.cpp2926
1 files changed, 807 insertions, 2119 deletions
diff --git a/sound/fmopl.cpp b/sound/fmopl.cpp
index 549c4609b1..ef25721767 100644
--- a/sound/fmopl.cpp
+++ b/sound/fmopl.cpp
@@ -1,286 +1,101 @@
-/*
-**
-** File: fmopl.c - software implementation of FM sound generator
-** types OPL and OPL2
-**
-** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmulator development
-** Copyright (C) 2002 Jarek Burczynski
-**
-** Version 0.60
-**
-
-Revision History:
-
-04-28-2002 Jarek Burczynski:
- - binary exact Envelope Generator (verified on real YM3812);
- compared to YM2151: the EG clock is equal to internal_clock,
- rates are 2 times slower and volume resolution is one bit less
- - modified interface functions (they no longer return pointer -
- that's internal to the emulator now):
- - new wrapper functions for OPLCreate: YM3526Init(), YM3812Init() and Y8950Init()
- - corrected 'off by one' error in feedback calculations (when feedback is off)
- - enabled waveform usage (credit goes to Vlad Romascanu and zazzal22)
- - speeded up noise generator calculations (Nicola Salmoria)
-
-03-24-2002 Jarek Burczynski (thanks to Dox for the YM3812 chip)
- Complete rewrite (all verified on real YM3812):
- - corrected sin_tab and tl_tab data
- - corrected operator output calculations
- - corrected waveform_select_enable register;
- simply: ignore all writes to waveform_select register when
- waveform_select_enable == 0 and do not change the waveform previously selected.
- - corrected KSR handling
- - corrected Envelope Generator: attack shape, Sustain mode and
- Percussive/Non-percussive modes handling
- - Envelope Generator rates are two times slower now
- - LFO amplitude (tremolo) and phase modulation (vibrato)
- - rhythm sounds phase generation
- - white noise generator (big thanks to Olivier Galibert for mentioning Berlekamp-Massey algorithm)
- - corrected key on/off handling (the 'key' signal is ORed from three sources: FM, rhythm and CSM)
- - funky details (like ignoring output of operator 1 in BD rhythm sound when connect == 1)
-
-12-28-2001 Acho A. Tang
- - reflected Delta-T EOS status on Y8950 status port.
- - fixed subscription range of attack/decay tables
-
-
- To do:
- add delay before key off in CSM mode (see CSMKeyControll)
- verify volume of the FM part on the Y8950
-*/
+/* ScummVM - Scumm Interpreter
+ * Copyright (C) 1999-2000 Tatsuyuki Satoh
+ * Copyright (C) 2001-2003 The ScummVM project
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * $Header$
+ *
+ * LGPL licensed version of MAMEs fmopl (V0.37a modified) by
+ * Tatsuyuki Satoh. Included from LGPL'ed AdPlug.
+ */
#include "stdafx.h"
-#include "scummsys.h"
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <stdarg.h>
#include <math.h>
+
#include "fmopl.h"
+#include "common/engine.h" // for warning/error/debug
+
#ifndef PI
#define PI 3.14159265358979323846
#endif
-#ifdef _MSC_VER
-# define INLINE __inline
-#elif defined(__GNUC__)
-# define INLINE inline
-#else
-# define INLINE
-#endif
+/* -------------------- preliminary define section --------------------- */
+/* attack/decay rate time rate */
+#define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
+#define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
-/* output final shift */
-#if (OPL_SAMPLE_BITS==16)
- #define FINAL_SH (0)
- #define MAXOUT (+32767)
- #define MINOUT (-32768)
-#else
- #define FINAL_SH (8)
- #define MAXOUT (+127)
- #define MINOUT (-128)
-#endif
+#define FREQ_BITS 24 /* frequency turn */
+
+/* counter bits = 20 , octerve 7 */
+#define FREQ_RATE (1<<(FREQ_BITS-20))
+#define TL_BITS (FREQ_BITS+2)
+/* final output shift , limit minimum and maximum */
+#define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
+#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
+#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
-#define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */
-#define EG_SH 16 /* 16.16 fixed point (EG timing) */
-#define LFO_SH 24 /* 8.24 fixed point (LFO calculations) */
-#define TIMER_SH 16 /* 16.16 fixed point (timers calculations) */
+/* -------------------- quality selection --------------------- */
-#define FREQ_MASK ((1<<FREQ_SH)-1)
+/* sinwave entries */
+/* used static memory = SIN_ENT * 4 (byte) */
+#define SIN_ENT 2048
+/* output level entries (envelope,sinwave) */
+/* envelope counter lower bits */
+int ENV_BITS;
/* envelope output entries */
-static const int ENV_BITS = 10;
-static const int ENV_LEN = 1<<ENV_BITS;
-static const float ENV_STEP = 128.f/ENV_LEN;
+int EG_ENT;
-#define MAX_ATT_INDEX ((1<<(ENV_BITS-1))-1) /*511*/
-#define MIN_ATT_INDEX (0)
+/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
+/* used static memory = EG_ENT*4 (byte) */
+int EG_OFF; /* OFF */
+int EG_DED;
+int EG_DST; /* DECAY START */
+int EG_AED;
+#define EG_AST 0 /* ATTACK START */
-/* sinwave entries */
-#define SIN_BITS 10
-#define SIN_LEN (1<<SIN_BITS)
-#define SIN_MASK (SIN_LEN-1)
+#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
-#define TL_RES_LEN (256) /* 8 bits addressing (real chip) */
+/* LFO table entries */
+#define VIB_ENT 512
+#define VIB_SHIFT (32-9)
+#define AMS_ENT 512
+#define AMS_SHIFT (32-9)
+#define VIB_RATE 256
+/* -------------------- local defines , macros --------------------- */
/* register number to channel number , slot offset */
#define SLOT1 0
#define SLOT2 1
-/* Envelope Generator phases */
-
-#define EG_ATT 4
-#define EG_DEC 3
-#define EG_SUS 2
-#define EG_REL 1
-#define EG_OFF 0
-
-
-/* save output as raw 16-bit sample */
-
-/*#define SAVE_SAMPLE*/
-
-#ifdef SAVE_SAMPLE
-static FILE *sample[1];
- #if 1 /*save to MONO file */
- #define SAVE_ALL_CHANNELS \
- { signed int pom = lt; \
- fputc((unsigned short)pom&0xff,sample[0]); \
- fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
- }
- #else /*save to STEREO file */
- #define SAVE_ALL_CHANNELS \
- { signed int pom = lt; \
- fputc((unsigned short)pom&0xff,sample[0]); \
- fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
- pom = rt; \
- fputc((unsigned short)pom&0xff,sample[0]); \
- fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
- }
- #endif
-#endif
-
-/* #define LOG_CYM_FILE */
-#ifdef LOG_CYM_FILE
- FILE * cymfile = NULL;
-#endif
-
-
-
-#define OPL_TYPE_WAVESEL 0x01 /* waveform select */
-#define OPL_TYPE_ADPCM 0x02 /* DELTA-T ADPCM unit */
-#define OPL_TYPE_KEYBOARD 0x04 /* keyboard interface */
-#define OPL_TYPE_IO 0x08 /* I/O port */
-
-/* ---------- Generic interface section ---------- */
-#define OPL_TYPE_YM3526 (0)
-#define OPL_TYPE_YM3812 (OPL_TYPE_WAVESEL)
-#define OPL_TYPE_Y8950 (OPL_TYPE_ADPCM|OPL_TYPE_KEYBOARD|OPL_TYPE_IO)
-
-
-
-/* Saving is necessary for member of the 'R' mark for suspend/resume */
-
-typedef struct{
- UINT32 ar; /* attack rate: AR<<2 */
- UINT32 dr; /* decay rate: DR<<2 */
- UINT32 rr; /* release rate:RR<<2 */
- UINT8 KSR; /* key scale rate */
- UINT8 ksl; /* keyscale level */
- UINT8 ksr; /* key scale rate: kcode>>KSR */
- UINT8 mul; /* multiple: mul_tab[ML] */
-
- /* Phase Generator */
- UINT32 Cnt; /* frequency counter */
- UINT32 Incr; /* frequency counter step */
- UINT8 FB; /* feedback shift value */
- INT32 *connect1; /* slot1 output pointer */
- INT32 op1_out[2]; /* slot1 output for feedback */
- UINT8 CON; /* connection (algorithm) type */
-
- /* Envelope Generator */
- UINT8 eg_type; /* percussive/non-percussive mode */
- UINT8 state; /* phase type */
- UINT32 TL; /* total level: TL << 2 */
- INT32 TLL; /* adjusted now TL */
- INT32 volume; /* envelope counter */
- UINT32 sl; /* sustain level: sl_tab[SL] */
-
- UINT8 eg_sh_ar; /* (attack state) */
- UINT8 eg_sel_ar; /* (attack state) */
- UINT8 eg_sh_dr; /* (decay state) */
- UINT8 eg_sel_dr; /* (decay state) */
- UINT8 eg_sh_rr; /* (release state) */
- UINT8 eg_sel_rr; /* (release state) */
-
- UINT32 key; /* 0 = KEY OFF, >0 = KEY ON */
-
- /* LFO */
- UINT32 AMmask; /* LFO Amplitude Modulation enable mask */
- UINT8 vib; /* LFO Phase Modulation enable flag (active high)*/
-
- /* waveform select */
- unsigned int wavetable;
-} OPL_SLOT;
-
-typedef struct{
- OPL_SLOT SLOT[2];
- /* phase generator state */
- UINT32 block_fnum; /* block+fnum */
- UINT32 fc; /* Freq. Increment base */
- UINT32 ksl_base; /* KeyScaleLevel Base step */
- UINT8 kcode; /* key code (for key scaling) */
-} OPL_CH;
-
-/* OPL state */
-typedef struct fm_opl_f {
- /* FM channel slots */
- OPL_CH P_CH[9]; /* OPL/OPL2 chips have 9 channels*/
-
- UINT32 eg_cnt; /* global envelope generator counter */
- UINT32 eg_timer; /* global envelope generator counter works at frequency = chipclock/72 */
- UINT32 eg_timer_add; /* step of eg_timer */
- UINT32 eg_timer_overflow; /* envelope generator timer overlfows every 1 sample (on real chip) */
-
- UINT8 rhythm; /* Rhythm mode */
-
- UINT32 fn_tab[1024]; /* fnumber->increment counter */
-
- /* LFO */
- UINT8 lfo_am_depth;
- UINT8 lfo_pm_depth_range;
- UINT32 lfo_am_cnt;
- UINT32 lfo_am_inc;
- UINT32 lfo_pm_cnt;
- UINT32 lfo_pm_inc;
-
- UINT32 noise_rng; /* 23 bit noise shift register */
- UINT32 noise_p; /* current noise 'phase' */
- UINT32 noise_f; /* current noise period */
-
- UINT8 wavesel; /* waveform select enable flag */
-
- int T[2]; /* timer counters */
- UINT8 st[2]; /* timer enable */
-
-#if BUILD_Y8950
- /* Delta-T ADPCM unit (Y8950) */
-
- YM_DELTAT *deltat;
-
- /* Keyboard / I/O interface unit*/
- UINT8 portDirection;
- UINT8 portLatch;
- OPL_PORTHANDLER_R porthandler_r;
- OPL_PORTHANDLER_W porthandler_w;
- int port_param;
- OPL_PORTHANDLER_R keyboardhandler_r;
- OPL_PORTHANDLER_W keyboardhandler_w;
- int keyboard_param;
-#endif
-
- /* external event callback handlers */
- OPL_TIMERHANDLER TimerHandler; /* TIMER handler */
- int TimerParam; /* TIMER parameter */
- OPL_IRQHANDLER IRQHandler; /* IRQ handler */
- int IRQParam; /* IRQ parameter */
- OPL_UPDATEHANDLER UpdateHandler;/* stream update handler */
- int UpdateParam; /* stream update parameter */
+/* envelope phase */
+#define ENV_MOD_RR 0x00
+#define ENV_MOD_DR 0x01
+#define ENV_MOD_AR 0x02
- UINT8 type; /* chip type */
- UINT8 address; /* address register */
- UINT8 status; /* status flag */
- UINT8 statusmask; /* status mask */
- UINT8 mode; /* Reg.08 : CSM,notesel,etc. */
-
- int clock; /* master clock (Hz) */
- int rate; /* sampling rate (Hz) */
- double freqbase; /* frequency base */
- double TimerBase; /* Timer base time (==sampling time)*/
-} FM_OPL;
-
-
-
-/* mapping of register number (offset) to slot number used by the emulator */
+/* -------------------- tables --------------------- */
static const int slot_array[32]=
{
0, 2, 4, 1, 3, 5,-1,-1,
@@ -289,326 +104,142 @@ static const int slot_array[32]=
-1,-1,-1,-1,-1,-1,-1,-1
};
-/* key scale level */
-/* table is 3dB/octave , DV converts this into 6dB/octave */
-/* 0.1875 is bit 0 weight of the envelope counter (volume) expressed in the 'decibel' scale */
-#define DV (0.1875/2.0)
-#define KSL(x) (UINT32)(x/DV)
-static const UINT32 ksl_tab[8*16]=
-{
+static uint KSL_TABLE[8 * 16];
+
+static const double KSL_TABLE_SEED[8 * 16] = {
/* OCT 0 */
- KSL(0.000), KSL(0.000), KSL(0.000), KSL(0.000),
- KSL(0.000), KSL(0.000), KSL(0.000), KSL(0.000),
- KSL(0.000), KSL(0.000), KSL(0.000), KSL(0.000),
- KSL(0.000), KSL(0.000), KSL(0.000), KSL(0.000),
+ 0.000, 0.000, 0.000, 0.000,
+ 0.000, 0.000, 0.000, 0.000,
+ 0.000, 0.000, 0.000, 0.000,
+ 0.000, 0.000, 0.000, 0.000,
/* OCT 1 */
- KSL(0.000), KSL(0.000), KSL(0.000), KSL(0.000),
- KSL(0.000), KSL(0.000), KSL(0.000), KSL(0.000),
- KSL(0.000), KSL(0.750), KSL(1.125), KSL(1.500),
- KSL(1.875), KSL(2.250), KSL(2.625), KSL(3.000),
+ 0.000, 0.000, 0.000, 0.000,
+ 0.000, 0.000, 0.000, 0.000,
+ 0.000, 0.750, 1.125, 1.500,
+ 1.875, 2.250, 2.625, 3.000,
/* OCT 2 */
- KSL(0.000), KSL(0.000), KSL(0.000), KSL(0.000),
- KSL(0.000), KSL(1.125), KSL(1.875), KSL(2.625),
- KSL(3.000), KSL(3.750), KSL(4.125), KSL(4.500),
- KSL(4.875), KSL(5.250), KSL(5.625), KSL(6.000),
+ 0.000, 0.000, 0.000, 0.000,
+ 0.000, 1.125, 1.875, 2.625,
+ 3.000, 3.750, 4.125, 4.500,
+ 4.875, 5.250, 5.625, 6.000,
/* OCT 3 */
- KSL(0.000), KSL(0.000), KSL(0.000), KSL(1.875),
- KSL(3.000), KSL(4.125), KSL(4.875), KSL(5.625),
- KSL(6.000), KSL(6.750), KSL(7.125), KSL(7.500),
- KSL(7.875), KSL(8.250), KSL(8.625), KSL(9.000),
+ 0.000, 0.000, 0.000, 1.875,
+ 3.000, 4.125, 4.875, 5.625,
+ 6.000, 6.750, 7.125, 7.500,
+ 7.875, 8.250, 8.625, 9.000,
/* OCT 4 */
- KSL(0.000), KSL(0.000), KSL(3.000), KSL(4.875),
- KSL(6.000), KSL(7.125), KSL(7.875), KSL(8.625),
- KSL(9.000), KSL(9.750),KSL(10.125),KSL(10.500),
- KSL(10.875),KSL(11.250),KSL(11.625),KSL(12.000),
+ 0.000, 0.000, 3.000, 4.875,
+ 6.000, 7.125, 7.875, 8.625,
+ 9.000, 9.750, 10.125, 10.500,
+ 10.875, 11.250, 11.625, 12.000,
/* OCT 5 */
- KSL(0.000), KSL(3.000), KSL(6.000), KSL(7.875),
- KSL(9.000),KSL(10.125),KSL(10.875),KSL(11.625),
- KSL(12.000),KSL(12.750),KSL(13.125),KSL(13.500),
- KSL(13.875),KSL(14.250),KSL(14.625),KSL(15.000),
+ 0.000, 3.000, 6.000, 7.875,
+ 9.000, 10.125, 10.875, 11.625,
+ 12.000, 12.750, 13.125, 13.500,
+ 13.875, 14.250, 14.625, 15.000,
/* OCT 6 */
- KSL(0.000), KSL(6.000), KSL(9.000),KSL(10.875),
- KSL(12.000),KSL(13.125),KSL(13.875),KSL(14.625),
- KSL(15.000),KSL(15.750),KSL(16.125),KSL(16.500),
- KSL(16.875),KSL(17.250),KSL(17.625),KSL(18.000),
+ 0.000, 6.000, 9.000, 10.875,
+ 12.000, 13.125, 13.875, 14.625,
+ 15.000, 15.750, 16.125, 16.500,
+ 16.875, 17.250, 17.625, 18.000,
/* OCT 7 */
- KSL(0.000), KSL(9.000),KSL(12.000),KSL(13.875),
- KSL(15.000),KSL(16.125),KSL(16.875),KSL(17.625),
- KSL(18.000),KSL(18.750),KSL(19.125),KSL(19.500),
- KSL(19.875),KSL(20.250),KSL(20.625),KSL(21.000)
+ 0.000, 9.000, 12.000, 13.875,
+ 15.000, 16.125, 16.875, 17.625,
+ 18.000, 18.750, 19.125, 19.500,
+ 19.875, 20.250, 20.625, 21.000
};
-#undef DV
-#undef KSL
-/* sustain level table (3dB per step) */
+/* sustain lebel table (3db per step) */
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
-#define SC(db) (UINT32) ( db * (2.0/ENV_STEP) )
-
-static const UINT32 sl_tab[16]={
- SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
- SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
-};
-#undef SC
-
-
-#define RATE_STEPS (8)
-static const unsigned char eg_inc[15*RATE_STEPS]={
-
-/*cycle:0 1 2 3 4 5 6 7*/
-
-/* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..12 0 (increment by 0 or 1) */
-/* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..12 1 */
-/* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..12 2 */
-/* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..12 3 */
-/* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 13 0 (increment by 1) */
-/* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 13 1 */
-/* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 13 2 */
-/* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 13 3 */
+static int SL_TABLE[16];
-/* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 14 0 (increment by 2) */
-/* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 14 1 */
-/*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 14 2 */
-/*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 14 3 */
-
-/*12 */ 4,4, 4,4, 4,4, 4,4, /* rates 15 0, 15 1, 15 2, 15 3 (increment by 4) */
-/*13 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 2, 15 3 for attack */
-/*14 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */
+static const uint SL_TABLE_SEED[16] = {
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 31
};
+#define TL_MAX (EG_ENT * 2) /* limit(tl + ksr + envelope) + sinwave */
+/* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
+/* TL_TABLE[ 0 to TL_MAX ] : plus section */
+/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
+static int *TL_TABLE;
-#define O(a) (a*RATE_STEPS)
-
-/*note that there is no O(13) in this table - it's directly in the code */
-static const unsigned char eg_rate_select[16+64+16]={ /* Envelope Generator rates (16 + 64 rates + 16 RKS) */
-/* 16 dummy (infinite time) rates */
-O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
-O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
-
-/* rates 00-12 */
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
-O( 0),O( 1),O( 2),O( 3),
+/* pointers to TL_TABLE with sinwave output offset */
+static int **SIN_TABLE;
-/* rate 13 */
-O( 4),O( 5),O( 6),O( 7),
-
-/* rate 14 */
-O( 8),O( 9),O(10),O(11),
-
-/* rate 15 */
-O(12),O(12),O(12),O(12),
-
-/* 16 dummy rates (same as 15 3) */
-O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
-O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
-
-};
-#undef O
-
-//rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
-//shift 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0
-//mask 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0
-
-#define O(a) (a*1)
-static const unsigned char eg_rate_shift[16+64+16]={ /* Envelope Generator counter shifts (16 + 64 rates + 16 RKS) */
-/* 16 infinite time rates */
-O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
-O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
-
-/* rates 00-12 */
-O(12),O(12),O(12),O(12),
-O(11),O(11),O(11),O(11),
-O(10),O(10),O(10),O(10),
-O( 9),O( 9),O( 9),O( 9),
-O( 8),O( 8),O( 8),O( 8),
-O( 7),O( 7),O( 7),O( 7),
-O( 6),O( 6),O( 6),O( 6),
-O( 5),O( 5),O( 5),O( 5),
-O( 4),O( 4),O( 4),O( 4),
-O( 3),O( 3),O( 3),O( 3),
-O( 2),O( 2),O( 2),O( 2),
-O( 1),O( 1),O( 1),O( 1),
-O( 0),O( 0),O( 0),O( 0),
-
-/* rate 13 */
-O( 0),O( 0),O( 0),O( 0),
-
-/* rate 14 */
-O( 0),O( 0),O( 0),O( 0),
-
-/* rate 15 */
-O( 0),O( 0),O( 0),O( 0),
-
-/* 16 dummy rates (same as 15 3) */
-O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
-O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
-
-};
-#undef O
+/* LFO table */
+static int *AMS_TABLE;
+static int *VIB_TABLE;
+/* envelope output curve table */
+/* attack + decay + OFF */
+//static int ENV_CURVE[2*EG_ENT+1];
+static int ENV_CURVE[2 * 4096 + 1]; // to keep it static ...
/* multiple table */
-#define ML(x) (UINT8)(x*2)
-static const UINT8 mul_tab[16]= {
-/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,10,12,12,15,15 */
- ML(0.50), ML(1.00), ML(2.00), ML(3.00), ML(4.00), ML(5.00), ML(6.00), ML(7.00),
- ML(8.00), ML(9.00),ML(10.00),ML(10.00),ML(12.00),ML(12.00),ML(15.00),ML(15.00)
+#define ML(a) (int)(a * 2)
+static const uint MUL_TABLE[16]= {
+/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
+ ML(0.50), ML(1.00), ML(2.00), ML(3.00), ML(4.00), ML(5.00), ML(6.00), ML(7.00),
+ ML(8.00), ML(9.00), ML(10.00), ML(10.00),ML(12.00),ML(12.00),ML(15.00),ML(15.00)
};
#undef ML
-/* TL_TAB_LEN is calculated as:
-* 12 - sinus amplitude bits (Y axis)
-* 2 - sinus sign bit (Y axis)
-* TL_RES_LEN - sinus resolution (X axis)
-*/
-#define TL_TAB_LEN (12*2*TL_RES_LEN)
-static signed int tl_tab[TL_TAB_LEN];
-
-#define ENV_QUIET (TL_TAB_LEN>>4)
-
-/* sin waveform table in 'decibel' scale */
-/* four waveforms on OPL2 type chips */
-static unsigned int sin_tab[SIN_LEN * 4];
-
-
-/* LFO Amplitude Modulation table (verified on real YM3812)
- 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples
-
- Length: 210 elements.
-
- Each of the elements has to be repeated
- exactly 64 times (on 64 consecutive samples).
- The whole table takes: 64 * 210 = 13440 samples.
-
- When AM = 1 data is used directly
- When AM = 0 data is divided by 4 before being used (loosing precision is important)
-*/
-
-#define LFO_AM_TAB_ELEMENTS 210
-
-static const UINT8 lfo_am_table[LFO_AM_TAB_ELEMENTS] = {
-0,0,0,0,0,0,0,
-1,1,1,1,
-2,2,2,2,
-3,3,3,3,
-4,4,4,4,
-5,5,5,5,
-6,6,6,6,
-7,7,7,7,
-8,8,8,8,
-9,9,9,9,
-10,10,10,10,
-11,11,11,11,
-12,12,12,12,
-13,13,13,13,
-14,14,14,14,
-15,15,15,15,
-16,16,16,16,
-17,17,17,17,
-18,18,18,18,
-19,19,19,19,
-20,20,20,20,
-21,21,21,21,
-22,22,22,22,
-23,23,23,23,
-24,24,24,24,
-25,25,25,25,
-26,26,26,
-25,25,25,25,
-24,24,24,24,
-23,23,23,23,
-22,22,22,22,
-21,21,21,21,
-20,20,20,20,
-19,19,19,19,
-18,18,18,18,
-17,17,17,17,
-16,16,16,16,
-15,15,15,15,
-14,14,14,14,
-13,13,13,13,
-12,12,12,12,
-11,11,11,11,
-10,10,10,10,
-9,9,9,9,
-8,8,8,8,
-7,7,7,7,
-6,6,6,6,
-5,5,5,5,
-4,4,4,4,
-3,3,3,3,
-2,2,2,2,
-1,1,1,1
-};
-
-/* LFO Phase Modulation table (verified on real YM3812) */
-static const INT8 lfo_pm_table[8*8*2] = {
-
-/* FNUM2/FNUM = 00 0xxxxxxx (0x0000) */
-0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/
-0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 1*/
-
-/* FNUM2/FNUM = 00 1xxxxxxx (0x0080) */
-0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/
-1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 1*/
-
-/* FNUM2/FNUM = 01 0xxxxxxx (0x0100) */
-1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/
-2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 1*/
-
-/* FNUM2/FNUM = 01 1xxxxxxx (0x0180) */
-1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/
-3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 1*/
-
-/* FNUM2/FNUM = 10 0xxxxxxx (0x0200) */
-2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/
-4, 2, 0,-2,-4,-2, 0, 2, /*LFO PM depth = 1*/
-
-/* FNUM2/FNUM = 10 1xxxxxxx (0x0280) */
-2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/
-5, 2, 0,-2,-5,-2, 0, 2, /*LFO PM depth = 1*/
-
-/* FNUM2/FNUM = 11 0xxxxxxx (0x0300) */
-3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/
-6, 3, 0,-3,-6,-3, 0, 3, /*LFO PM depth = 1*/
-
-/* FNUM2/FNUM = 11 1xxxxxxx (0x0380) */
-3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/
-7, 3, 0,-3,-7,-3, 0, 3 /*LFO PM depth = 1*/
-};
+/* dummy attack / decay rate ( when rate == 0 ) */
+static int RATE_0[16]=
+{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+/* -------------------- static state --------------------- */
/* lock level of common table */
static int num_lock = 0;
/* work table */
static void *cur_chip = NULL; /* current chip point */
-OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2;
+/* currenct chip state */
+/* static OPLSAMPLE *bufL,*bufR; */
+static OPL_CH *S_CH;
+static OPL_CH *E_CH;
+OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
+
+static int outd[1];
+static int ams;
+static int vib;
+int *ams_table;
+int *vib_table;
+static int amsIncr;
+static int vibIncr;
+static int feedback2; /* connect for SLOT 2 */
+
+/* --------------------- rebuild tables ------------------- */
+
+#define SC_KSL(mydb) ((uint) (mydb / (EG_STEP / 2)))
+#define SC_SL(db) (int)(db * ((3 / EG_STEP) * (1 << ENV_BITS))) + EG_DST
+
+void OPLBuildTables(int ENV_BITS_PARAM, int EG_ENT_PARAM) {
+ int i;
-static signed int phase_modulation; /* phase modulation input (SLOT 2) */
-static signed int output[1];
+ ENV_BITS = ENV_BITS_PARAM;
+ EG_ENT = EG_ENT_PARAM;
+ EG_OFF = ((2 * EG_ENT)<<ENV_BITS); /* OFF */
+ EG_DED = EG_OFF;
+ EG_DST = (EG_ENT << ENV_BITS); /* DECAY START */
+ EG_AED = EG_DST;
+ //EG_STEP = (96.0/EG_ENT);
-#if BUILD_Y8950
-static INT32 output_deltat[4]; /* for Y8950 DELTA-T */
-#endif
+ for (i = 0; i < (int)(sizeof(KSL_TABLE_SEED) / sizeof(double)); i++)
+ KSL_TABLE[i] = SC_KSL(KSL_TABLE_SEED[i]);
-static UINT32 LFO_AM;
-static INT32 LFO_PM;
+ for (i = 0; i < (int)(sizeof(SL_TABLE_SEED) / sizeof(uint)); i++)
+ SL_TABLE[i] = SC_SL(SL_TABLE_SEED[i]);
+}
+#undef SC_KSL
+#undef SC_SL
+/* --------------------- subroutines --------------------- */
-INLINE int limit( int val, int max, int min ) {
+inline int Limit(int val, int max, int min) {
if ( val > max )
val = max;
else if ( val < min )
@@ -617,32 +248,26 @@ INLINE int limit( int val, int max, int min ) {
return val;
}
-
/* status set and IRQ handling */
-INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag)
-{
+inline void OPL_STATUS_SET(FM_OPL *OPL, int flag) {
/* set status flag */
OPL->status |= flag;
- if(!(OPL->status & 0x80))
- {
- if(OPL->status & OPL->statusmask)
- { /* IRQ on */
+ if(!(OPL->status & 0x80)) {
+ if(OPL->status & OPL->statusmask) { /* IRQ on */
OPL->status |= 0x80;
/* callback user interrupt handler (IRQ is OFF to ON) */
- if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
+ if(OPL->IRQHandler)
+ (OPL->IRQHandler)(OPL->IRQParam,1);
}
}
}
/* status reset and IRQ handling */
-INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
-{
+inline void OPL_STATUS_RESET(FM_OPL *OPL, int flag) {
/* reset status flag */
- OPL->status &=~flag;
- if((OPL->status & 0x80))
- {
- if (!(OPL->status & OPL->statusmask) )
- {
+ OPL->status &= ~flag;
+ if((OPL->status & 0x80)) {
+ if (!(OPL->status & OPL->statusmask)) {
OPL->status &= 0x7f;
/* callback user interrupt handler (IRQ is ON to OFF) */
if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
@@ -651,1182 +276,771 @@ INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
}
/* IRQ mask set */
-INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
-{
+inline void OPL_STATUSMASK_SET(FM_OPL *OPL, int flag) {
OPL->statusmask = flag;
/* IRQ handling check */
OPL_STATUS_SET(OPL,0);
OPL_STATUS_RESET(OPL,0);
}
-
-/* advance LFO to next sample */
-INLINE void advance_lfo(FM_OPL *OPL)
-{
- UINT8 tmp;
-
- /* LFO */
- OPL->lfo_am_cnt += OPL->lfo_am_inc;
- if (OPL->lfo_am_cnt >= (UINT32)(LFO_AM_TAB_ELEMENTS<<LFO_SH) ) /* lfo_am_table is 210 elements long */
- OPL->lfo_am_cnt -= (UINT32)(LFO_AM_TAB_ELEMENTS<<LFO_SH);
-
- tmp = lfo_am_table[ OPL->lfo_am_cnt >> LFO_SH ];
-
- if (OPL->lfo_am_depth)
- LFO_AM = tmp;
- else
- LFO_AM = tmp>>2;
-
- OPL->lfo_pm_cnt += OPL->lfo_pm_inc;
- LFO_PM = ((OPL->lfo_pm_cnt>>LFO_SH) & 7) | OPL->lfo_pm_depth_range;
+/* ----- key on ----- */
+inline void OPL_KEYON(OPL_SLOT *SLOT) {
+ /* sin wave restart */
+ SLOT->Cnt = 0;
+ /* set attack */
+ SLOT->evm = ENV_MOD_AR;
+ SLOT->evs = SLOT->evsa;
+ SLOT->evc = EG_AST;
+ SLOT->eve = EG_AED;
+}
+/* ----- key off ----- */
+inline void OPL_KEYOFF(OPL_SLOT *SLOT) {
+ if( SLOT->evm > ENV_MOD_RR) {
+ /* set envelope counter from envleope output */
+ SLOT->evm = ENV_MOD_RR;
+ if( !(SLOT->evc & EG_DST) )
+ //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
+ SLOT->evc = EG_DST;
+ SLOT->eve = EG_DED;
+ SLOT->evs = SLOT->evsr;
+ }
}
-/* advance to next sample */
-INLINE void advancex(FM_OPL *OPL)
-{
- OPL_CH *CH;
- OPL_SLOT *op;
- int i;
-
- OPL->eg_timer += OPL->eg_timer_add;
-
- while (OPL->eg_timer >= OPL->eg_timer_overflow)
- {
- OPL->eg_timer -= OPL->eg_timer_overflow;
-
- OPL->eg_cnt++;
-
- for (i=0; i<9*2; i++)
- {
- CH = &OPL->P_CH[i/2];
- op = &CH->SLOT[i&1];
-
- /* Envelope Generator */
- switch(op->state)
- {
- case EG_ATT: /* attack phase */
- {
-
- if ( !(OPL->eg_cnt & ((1<<op->eg_sh_ar)-1) ) )
- {
- op->volume += (~op->volume *
- (eg_inc[op->eg_sel_ar + ((OPL->eg_cnt>>op->eg_sh_ar)&7)])
- ) >>3;
-
- if (op->volume <= MIN_ATT_INDEX)
- {
- op->volume = MIN_ATT_INDEX;
- op->state = EG_DEC;
- }
-
- }
-
- }
- break;
-
- case EG_DEC: /* decay phase */
- if ( !(OPL->eg_cnt & ((1<<op->eg_sh_dr)-1) ) )
- {
- op->volume += eg_inc[op->eg_sel_dr + ((OPL->eg_cnt>>op->eg_sh_dr)&7)];
-
- if ( op->volume >= (INT32)op->sl )
- op->state = EG_SUS;
-
- }
+/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
+/* return : envelope output */
+inline uint OPL_CALC_SLOT(OPL_SLOT *SLOT) {
+ /* calcrate envelope generator */
+ if((SLOT->evc += SLOT->evs) >= SLOT->eve) {
+ switch( SLOT->evm ){
+ case ENV_MOD_AR: /* ATTACK -> DECAY1 */
+ /* next DR */
+ SLOT->evm = ENV_MOD_DR;
+ SLOT->evc = EG_DST;
+ SLOT->eve = SLOT->SL;
+ SLOT->evs = SLOT->evsd;
break;
-
- case EG_SUS: /* sustain phase */
-
- /* this is important behaviour:
- one can change percusive/non-percussive modes on the fly and
- the chip will remain in sustain phase - verified on real YM3812 */
-
- if(op->eg_type) /* non-percussive mode */
- {
- /* do nothing */
- }
- else /* percussive mode */
- {
- /* during sustain phase chip adds Release Rate (in percussive mode) */
- if ( !(OPL->eg_cnt & ((1<<op->eg_sh_rr)-1) ) )
- {
- op->volume += eg_inc[op->eg_sel_rr + ((OPL->eg_cnt>>op->eg_sh_rr)&7)];
-
- if ( op->volume >= MAX_ATT_INDEX )
- op->volume = MAX_ATT_INDEX;
- }
- /* else do nothing in sustain phase */
- }
- break;
-
- case EG_REL: /* release phase */
- if ( !(OPL->eg_cnt & ((1<<op->eg_sh_rr)-1) ) )
- {
- op->volume += eg_inc[op->eg_sel_rr + ((OPL->eg_cnt>>op->eg_sh_rr)&7)];
-
- if ( op->volume >= MAX_ATT_INDEX )
- {
- op->volume = MAX_ATT_INDEX;
- op->state = EG_OFF;
- }
-
- }
+ case ENV_MOD_DR: /* DECAY -> SL or RR */
+ SLOT->evc = SLOT->SL;
+ SLOT->eve = EG_DED;
+ if(SLOT->eg_typ) {
+ SLOT->evs = 0;
+ } else {
+ SLOT->evm = ENV_MOD_RR;
+ SLOT->evs = SLOT->evsr;
+ }
break;
-
- default:
+ case ENV_MOD_RR: /* RR -> OFF */
+ SLOT->evc = EG_OFF;
+ SLOT->eve = EG_OFF + 1;
+ SLOT->evs = 0;
break;
- }
}
}
+ /* calcrate envelope */
+ return SLOT->TLL + ENV_CURVE[SLOT->evc>>ENV_BITS] + (SLOT->ams ? ams : 0);
+}
- for (i=0; i<9*2; i++)
- {
- CH = &OPL->P_CH[i/2];
- op = &CH->SLOT[i&1];
-
- /* Phase Generator */
- if(op->vib)
- {
- UINT8 block;
- UINT32 block_fnum = CH->block_fnum;
-
- unsigned int fnum_lfo = (block_fnum&0x0380) >> 7;
+/* set algorythm connection */
+static void set_algorythm(OPL_CH *CH) {
+ int *carrier = &outd[0];
+ CH->connect1 = CH->CON ? carrier : &feedback2;
+ CH->connect2 = carrier;
+}
- signed int lfo_fn_table_index_offset = lfo_pm_table[LFO_PM + 16*fnum_lfo ];
+/* ---------- frequency counter for operater update ---------- */
+inline void CALC_FCSLOT(OPL_CH *CH, OPL_SLOT *SLOT) {
+ int ksr;
- if (lfo_fn_table_index_offset) /* LFO phase modulation active */
- {
- block_fnum += lfo_fn_table_index_offset;
- block = (block_fnum&0x1c00) >> 10;
- op->Cnt += (OPL->fn_tab[block_fnum&0x03ff] >> (7-block)) * op->mul;//ok
- }
- else /* LFO phase modulation = zero */
- {
- op->Cnt += op->Incr;
- }
- }
- else /* LFO phase modulation disabled for this operator */
- {
- op->Cnt += op->Incr;
- }
- }
+ /* frequency step counter */
+ SLOT->Incr = CH->fc * SLOT->mul;
+ ksr = CH->kcode >> SLOT->KSR;
- /* The Noise Generator of the YM3812 is 23-bit shift register.
- * Period is equal to 2^23-2 samples.
- * Register works at sampling frequency of the chip, so output
- * can change on every sample.
- *
- * Output of the register and input to the bit 22 is:
- * bit0 XOR bit14 XOR bit15 XOR bit22
- *
- * Simply use bit 22 as the noise output.
- */
-
- OPL->noise_p += OPL->noise_f;
- i = OPL->noise_p >> FREQ_SH; /* number of events (shifts of the shift register) */
- OPL->noise_p &= FREQ_MASK;
- while (i)
+ if( SLOT->ksr != ksr )
{
- /*
- UINT32 j;
- j = ( (OPL->noise_rng) ^ (OPL->noise_rng>>14) ^ (OPL->noise_rng>>15) ^ (OPL->noise_rng>>22) ) & 1;
- OPL->noise_rng = (j<<22) | (OPL->noise_rng>>1);
- */
-
- /*
- Instead of doing all the logic operations above, we
- use a trick here (and use bit 0 as the noise output).
- The difference is only that the noise bit changes one
- step ahead. This doesn't matter since we don't know
- what is real state of the noise_rng after the reset.
- */
-
- if (OPL->noise_rng & 1) OPL->noise_rng ^= 0x800302;
- OPL->noise_rng >>= 1;
-
- i--;
+ SLOT->ksr = ksr;
+ /* attack , decay rate recalcration */
+ SLOT->evsa = SLOT->AR[ksr];
+ SLOT->evsd = SLOT->DR[ksr];
+ SLOT->evsr = SLOT->RR[ksr];
}
+ SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
}
+/* set multi,am,vib,EG-TYP,KSR,mul */
+inline void set_mul(FM_OPL *OPL, int slot, int v) {
+ OPL_CH *CH = &OPL->P_CH[slot / 2];
+ OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
-INLINE signed int op_calc(UINT32 phase, unsigned int env, signed int pm, unsigned int wave_tab)
-{
- UINT32 p;
-
- p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + (pm<<16))) >> FREQ_SH ) & SIN_MASK) ];
-
- if (p >= TL_TAB_LEN)
- return 0;
- return tl_tab[p];
+ SLOT->mul = MUL_TABLE[v & 0x0f];
+ SLOT->KSR = (v & 0x10) ? 0 : 2;
+ SLOT->eg_typ = (v & 0x20) >> 5;
+ SLOT->vib = (v & 0x40);
+ SLOT->ams = (v & 0x80);
+ CALC_FCSLOT(CH, SLOT);
}
-INLINE signed int op_calc1(UINT32 phase, unsigned int env, signed int pm, unsigned int wave_tab)
-{
- UINT32 p;
- INT32 i;
+/* set ksl & tl */
+inline void set_ksl_tl(FM_OPL *OPL, int slot, int v) {
+ OPL_CH *CH = &OPL->P_CH[slot / 2];
+ OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
+ int ksl = v >> 6; /* 0 / 1.5 / 3 / 6 db/OCT */
- i = (phase & ~FREQ_MASK) + pm;
+ SLOT->ksl = ksl ? 3-ksl : 31;
+ SLOT->TL = (int)((v & 0x3f) * (0.75 / EG_STEP)); /* 0.75db step */
-/*logerror("i=%08x (i>>16)&511=%8i phase=%i [pm=%08x] ",i, (i>>16)&511, phase>>FREQ_SH, pm);*/
+ if(!(OPL->mode & 0x80)) { /* not CSM latch total level */
+ SLOT->TLL = SLOT->TL + (CH->ksl_base >> SLOT->ksl);
+ }
+}
- p = (env<<4) + sin_tab[ wave_tab + ((i>>FREQ_SH) & SIN_MASK)];
+/* set attack rate & decay rate */
+inline void set_ar_dr(FM_OPL *OPL, int slot, int v) {
+ OPL_CH *CH = &OPL->P_CH[slot / 2];
+ OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
+ int ar = v >> 4;
+ int dr = v & 0x0f;
-/*logerror("(p&255=%i p>>8=%i) out= %i\n", p&255,p>>8, tl_tab[p&255]>>(p>>8) );*/
+ SLOT->AR = ar ? &OPL->AR_TABLE[ar << 2] : RATE_0;
+ SLOT->evsa = SLOT->AR[SLOT->ksr];
+ if(SLOT->evm == ENV_MOD_AR)
+ SLOT->evs = SLOT->evsa;
- if (p >= TL_TAB_LEN)
- return 0;
- return tl_tab[p];
+ SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
+ SLOT->evsd = SLOT->DR[SLOT->ksr];
+ if(SLOT->evm == ENV_MOD_DR)
+ SLOT->evs = SLOT->evsd;
}
-
-#define volume_calc(OP) ((OP)->TLL + ((UINT32)(OP)->volume) + (LFO_AM & (OP)->AMmask))
-
-/* calculate output */
-INLINE void OPL_CALC_CH( OPL_CH *CH )
-{
+/* set sustain level & release rate */
+inline void set_sl_rr(FM_OPL *OPL, int slot, int v) {
+ OPL_CH *CH = &OPL->P_CH[slot / 2];
+ OPL_SLOT *SLOT = &CH->SLOT[slot & 1];
+ int sl = v >> 4;
+ int rr = v & 0x0f;
+
+ SLOT->SL = SL_TABLE[sl];
+ if(SLOT->evm == ENV_MOD_DR)
+ SLOT->eve = SLOT->SL;
+ SLOT->RR = &OPL->DR_TABLE[rr<<2];
+ SLOT->evsr = SLOT->RR[SLOT->ksr];
+ if(SLOT->evm == ENV_MOD_RR)
+ SLOT->evs = SLOT->evsr;
+}
+
+/* operator output calcrator */
+#define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt + con) / (0x1000000 / SIN_ENT)) & (SIN_ENT-1)][env]
+/* ---------- calcrate one of channel ---------- */
+inline void OPL_CALC_CH(OPL_CH *CH) {
+ uint env_out;
OPL_SLOT *SLOT;
- unsigned int env;
- signed int out;
-
- phase_modulation = 0;
+ feedback2 = 0;
/* SLOT 1 */
SLOT = &CH->SLOT[SLOT1];
- env = volume_calc(SLOT);
- out = SLOT->op1_out[0] + SLOT->op1_out[1];
- SLOT->op1_out[0] = SLOT->op1_out[1];
- *SLOT->connect1 += SLOT->op1_out[0];
- SLOT->op1_out[1] = 0;
- if( env < ENV_QUIET )
- {
- if (!SLOT->FB)
- out = 0;
- SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<<SLOT->FB), SLOT->wavetable );
+ env_out=OPL_CALC_SLOT(SLOT);
+ if(env_out < (uint)(EG_ENT - 1)) {
+ /* PG */
+ if(SLOT->vib)
+ SLOT->Cnt += (SLOT->Incr * vib / VIB_RATE);
+ else
+ SLOT->Cnt += SLOT->Incr;
+ /* connectoion */
+ if(CH->FB) {
+ int feedback1 = (CH->op1_out[0] + CH->op1_out[1]) >> CH->FB;
+ CH->op1_out[1] = CH->op1_out[0];
+ *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT, env_out, feedback1);
+ }
+ else {
+ *CH->connect1 += OP_OUT(SLOT, env_out, 0);
+ }
+ }else {
+ CH->op1_out[1] = CH->op1_out[0];
+ CH->op1_out[0] = 0;
}
-
/* SLOT 2 */
- SLOT++;
- env = volume_calc(SLOT);
- if( env < ENV_QUIET )
- output[0] += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable);
+ SLOT = &CH->SLOT[SLOT2];
+ env_out=OPL_CALC_SLOT(SLOT);
+ if(env_out < (uint)(EG_ENT - 1)) {
+ /* PG */
+ if(SLOT->vib)
+ SLOT->Cnt += (SLOT->Incr * vib / VIB_RATE);
+ else
+ SLOT->Cnt += SLOT->Incr;
+ /* connectoion */
+ outd[0] += OP_OUT(SLOT, env_out, feedback2);
+ }
}
-/*
- operators used in the rhythm sounds generation process:
-
- Envelope Generator:
-
-channel operator register number Bass High Snare Tom Top
-/ slot number TL ARDR SLRR Wave Drum Hat Drum Tom Cymbal
- 6 / 0 12 50 70 90 f0 +
- 6 / 1 15 53 73 93 f3 +
- 7 / 0 13 51 71 91 f1 +
- 7 / 1 16 54 74 94 f4 +
- 8 / 0 14 52 72 92 f2 +
- 8 / 1 17 55 75 95 f5 +
+/* ---------- calcrate rythm block ---------- */
+#define WHITE_NOISE_db 6.0
+inline void OPL_CALC_RH(OPL_CH *CH) {
+ uint env_tam, env_sd, env_top, env_hh;
+ int whitenoise = int((rand()&1) * (WHITE_NOISE_db / EG_STEP));
+ int tone8;
- Phase Generator:
-
-channel operator register number Bass High Snare Tom Top
-/ slot number MULTIPLE Drum Hat Drum Tom Cymbal
- 6 / 0 12 30 +
- 6 / 1 15 33 +
- 7 / 0 13 31 + + +
- 7 / 1 16 34 ----- n o t u s e d -----
- 8 / 0 14 32 +
- 8 / 1 17 35 + +
-
-channel operator register number Bass High Snare Tom Top
-number number BLK/FNUM2 FNUM Drum Hat Drum Tom Cymbal
- 6 12,15 B6 A6 +
-
- 7 13,16 B7 A7 + + +
-
- 8 14,17 B8 A8 + + +
-
-*/
-
-/* calculate rhythm */
-
-INLINE void OPL_CALC_RH( OPL_CH *CH, unsigned int noise )
-{
OPL_SLOT *SLOT;
- signed int out;
- unsigned int env;
-
+ int env_out;
- /* Bass Drum (verified on real YM3812):
- - depends on the channel 6 'connect' register:
- when connect = 0 it works the same as in normal (non-rhythm) mode (op1->op2->out)
- when connect = 1 _only_ operator 2 is present on output (op2->out), operator 1 is ignored
- - output sample always is multiplied by 2
- */
-
- phase_modulation = 0;
+ /* BD : same as FM serial mode and output level is large */
+ feedback2 = 0;
/* SLOT 1 */
SLOT = &CH[6].SLOT[SLOT1];
- env = volume_calc(SLOT);
-
- out = SLOT->op1_out[0] + SLOT->op1_out[1];
- SLOT->op1_out[0] = SLOT->op1_out[1];
-
- if (!SLOT->CON)
- phase_modulation = SLOT->op1_out[0];
- //else ignore output of operator 1
-
- SLOT->op1_out[1] = 0;
- if( env < ENV_QUIET )
- {
- if (!SLOT->FB)
- out = 0;
- SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<<SLOT->FB), SLOT->wavetable );
+ env_out = OPL_CALC_SLOT(SLOT);
+ if(env_out < EG_ENT-1) {
+ /* PG */
+ if(SLOT->vib)
+ SLOT->Cnt += (SLOT->Incr * vib / VIB_RATE);
+ else
+ SLOT->Cnt += SLOT->Incr;
+ /* connectoion */
+ if(CH[6].FB) {
+ int feedback1 = (CH[6].op1_out[0] + CH[6].op1_out[1]) >> CH[6].FB;
+ CH[6].op1_out[1] = CH[6].op1_out[0];
+ feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT, env_out, feedback1);
+ }
+ else {
+ feedback2 = OP_OUT(SLOT, env_out, 0);
+ }
+ }else {
+ feedback2 = 0;
+ CH[6].op1_out[1] = CH[6].op1_out[0];
+ CH[6].op1_out[0] = 0;
}
-
/* SLOT 2 */
- SLOT++;
- env = volume_calc(SLOT);
- if( env < ENV_QUIET )
- output[0] += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable) * 2;
-
-
- /* Phase generation is based on: */
- // HH (13) channel 7->slot 1 combined with channel 8->slot 2 (same combination as TOP CYMBAL but different output phases)
- // SD (16) channel 7->slot 1
- // TOM (14) channel 8->slot 1
- // TOP (17) channel 7->slot 1 combined with channel 8->slot 2 (same combination as HIGH HAT but different output phases)
-
- /* Envelope generation based on: */
- // HH channel 7->slot1
- // SD channel 7->slot2
- // TOM channel 8->slot1
- // TOP channel 8->slot2
-
-
- /* The following formulas can be well optimized.
- I leave them in direct form for now (in case I've missed something).
- */
-
- /* High Hat (verified on real YM3812) */
- env = volume_calc(SLOT7_1);
- if( env < ENV_QUIET )
- {
-
- /* high hat phase generation:
- phase = d0 or 234 (based on frequency only)
- phase = 34 or 2d0 (based on noise)
- */
-
- /* base frequency derived from operator 1 in channel 7 */
- unsigned char bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1;
- unsigned char bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1;
- unsigned char bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1;
-
- unsigned char res1 = (bit2 ^ bit7) | bit3;
-
- /* when res1 = 0 phase = 0x000 | 0xd0; */
- /* when res1 = 1 phase = 0x200 | (0xd0>>2); */
- UINT32 phase = res1 ? (0x200|(0xd0>>2)) : 0xd0;
-
- /* enable gate based on frequency of operator 2 in channel 8 */
- unsigned char bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1;
- unsigned char bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1;
-
- unsigned char res2 = (bit3e ^ bit5e);
-
- /* when res2 = 0 pass the phase from calculation above (res1); */
- /* when res2 = 1 phase = 0x200 | (0xd0>>2); */
- if (res2)
- phase = (0x200|(0xd0>>2));
-
-
- /* when phase & 0x200 is set and noise=1 then phase = 0x200|0xd0 */
- /* when phase & 0x200 is set and noise=0 then phase = 0x200|(0xd0>>2), ie no change */
- if (phase&0x200)
- {
- if (noise)
- phase = 0x200|0xd0;
- }
+ SLOT = &CH[6].SLOT[SLOT2];
+ env_out = OPL_CALC_SLOT(SLOT);
+ if(env_out < EG_ENT-1) {
+ /* PG */
+ if(SLOT->vib)
+ SLOT->Cnt += (SLOT->Incr * vib / VIB_RATE);
else
- /* when phase & 0x200 is clear and noise=1 then phase = 0xd0>>2 */
- /* when phase & 0x200 is clear and noise=0 then phase = 0xd0, ie no change */
- {
- if (noise)
- phase = 0xd0>>2;
- }
-
- output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_1->wavetable) * 2;
+ SLOT->Cnt += SLOT->Incr;
+ /* connectoion */
+ outd[0] += OP_OUT(SLOT, env_out, feedback2) * 2;
}
- /* Snare Drum (verified on real YM3812) */
- env = volume_calc(SLOT7_2);
- if( env < ENV_QUIET )
- {
- /* base frequency derived from operator 1 in channel 7 */
- unsigned char bit8 = ((SLOT7_1->Cnt>>FREQ_SH)>>8)&1;
-
- /* when bit8 = 0 phase = 0x100; */
- /* when bit8 = 1 phase = 0x200; */
- UINT32 phase = bit8 ? 0x200 : 0x100;
-
- /* Noise bit XOR'es phase by 0x100 */
- /* when noisebit = 0 pass the phase from calculation above */
- /* when noisebit = 1 phase ^= 0x100; */
- /* in other words: phase ^= (noisebit<<8); */
- if (noise)
- phase ^= 0x100;
-
- output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_1->wavetable) * 2;
+ // SD (17) = mul14[fnum7] + white noise
+ // TAM (15) = mul15[fnum8]
+ // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
+ // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
+ env_sd = OPL_CALC_SLOT(SLOT7_2) + whitenoise;
+ env_tam =OPL_CALC_SLOT(SLOT8_1);
+ env_top = OPL_CALC_SLOT(SLOT8_2);
+ env_hh = OPL_CALC_SLOT(SLOT7_1) + whitenoise;
+
+ /* PG */
+ if(SLOT7_1->vib)
+ SLOT7_1->Cnt += (2 * SLOT7_1->Incr * vib / VIB_RATE);
+ else
+ SLOT7_1->Cnt += 2 * SLOT7_1->Incr;
+ if(SLOT7_2->vib)
+ SLOT7_2->Cnt += ((CH[7].fc * 8) * vib / VIB_RATE);
+ else
+ SLOT7_2->Cnt += (CH[7].fc * 8);
+ if(SLOT8_1->vib)
+ SLOT8_1->Cnt += (SLOT8_1->Incr * vib / VIB_RATE);
+ else
+ SLOT8_1->Cnt += SLOT8_1->Incr;
+ if(SLOT8_2->vib)
+ SLOT8_2->Cnt += ((CH[8].fc * 48) * vib / VIB_RATE);
+ else
+ SLOT8_2->Cnt += (CH[8].fc * 48);
+
+ tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
+
+ /* SD */
+ if(env_sd < (uint)(EG_ENT - 1))
+ outd[0] += OP_OUT(SLOT7_1, env_sd, 0) * 8;
+ /* TAM */
+ if(env_tam < (uint)(EG_ENT - 1))
+ outd[0] += OP_OUT(SLOT8_1, env_tam, 0) * 2;
+ /* TOP-CY */
+ if(env_top < (uint)(EG_ENT - 1))
+ outd[0] += OP_OUT(SLOT7_2, env_top, tone8) * 2;
+ /* HH */
+ if(env_hh < (uint)(EG_ENT-1))
+ outd[0] += OP_OUT(SLOT7_2, env_hh, tone8) * 2;
+}
+
+/* ----------- initialize time tabls ----------- */
+static void init_timetables(FM_OPL *OPL, int ARRATE, int DRRATE) {
+ int i;
+ double rate;
+
+ /* make attack rate & decay rate tables */
+ for (i = 0; i < 4; i++)
+ OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
+ for (i = 4; i <= 60; i++){
+ rate = OPL->freqbase; /* frequency rate */
+ if(i < 60)
+ rate *= 1.0 + (i & 3) * 0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
+ rate *= 1 << ((i >> 2) - 1); /* b2-5 : shift bit */
+ rate *= (double)(EG_ENT << ENV_BITS);
+ OPL->AR_TABLE[i] = (int)(rate / ARRATE);
+ OPL->DR_TABLE[i] = (int)(rate / DRRATE);
}
-
- /* Tom Tom (verified on real YM3812) */
- env = volume_calc(SLOT8_1);
- if( env < ENV_QUIET )
- output[0] += op_calc(SLOT8_1->Cnt, env, 0, SLOT8_1->wavetable) * 2;
-
- /* Top Cymbal (verified on real YM3812) */
- env = volume_calc(SLOT8_2);
- if( env < ENV_QUIET )
- {
- /* base frequency derived from operator 1 in channel 7 */
- unsigned char bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1;
- unsigned char bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1;
- unsigned char bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1;
-
- unsigned char res1 = (bit2 ^ bit7) | bit3;
-
- /* when res1 = 0 phase = 0x000 | 0x100; */
- /* when res1 = 1 phase = 0x200 | 0x100; */
- UINT32 phase = res1 ? 0x300 : 0x100;
-
- /* enable gate based on frequency of operator 2 in channel 8 */
- unsigned char bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1;
- unsigned char bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1;
-
- unsigned char res2 = (bit3e ^ bit5e);
- /* when res2 = 0 pass the phase from calculation above (res1); */
- /* when res2 = 1 phase = 0x200 | 0x100; */
- if (res2)
- phase = 0x300;
-
- output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT8_2->wavetable) * 2;
+ for (i = 60; i < 75; i++) {
+ OPL->AR_TABLE[i] = EG_AED-1;
+ OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
}
-
}
+/* ---------- generic table initialize ---------- */
+static int OPLOpenTable(void) {
+ int s,t;
+ double rate;
+ int i,j;
+ double pom;
-/* generic table initialize */
-static int init_tables(void)
-{
- signed int i,x;
- signed int n;
- double o,m;
-
-
- for (x=0; x<TL_RES_LEN; x++)
- {
- m = (1<<16) / pow(2.0, (x+1) * (ENV_STEP/4.0) / 8.0);
- m = floor(m);
-
- /* we never reach (1<<16) here due to the (x+1) */
- /* result fits within 16 bits at maximum */
-
- n = (int)m; /* 16 bits here */
- n >>= 4; /* 12 bits here */
- if (n&1) /* round to nearest */
- n = (n>>1)+1;
- else
- n = n>>1;
- /* 11 bits here (rounded) */
- n <<= 1; /* 12 bits here (as in real chip) */
- tl_tab[ x*2 + 0 ] = n;
- tl_tab[ x*2 + 1 ] = -tl_tab[ x*2 + 0 ];
-
- for (i=1; i<12; i++)
- {
- tl_tab[ x*2+0 + i*2*TL_RES_LEN ] = tl_tab[ x*2+0 ]>>i;
- tl_tab[ x*2+1 + i*2*TL_RES_LEN ] = -tl_tab[ x*2+0 + i*2*TL_RES_LEN ];
- }
- #if 0
- logerror("tl %04i", x*2);
- for (i=0; i<12; i++)
- logerror(", [%02i] %5i", i*2, tl_tab[ x*2 /*+1*/ + i*2*TL_RES_LEN ] );
- logerror("\n");
- #endif
+ /* allocate dynamic tables */
+ if((TL_TABLE = (int *)malloc(TL_MAX * 2 * sizeof(int))) == NULL)
+ return 0;
+ if((SIN_TABLE = (int **)malloc(SIN_ENT * 4 * sizeof(int *))) == NULL) {
+ free(TL_TABLE);
+ return 0;
}
- /*logerror("FMOPL.C: TL_TAB_LEN = %i elements (%i bytes)\n",TL_TAB_LEN, (int)sizeof(tl_tab));*/
-
-
- for (i=0; i<SIN_LEN; i++)
- {
- /* non-standard sinus */
- m = sin( ((i*2)+1) * PI / SIN_LEN ); /* checked against the real chip */
-
- /* we never reach zero here due to ((i*2)+1) */
-
- if (m>0.0)
- o = 8*log(1.0/m)/log(2.0); /* convert to 'decibels' */
- else
- o = 8*log(-1.0/m)/log(2.0); /* convert to 'decibels' */
-
- o = o / (ENV_STEP/4);
-
- n = (int)(2.0*o);
- if (n&1) /* round to nearest */
- n = (n>>1)+1;
- else
- n = n>>1;
-
- sin_tab[ i ] = n*2 + (m>=0.0? 0: 1 );
-
- /*logerror("FMOPL.C: sin [%4i (hex=%03x)]= %4i (tl_tab value=%5i)\n", i, i, sin_tab[i], tl_tab[sin_tab[i]] );*/
+ if((AMS_TABLE = (int *)malloc(AMS_ENT * 2 * sizeof(int))) == NULL) {
+ free(TL_TABLE);
+ free(SIN_TABLE);
+ return 0;
}
-
- for (i=0; i<SIN_LEN; i++)
- {
- /* waveform 1: __ __ */
- /* / \____/ \____*/
- /* output only first half of the sinus waveform (positive one) */
-
- if (i & (1<<(SIN_BITS-1)) )
- sin_tab[1*SIN_LEN+i] = TL_TAB_LEN;
- else
- sin_tab[1*SIN_LEN+i] = sin_tab[i];
-
- /* waveform 2: __ __ __ __ */
- /* / \/ \/ \/ \*/
- /* abs(sin) */
-
- sin_tab[2*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>1) ];
-
- /* waveform 3: _ _ _ _ */
- /* / |_/ |_/ |_/ |_*/
- /* abs(output only first quarter of the sinus waveform) */
-
- if (i & (1<<(SIN_BITS-2)) )
- sin_tab[3*SIN_LEN+i] = TL_TAB_LEN;
- else
- sin_tab[3*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>2)];
-
- /*logerror("FMOPL.C: sin1[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[1*SIN_LEN+i], tl_tab[sin_tab[1*SIN_LEN+i]] );
- logerror("FMOPL.C: sin2[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[2*SIN_LEN+i], tl_tab[sin_tab[2*SIN_LEN+i]] );
- logerror("FMOPL.C: sin3[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[3*SIN_LEN+i], tl_tab[sin_tab[3*SIN_LEN+i]] );*/
+ if((VIB_TABLE = (int *)malloc(VIB_ENT * 2 * sizeof(int))) == NULL) {
+ free(TL_TABLE);
+ free(SIN_TABLE);
+ free(AMS_TABLE);
+ return 0;
}
- /*logerror("FMOPL.C: ENV_QUIET= %08x (dec*8=%i)\n", ENV_QUIET, ENV_QUIET*8 );*/
-
-
-#ifdef SAVE_SAMPLE
- sample[0]=fopen("sampsum.pcm","wb");
-#endif
-
- return 1;
-}
-
-static void OPLCloseTable( void )
-{
-#ifdef SAVE_SAMPLE
- fclose(sample[0]);
-#endif
-}
-
-
-
-static void OPL_initalize(FM_OPL *OPL)
-{
- int i;
-
- /* frequency base */
-#if 1
- OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / 72.0) / OPL->rate : 0;
-#else
- OPL->rate = (double)OPL->clock / 72.0;
- OPL->freqbase = 1.0;
-#endif
-
- /* Timer base time */
- OPL->TimerBase = 1.0 / ((double)OPL->clock / 72.0 );
-
- /* make fnumber -> increment counter table */
- for( i=0 ; i < 1024 ; i++ )
- {
- /* opn phase increment counter = 20bit */
- OPL->fn_tab[i] = (UINT32)( (double)i * 64 * OPL->freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */
-#if 0
- logerror("FMOPL.C: fn_tab[%4i] = %08x (dec=%8i)\n",
- i, OPL->fn_tab[i]>>6, OPL->fn_tab[i]>>6 );
-#endif
+ /* make total level table */
+ for (t = 0; t < EG_ENT - 1 ; t++){
+ rate = ((1 << TL_BITS) - 1) / pow(10, EG_STEP * t / 20); /* dB -> voltage */
+ TL_TABLE[ t] = (int)rate;
+ TL_TABLE[TL_MAX + t] = -TL_TABLE[t];
+ }
+ /* fill volume off area */
+ for (t = EG_ENT - 1; t < TL_MAX; t++){
+ TL_TABLE[t] = TL_TABLE[TL_MAX + t] = 0;
}
-#if 0
- for( i=0 ; i < 16 ; i++ )
- {
- logerror("FMOPL.C: sl_tab[%i] = %08x\n",
- i, sl_tab[i] );
+ /* make sinwave table (total level offet) */
+ /* degree 0 = degree 180 = off */
+ SIN_TABLE[0] = SIN_TABLE[SIN_ENT /2 ] = &TL_TABLE[EG_ENT - 1];
+ for (s = 1;s <= SIN_ENT / 4; s++){
+ pom = sin(2 * PI * s / SIN_ENT); /* sin */
+ pom = 20 * log10(1 / pom); /* decibel */
+ j = int(pom / EG_STEP); /* TL_TABLE steps */
+
+ /* degree 0 - 90 , degree 180 - 90 : plus section */
+ SIN_TABLE[ s] = SIN_TABLE[SIN_ENT / 2 - s] = &TL_TABLE[j];
+ /* degree 180 - 270 , degree 360 - 270 : minus section */
+ SIN_TABLE[SIN_ENT / 2 + s] = SIN_TABLE[SIN_ENT - s] = &TL_TABLE[TL_MAX + j];
}
- for( i=0 ; i < 8 ; i++ )
- {
- int j;
- logerror("FMOPL.C: ksl_tab[oct=%2i] =",i);
- for (j=0; j<16; j++)
- {
- logerror("%08x ", ksl_tab[i*16+j] );
- }
- logerror("\n");
+ for (s = 0;s < SIN_ENT; s++) {
+ SIN_TABLE[SIN_ENT * 1 + s] = s < (SIN_ENT / 2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
+ SIN_TABLE[SIN_ENT * 2 + s] = SIN_TABLE[s % (SIN_ENT / 2)];
+ SIN_TABLE[SIN_ENT * 3 + s] = (s / (SIN_ENT / 4)) & 1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT * 2 + s];
}
-#endif
-
-
- /* Amplitude modulation: 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples */
- /* One entry from LFO_AM_TABLE lasts for 64 samples */
- OPL->lfo_am_inc = (UINT32)((1.0 / 64.0 ) * (1<<LFO_SH) * OPL->freqbase);
-
- /* Vibrato: 8 output levels (triangle waveform); 1 level takes 1024 samples */
- OPL->lfo_pm_inc = (UINT32)((1.0 / 1024.0) * (1<<LFO_SH) * OPL->freqbase);
- /*logerror ("OPL->lfo_am_inc = %8x ; OPL->lfo_pm_inc = %8x\n", OPL->lfo_am_inc, OPL->lfo_pm_inc);*/
-
- /* Noise generator: a step takes 1 sample */
- OPL->noise_f = (UINT32)((1.0 / 1.0) * (1<<FREQ_SH) * OPL->freqbase);
-
- OPL->eg_timer_add = (UINT32)((1<<EG_SH) * OPL->freqbase);
- OPL->eg_timer_overflow = ( 1 ) * (1<<EG_SH);
- /*logerror("OPLinit eg_timer_add=%8x eg_timer_overflow=%8x\n", OPL->eg_timer_add, OPL->eg_timer_overflow);*/
-
-}
-
-INLINE void FM_KEYON(OPL_SLOT *SLOT, UINT32 key_set)
-{
- if( !SLOT->key )
- {
- /* restart Phase Generator */
- SLOT->Cnt = 0;
- /* phase -> Attack */
- SLOT->state = EG_ATT;
+ /* envelope counter -> envelope output table */
+ for (i=0; i < EG_ENT; i++) {
+ /* ATTACK curve */
+ pom = pow(((double)(EG_ENT - 1 - i) / EG_ENT), 8) * EG_ENT;
+ /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
+ ENV_CURVE[i] = (int)pom;
+ /* DECAY ,RELEASE curve */
+ ENV_CURVE[(EG_DST >> ENV_BITS) + i]= i;
}
- SLOT->key |= key_set;
-}
-
-INLINE void FM_KEYOFF(OPL_SLOT *SLOT, UINT32 key_clr)
-{
- if( SLOT->key )
- {
- SLOT->key &= key_clr;
-
- if( !SLOT->key )
- {
- /* phase -> Release */
- if (SLOT->state>EG_REL)
- SLOT->state = EG_REL;
- }
+ /* off */
+ ENV_CURVE[EG_OFF >> ENV_BITS]= EG_ENT - 1;
+ /* make LFO ams table */
+ for (i=0; i < AMS_ENT; i++) {
+ pom = (1.0 + sin(2 * PI * i / AMS_ENT)) / 2; /* sin */
+ AMS_TABLE[i] = (int)((1.0 / EG_STEP) * pom); /* 1dB */
+ AMS_TABLE[AMS_ENT + i] = (int)((4.8 / EG_STEP) * pom); /* 4.8dB */
}
-}
-
-/* update phase increment counter of operator (also update the EG rates if necessary) */
-INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
-{
- int ksr;
-
- /* (frequency) phase increment counter */
- SLOT->Incr = CH->fc * SLOT->mul;
- ksr = CH->kcode >> SLOT->KSR;
-
- if( SLOT->ksr != ksr )
- {
- SLOT->ksr = ksr;
-
- /* calculate envelope generator rates */
- if ((SLOT->ar + SLOT->ksr) < 16+62)
- {
- SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
- SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
- }
- else
- {
- SLOT->eg_sh_ar = 0;
- SLOT->eg_sel_ar = 13*RATE_STEPS;
- }
- SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ];
- SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ];
- SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ];
- SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ];
+ /* make LFO vibrate table */
+ for (i=0; i < VIB_ENT; i++) {
+ /* 100cent = 1seminote = 6% ?? */
+ pom = (double)VIB_RATE * 0.06 * sin(2 * PI * i / VIB_ENT); /* +-100sect step */
+ VIB_TABLE[i] = (int)(VIB_RATE + (pom * 0.07)); /* +- 7cent */
+ VIB_TABLE[VIB_ENT + i] = (int)(VIB_RATE + (pom * 0.14)); /* +-14cent */
}
+ return 1;
}
-/* set multi,am,vib,EG-TYP,KSR,mul */
-INLINE void set_mul(FM_OPL *OPL,int slot,int v)
-{
- OPL_CH *CH = &OPL->P_CH[slot/2];
- OPL_SLOT *SLOT = &CH->SLOT[slot&1];
-
- SLOT->mul = mul_tab[v&0x0f];
- SLOT->KSR = (v&0x10) ? 0 : 2;
- SLOT->eg_type = (v&0x20);
- SLOT->vib = (v&0x40);
- SLOT->AMmask = (v&0x80) ? ~0 : 0;
- CALC_FCSLOT(CH,SLOT);
-}
-
-/* set ksl & tl */
-INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v)
-{
- OPL_CH *CH = &OPL->P_CH[slot/2];
- OPL_SLOT *SLOT = &CH->SLOT[slot&1];
- int ksl = v>>6; /* 0 / 1.5 / 3.0 / 6.0 dB/OCT */
-
- SLOT->ksl = ksl ? 3-ksl : 31;
- SLOT->TL = (v&0x3f)<<(ENV_BITS-1-7); /* 7 bits TL (bit 6 = always 0) */
-
- SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
+static void OPLCloseTable(void) {
+ free(TL_TABLE);
+ free(SIN_TABLE);
+ free(AMS_TABLE);
+ free(VIB_TABLE);
}
-/* set attack rate & decay rate */
-INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v)
-{
- OPL_CH *CH = &OPL->P_CH[slot/2];
- OPL_SLOT *SLOT = &CH->SLOT[slot&1];
-
- SLOT->ar = (v>>4) ? 16 + ((v>>4) <<2) : 0;
+/* CSM Key Controll */
+inline void CSMKeyControll(OPL_CH *CH) {
+ OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
+ OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
+ /* all key off */
+ OPL_KEYOFF(slot1);
+ OPL_KEYOFF(slot2);
+ /* total level latch */
+ slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
+ slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
+ /* key on */
+ CH->op1_out[0] = CH->op1_out[1] = 0;
+ OPL_KEYON(slot1);
+ OPL_KEYON(slot2);
+}
+
+/* ---------- opl initialize ---------- */
+static void OPL_initalize(FM_OPL *OPL) {
+ int fn;
- if ((SLOT->ar + SLOT->ksr) < 16+62)
- {
- SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
- SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
- }
- else
- {
- SLOT->eg_sh_ar = 0;
- SLOT->eg_sel_ar = 13*RATE_STEPS;
+ /* frequency base */
+ OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0;
+ /* Timer base time */
+ OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
+ /* make time tables */
+ init_timetables(OPL, OPL_ARRATE, OPL_DRRATE);
+ /* make fnumber -> increment counter table */
+ for( fn=0; fn < 1024; fn++) {
+ OPL->FN_TABLE[fn] = (uint)(OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2);
}
-
- SLOT->dr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
- SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ];
- SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ];
+ /* LFO freq.table */
+ OPL->amsIncr = (int)(OPL->rate ? (double)AMS_ENT * (1 << AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0);
+ OPL->vibIncr = (int)(OPL->rate ? (double)VIB_ENT * (1 << VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0);
}
-/* set sustain level & release rate */
-INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v)
-{
- OPL_CH *CH = &OPL->P_CH[slot/2];
- OPL_SLOT *SLOT = &CH->SLOT[slot&1];
-
- SLOT->sl = sl_tab[ v>>4 ];
-
- SLOT->rr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
- SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ];
- SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ];
-}
-
-
-/* write a value v to register r on OPL chip */
-static void OPLWriteReg(FM_OPL *OPL, int r, int v)
-{
+/* ---------- write a OPL registers ---------- */
+void OPLWriteReg(FM_OPL *OPL, int r, int v) {
OPL_CH *CH;
int slot;
- UINT32 block_fnum;
-
-
- /* adjust bus to 8 bits */
- r &= 0xff;
- v &= 0xff;
-
-#ifdef LOG_CYM_FILE
- if ((cymfile) && (r!=0) )
- {
- fputc( (unsigned char)r, cymfile );
- fputc( (unsigned char)v, cymfile );
- }
-#endif
-
-
- switch(r&0xe0)
- {
- case 0x00: /* 00-1f:control */
- switch(r&0x1f)
- {
- case 0x01: /* waveform select enable */
- if(OPL->type&OPL_TYPE_WAVESEL)
- {
- OPL->wavesel = v&0x20;
- /* do not change the waveform previously selected */
+ uint block_fnum;
+
+ switch(r & 0xe0) {
+ case 0x00: /* 00-1f:controll */
+ switch(r & 0x1f) {
+ case 0x01:
+ /* wave selector enable */
+ if(OPL->type&OPL_TYPE_WAVESEL) {
+ OPL->wavesel = v & 0x20;
+ if(!OPL->wavesel) {
+ /* preset compatible mode */
+ int c;
+ for(c=0; c<OPL->max_ch; c++) {
+ OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
+ OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
+ }
+ }
}
- break;
+ return;
case 0x02: /* Timer 1 */
- OPL->T[0] = (256-v)*4;
+ OPL->T[0] = (256-v) * 4;
break;
case 0x03: /* Timer 2 */
- OPL->T[1] = (256-v)*16;
- break;
+ OPL->T[1] = (256-v) * 16;
+ return;
case 0x04: /* IRQ clear / mask and Timer enable */
- if(v&0x80)
- { /* IRQ flag clear */
- OPL_STATUS_RESET(OPL,0x7f);
+ if(v & 0x80) { /* IRQ flag clear */
+ OPL_STATUS_RESET(OPL, 0x7f);
}
- else
- { /* set IRQ mask ,timer enable*/
- UINT8 st1 = v&1;
- UINT8 st2 = (v>>1)&1;
+ else { /* set IRQ mask ,timer enable*/
+ uint8 st1 = v & 1;
+ uint8 st2 = (v >> 1) & 1;
/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
- OPL_STATUS_RESET(OPL,v&0x78);
- OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
+ OPL_STATUS_RESET(OPL, v & 0x78);
+ OPL_STATUSMASK_SET(OPL,((~v) & 0x78) | 0x01);
/* timer 2 */
- if(OPL->st[1] != st2)
- {
- double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
+ if(OPL->st[1] != st2) {
+ double interval = st2 ? (double)OPL->T[1] * OPL->TimerBase : 0.0;
OPL->st[1] = st2;
- if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
+ if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam + 1, interval);
}
/* timer 1 */
- if(OPL->st[0] != st1)
- {
- double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
+ if(OPL->st[0] != st1) {
+ double interval = st1 ? (double)OPL->T[0] * OPL->TimerBase : 0.0;
OPL->st[0] = st1;
- if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
+ if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam + 0, interval);
}
}
- break;
-#if BUILD_Y8950
- case 0x06: /* Key Board OUT */
- if(OPL->type&OPL_TYPE_KEYBOARD)
- {
- if(OPL->keyboardhandler_w)
- OPL->keyboardhandler_w(OPL->keyboard_param,v);
- else
- logerror("OPL:write unmapped KEYBOARD port\n");
- }
- break;
- case 0x07: /* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
- if(OPL->type&OPL_TYPE_ADPCM)
- YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
- break;
-#endif
- case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
- OPL->mode = v;
-#if !(BUILD_Y8950)
- break;
-#endif
-
-#if BUILD_Y8950
- v&=0x1f; /* for DELTA-T unit */
- case 0x09: /* START ADD */
- case 0x0a:
- case 0x0b: /* STOP ADD */
- case 0x0c:
- case 0x0d: /* PRESCALE */
- case 0x0e:
- case 0x0f: /* ADPCM data */
- case 0x10: /* DELTA-N */
- case 0x11: /* DELTA-N */
- case 0x12: /* EG-CTRL */
- if(OPL->type&OPL_TYPE_ADPCM)
- YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
- break;
-#if 0
- case 0x15: /* DAC data */
- case 0x16:
- case 0x17: /* SHIFT */
- break;
- case 0x18: /* I/O CTRL (Direction) */
- if(OPL->type&OPL_TYPE_IO)
- OPL->portDirection = v&0x0f;
- break;
- case 0x19: /* I/O DATA */
- if(OPL->type&OPL_TYPE_IO)
- {
- OPL->portLatch = v;
- if(OPL->porthandler_w)
- OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
- }
- break;
- case 0x1a: /* PCM data */
- break;
-#endif
-#endif
+ return;
}
break;
- case 0x20: /* am ON, vib ON, ksr, eg_type, mul */
+ case 0x20: /* am,vib,ksr,eg type,mul */
slot = slot_array[r&0x1f];
- if(slot < 0) return;
+ if(slot == -1)
+ return;
set_mul(OPL,slot,v);
- break;
+ return;
case 0x40:
slot = slot_array[r&0x1f];
- if(slot < 0) return;
+ if(slot == -1)
+ return;
set_ksl_tl(OPL,slot,v);
- break;
+ return;
case 0x60:
slot = slot_array[r&0x1f];
- if(slot < 0) return;
+ if(slot == -1)
+ return;
set_ar_dr(OPL,slot,v);
- break;
+ return;
case 0x80:
slot = slot_array[r&0x1f];
- if(slot < 0) return;
+ if(slot == -1)
+ return;
set_sl_rr(OPL,slot,v);
- break;
+ return;
case 0xa0:
- if (r == 0xbd) /* am depth, vibrato depth, r,bd,sd,tom,tc,hh */
- {
- OPL->lfo_am_depth = v & 0x80;
- OPL->lfo_pm_depth_range = (v&0x40) ? 8 : 0;
-
- OPL->rhythm = v&0x3f;
-
- if(OPL->rhythm&0x20)
+ switch(r) {
+ case 0xbd:
+ /* amsep,vibdep,r,bd,sd,tom,tc,hh */
{
+ uint8 rkey = OPL->rythm ^ v;
+ OPL->ams_table = &AMS_TABLE[v & 0x80 ? AMS_ENT : 0];
+ OPL->vib_table = &VIB_TABLE[v & 0x40 ? VIB_ENT : 0];
+ OPL->rythm = v & 0x3f;
+ if(OPL->rythm & 0x20) {
/* BD key on/off */
- if(v&0x10)
- {
- FM_KEYON (&OPL->P_CH[6].SLOT[SLOT1], 2);
- FM_KEYON (&OPL->P_CH[6].SLOT[SLOT2], 2);
- }
- else
- {
- FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1],~2);
- FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2],~2);
+ if(rkey & 0x10) {
+ if(v & 0x10) {
+ OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
+ OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
+ OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
+ }
+ else {
+ OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
+ OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
+ }
}
- /* HH key on/off */
- if(v&0x01) FM_KEYON (&OPL->P_CH[7].SLOT[SLOT1], 2);
- else FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1],~2);
/* SD key on/off */
- if(v&0x08) FM_KEYON (&OPL->P_CH[7].SLOT[SLOT2], 2);
- else FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2],~2);
- /* TOM key on/off */
- if(v&0x04) FM_KEYON (&OPL->P_CH[8].SLOT[SLOT1], 2);
- else FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1],~2);
+ if(rkey & 0x08) {
+ if(v & 0x08)
+ OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
+ else
+ OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
+ }/* TAM key on/off */
+ if(rkey & 0x04) {
+ if(v & 0x04)
+ OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
+ else
+ OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
+ }
/* TOP-CY key on/off */
- if(v&0x02) FM_KEYON (&OPL->P_CH[8].SLOT[SLOT2], 2);
- else FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2],~2);
+ if(rkey & 0x02) {
+ if(v & 0x02)
+ OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
+ else
+ OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
+ }
+ /* HH key on/off */
+ if(rkey & 0x01) {
+ if(v & 0x01)
+ OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
+ else
+ OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
+ }
}
- else
- {
- /* BD key off */
- FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1],~2);
- FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2],~2);
- /* HH key off */
- FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1],~2);
- /* SD key off */
- FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2],~2);
- /* TOM key off */
- FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1],~2);
- /* TOP-CY off */
- FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2],~2);
}
return;
}
/* keyon,block,fnum */
- if( (r&0x0f) > 8) return;
- CH = &OPL->P_CH[r&0x0f];
- if(!(r&0x10))
- { /* a0-a8 */
- block_fnum = (CH->block_fnum&0x1f00) | v;
+ if((r & 0x0f) > 8)
+ return;
+ CH = &OPL->P_CH[r & 0x0f];
+ if(!(r&0x10)) { /* a0-a8 */
+ block_fnum = (CH->block_fnum & 0x1f00) | v;
}
- else
- { /* b0-b8 */
- block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
-
- if(v&0x20)
- {
- FM_KEYON (&CH->SLOT[SLOT1], 1);
- FM_KEYON (&CH->SLOT[SLOT2], 1);
- }
- else
- {
- FM_KEYOFF(&CH->SLOT[SLOT1],~1);
- FM_KEYOFF(&CH->SLOT[SLOT2],~1);
+ else { /* b0-b8 */
+ int keyon = (v >> 5) & 1;
+ block_fnum = ((v & 0x1f) << 8) | (CH->block_fnum & 0xff);
+ if(CH->keyon != keyon) {
+ if((CH->keyon=keyon)) {
+ CH->op1_out[0] = CH->op1_out[1] = 0;
+ OPL_KEYON(&CH->SLOT[SLOT1]);
+ OPL_KEYON(&CH->SLOT[SLOT2]);
+ }
+ else {
+ OPL_KEYOFF(&CH->SLOT[SLOT1]);
+ OPL_KEYOFF(&CH->SLOT[SLOT2]);
+ }
}
}
/* update */
- if(CH->block_fnum != block_fnum)
- {
- UINT8 block = block_fnum >> 10;
-
+ if(CH->block_fnum != block_fnum) {
+ int blockRv = 7 - (block_fnum >> 10);
+ int fnum = block_fnum & 0x3ff;
CH->block_fnum = block_fnum;
-
- CH->ksl_base = ksl_tab[block_fnum>>6];
- CH->fc = OPL->fn_tab[block_fnum&0x03ff] >> (7-block);
-
- /* BLK 2,1,0 bits -> bits 3,2,1 of kcode */
- CH->kcode = (CH->block_fnum&0x1c00)>>9;
-
- /* the info below is actually opposite to what is stated in the Manuals (verifed on real YM3812) */
- /* if notesel == 0 -> lsb of kcode is bit 10 (MSB) of fnum */
- /* if notesel == 1 -> lsb of kcode is bit 9 (MSB-1) of fnum */
- if (OPL->mode&0x40)
- CH->kcode |= (CH->block_fnum&0x100)>>8; /* notesel == 1 */
- else
- CH->kcode |= (CH->block_fnum&0x200)>>9; /* notesel == 0 */
-
- /* refresh Total Level in both SLOTs of this channel */
- CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl);
- CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl);
-
- /* refresh frequency counter in both SLOTs of this channel */
+ CH->ksl_base = KSL_TABLE[block_fnum >> 6];
+ CH->fc = OPL->FN_TABLE[fnum] >> blockRv;
+ CH->kcode = CH->block_fnum >> 9;
+ if((OPL->mode & 0x40) && CH->block_fnum & 0x100)
+ CH->kcode |=1;
CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
}
- break;
+ return;
case 0xc0:
/* FB,C */
- if( (r&0x0f) > 8) return;
+ if((r & 0x0f) > 8)
+ return;
CH = &OPL->P_CH[r&0x0f];
- CH->SLOT[SLOT1].FB = (v>>1)&7 ? ((v>>1)&7) + 7 : 0;
- CH->SLOT[SLOT1].CON = v&1;
- CH->SLOT[SLOT1].connect1 = CH->SLOT[SLOT1].CON ? &output[0] : &phase_modulation;
- break;
- case 0xe0: /* waveform select */
- /* simply ignore write to the waveform select register if selecting not enabled in test register */
- if(OPL->wavesel)
{
- slot = slot_array[r&0x1f];
- if(slot < 0) return;
- CH = &OPL->P_CH[slot/2];
-
- CH->SLOT[slot&1].wavetable = (v&0x03)*SIN_LEN;
+ int feedback = (v >> 1) & 7;
+ CH->FB = feedback ? (8 + 1) - feedback : 0;
+ CH->CON = v & 1;
+ set_algorythm(CH);
}
- break;
- }
-}
-
-#ifdef LOG_CYM_FILE
-static void cymfile_callback (int n)
-{
- if (cymfile)
- {
- fputc( (unsigned char)0, cymfile );
+ return;
+ case 0xe0: /* wave type */
+ slot = slot_array[r & 0x1f];
+ if(slot == -1)
+ return;
+ CH = &OPL->P_CH[slot / 2];
+ if(OPL->wavesel) {
+ CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v & 0x03) * SIN_ENT];
+ }
+ return;
}
}
-#endif
/* lock/unlock for common table */
static int OPL_LockTable(void)
{
num_lock++;
- if(num_lock>1) return 0;
-
+ if(num_lock>1)
+ return 0;
/* first time */
-
cur_chip = NULL;
/* allocate total level table (128kb space) */
- if( !init_tables() )
- {
+ if(!OPLOpenTable()) {
num_lock--;
return -1;
}
-
-#ifdef LOG_CYM_FILE
- cymfile = fopen("3812_.cym","wb");
- if (cymfile)
- timer_pulse ( TIME_IN_HZ(110), 0, cymfile_callback); /*110 Hz pulse timer*/
- else
- logerror("Could not create file 3812_.cym\n");
-#endif
-
return 0;
}
-static void OPL_UnLockTable(void)
-{
- if(num_lock) num_lock--;
- if(num_lock) return;
-
+static void OPL_UnLockTable(void) {
+ if(num_lock)
+ num_lock--;
+ if(num_lock)
+ return;
/* last time */
-
cur_chip = NULL;
OPLCloseTable();
+}
-#ifdef LOG_CYM_FILE
- fclose (cymfile);
- cymfile = NULL;
-#endif
+/*******************************************************************************/
+/* YM3812 local section */
+/*******************************************************************************/
+/* ---------- update one of chip ----------- */
+void YM3812UpdateOne(FM_OPL *OPL, int16 *buffer, int length) {
+ int i;
+ int data;
+ int16 *buf = buffer;
+ uint amsCnt = OPL->amsCnt;
+ uint vibCnt = OPL->vibCnt;
+ uint8 rythm = OPL->rythm & 0x20;
+ OPL_CH *CH, *R_CH;
+
+ if((void *)OPL != cur_chip){
+ cur_chip = (void *)OPL;
+ /* channel pointers */
+ S_CH = OPL->P_CH;
+ E_CH = &S_CH[9];
+ /* rythm slot */
+ SLOT7_1 = &S_CH[7].SLOT[SLOT1];
+ SLOT7_2 = &S_CH[7].SLOT[SLOT2];
+ SLOT8_1 = &S_CH[8].SLOT[SLOT1];
+ SLOT8_2 = &S_CH[8].SLOT[SLOT2];
+ /* LFO state */
+ amsIncr = OPL->amsIncr;
+ vibIncr = OPL->vibIncr;
+ ams_table = OPL->ams_table;
+ vib_table = OPL->vib_table;
+ }
+ R_CH = rythm ? &S_CH[6] : E_CH;
+ for(i = 0; i < length; i++) {
+ /* channel A channel B channel C */
+ /* LFO */
+ ams = ams_table[(amsCnt += amsIncr) >> AMS_SHIFT];
+ vib = vib_table[(vibCnt += vibIncr) >> VIB_SHIFT];
+ outd[0] = 0;
+ /* FM part */
+ for(CH=S_CH; CH < R_CH; CH++)
+ OPL_CALC_CH(CH);
+ /* Rythn part */
+ if(rythm)
+ OPL_CALC_RH(S_CH);
+ /* limit check */
+ data = Limit(outd[0], OPL_MAXOUT, OPL_MINOUT);
+ /* store to sound buffer */
+ buf[i] = data >> OPL_OUTSB;
+ }
+
+ OPL->amsCnt = amsCnt;
+ OPL->vibCnt = vibCnt;
}
-static void OPLResetChip(FM_OPL *OPL)
-{
+/* ---------- reset a chip ---------- */
+void OPLResetChip(FM_OPL *OPL) {
int c,s;
int i;
- OPL->eg_timer = 0;
- OPL->eg_cnt = 0;
-
- OPL->noise_rng = 1; /* noise shift register */
- OPL->mode = 0; /* normal mode */
- OPL_STATUS_RESET(OPL,0x7f);
-
+ /* reset chip */
+ OPL->mode = 0; /* normal mode */
+ OPL_STATUS_RESET(OPL, 0x7f);
/* reset with register write */
- OPLWriteReg(OPL,0x01,0); /* wavesel disable */
- OPLWriteReg(OPL,0x02,0); /* Timer1 */
- OPLWriteReg(OPL,0x03,0); /* Timer2 */
- OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
- for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
-
- /* reset operator parameters */
- for( c = 0 ; c < 9 ; c++ )
- {
+ OPLWriteReg(OPL, 0x01,0); /* wabesel disable */
+ OPLWriteReg(OPL, 0x02,0); /* Timer1 */
+ OPLWriteReg(OPL, 0x03,0); /* Timer2 */
+ OPLWriteReg(OPL, 0x04,0); /* IRQ mask clear */
+ for(i = 0xff; i >= 0x20; i--)
+ OPLWriteReg(OPL,i,0);
+ /* reset OPerator paramater */
+ for(c = 0; c < OPL->max_ch ;c++ ) {
OPL_CH *CH = &OPL->P_CH[c];
- for(s = 0 ; s < 2 ; s++ )
- {
+ /* OPL->P_CH[c].PAN = OPN_CENTER; */
+ for(s = 0; s < 2; s++ ) {
/* wave table */
- CH->SLOT[s].wavetable = 0;
- CH->SLOT[s].state = EG_OFF;
- CH->SLOT[s].volume = MAX_ATT_INDEX;
+ CH->SLOT[s].wavetable = &SIN_TABLE[0];
+ /* CH->SLOT[s].evm = ENV_MOD_RR; */
+ CH->SLOT[s].evc = EG_OFF;
+ CH->SLOT[s].eve = EG_OFF + 1;
+ CH->SLOT[s].evs = 0;
}
}
-#if BUILD_Y8950
- if(OPL->type&OPL_TYPE_ADPCM)
- {
- YM_DELTAT *DELTAT = OPL->deltat;
-
- DELTAT->freqbase = OPL->freqbase;
- DELTAT->output_pointer = &output_deltat[0];
- DELTAT->portshift = 5;
- DELTAT->output_range = 1<<23;
- YM_DELTAT_ADPCM_Reset(DELTAT,0);
- }
-#endif
}
-/* Create one of virtual YM3812 */
-/* 'clock' is chip clock in Hz */
-/* 'rate' is sampling rate */
-static FM_OPL *OPLCreate(int type, int clock, int rate)
-{
+/* ---------- Create a virtual YM3812 ---------- */
+/* 'rate' is sampling rate and 'bufsiz' is the size of the */
+FM_OPL *OPLCreate(int type, int clock, int rate) {
char *ptr;
FM_OPL *OPL;
int state_size;
+ int max_ch = 9; /* normaly 9 channels */
- if (OPL_LockTable() ==-1) return NULL;
-
- /* calculate OPL state size */
+ if( OPL_LockTable() == -1)
+ return NULL;
+ /* allocate OPL state space */
state_size = sizeof(FM_OPL);
-
-#if BUILD_Y8950
- if (type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
-#endif
+ state_size += sizeof(OPL_CH) * max_ch;
/* allocate memory block */
- ptr = (char *)malloc(state_size);
-
- if (ptr==NULL)
+ ptr = (char *)calloc(state_size, 1);
+ if(ptr == NULL)
return NULL;
/* clear */
- memset(ptr,0,state_size);
-
- OPL = (FM_OPL *)ptr;
-
- ptr += sizeof(FM_OPL);
-
-#if BUILD_Y8950
- if (type&OPL_TYPE_ADPCM)
- OPL->deltat = (YM_DELTAT *)ptr;
- ptr += sizeof(YM_DELTAT);
-#endif
+ memset(ptr, 0, state_size);
+ OPL = (FM_OPL *)ptr; ptr += sizeof(FM_OPL);
+ OPL->P_CH = (OPL_CH *)ptr; ptr += sizeof(OPL_CH) * max_ch;
+ /* set channel state pointer */
OPL->type = type;
OPL->clock = clock;
OPL->rate = rate;
+ OPL->max_ch = max_ch;
- /* init global tables */
+ /* init grobal tables */
OPL_initalize(OPL);
/* reset chip */
@@ -1834,602 +1048,76 @@ static FM_OPL *OPLCreate(int type, int clock, int rate)
return OPL;
}
-/* Destroy one of virtual YM3812 */
-static void OPLDestroy(FM_OPL *OPL)
-{
+/* ---------- Destroy one of vietual YM3812 ---------- */
+void OPLDestroy(FM_OPL *OPL) {
OPL_UnLockTable();
free(OPL);
}
-/* Option handlers */
+/* ---------- Option handlers ---------- */
-static void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
-{
+void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler,int channelOffset) {
OPL->TimerHandler = TimerHandler;
OPL->TimerParam = channelOffset;
}
-static void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
-{
+
+void OPLSetIRQHandler(FM_OPL *OPL, OPL_IRQHANDLER IRQHandler, int param) {
OPL->IRQHandler = IRQHandler;
OPL->IRQParam = param;
}
-static void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
-{
+void OPLSetUpdateHandler(FM_OPL *OPL, OPL_UPDATEHANDLER UpdateHandler,int param) {
OPL->UpdateHandler = UpdateHandler;
OPL->UpdateParam = param;
}
-/* YM3812 I/O interface */
-static int OPLWrite(FM_OPL *OPL,int a,int v)
-{
- if( !(a&1) )
- { /* address port */
+/* ---------- YM3812 I/O interface ---------- */
+int OPLWrite(FM_OPL *OPL,int a,int v) {
+ if(!(a & 1)) { /* address port */
OPL->address = v & 0xff;
}
- else
- { /* data port */
- if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
- OPLWriteReg(OPL,OPL->address,v);
+ else { /* data port */
+ if(OPL->UpdateHandler)
+ OPL->UpdateHandler(OPL->UpdateParam,0);
+ OPLWriteReg(OPL, OPL->address,v);
}
- return OPL->status>>7;
+ return OPL->status >> 7;
}
-static unsigned char OPLRead(FM_OPL *OPL,int a)
-{
- if( !(a&1) )
- {
- /* status port */
- return OPL->status & (OPL->statusmask|0x80);
+unsigned char OPLRead(FM_OPL *OPL,int a) {
+ if(!(a & 1)) { /* status port */
+ return OPL->status & (OPL->statusmask | 0x80);
}
-
-#if BUILD_Y8950
/* data port */
- switch(OPL->address)
- {
+ switch(OPL->address) {
case 0x05: /* KeyBoard IN */
- if(OPL->type&OPL_TYPE_KEYBOARD)
- {
- if(OPL->keyboardhandler_r)
- return OPL->keyboardhandler_r(OPL->keyboard_param);
- else
- logerror("OPL:read unmapped KEYBOARD port\n");
- }
+ warning("OPL:read unmapped KEYBOARD port\n");
return 0;
-#if 0
- case 0x0f: /* ADPCM-DATA */
- return 0;
-#endif
case 0x19: /* I/O DATA */
- if(OPL->type&OPL_TYPE_IO)
- {
- if(OPL->porthandler_r)
- return OPL->porthandler_r(OPL->port_param);
- else
- logerror("OPL:read unmapped I/O port\n");
- }
+ warning("OPL:read unmapped I/O port\n");
return 0;
case 0x1a: /* PCM-DATA */
return 0;
}
-#endif
-
- return 0xff;
-}
-
-/* CSM Key Controll */
-INLINE void CSMKeyControll(OPL_CH *CH)
-{
- FM_KEYON (&CH->SLOT[SLOT1], 4);
- FM_KEYON (&CH->SLOT[SLOT2], 4);
-
- /* The key off should happen exactly one sample later - not implemented correctly yet */
-
- FM_KEYOFF(&CH->SLOT[SLOT1], ~4);
- FM_KEYOFF(&CH->SLOT[SLOT2], ~4);
+ return 0;
}
-
-static int OPLTimerOver(FM_OPL *OPL,int c)
-{
- if( c )
- { /* Timer B */
- OPL_STATUS_SET(OPL,0x20);
+int OPLTimerOver(FM_OPL *OPL, int c) {
+ if(c) { /* Timer B */
+ OPL_STATUS_SET(OPL, 0x20);
}
- else
- { /* Timer A */
- OPL_STATUS_SET(OPL,0x40);
+ else { /* Timer A */
+ OPL_STATUS_SET(OPL, 0x40);
/* CSM mode key,TL controll */
- if( OPL->mode & 0x80 )
- { /* CSM mode total level latch and auto key on */
+ if(OPL->mode & 0x80) { /* CSM mode total level latch and auto key on */
int ch;
- if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
- for(ch=0; ch<9; ch++)
- CSMKeyControll( &OPL->P_CH[ch] );
+ if(OPL->UpdateHandler)
+ OPL->UpdateHandler(OPL->UpdateParam,0);
+ for(ch = 0; ch < 9; ch++)
+ CSMKeyControll(&OPL->P_CH[ch]);
}
}
/* reload timer */
- if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
- return OPL->status>>7;
-}
-
-
-#define MAX_OPL_CHIPS 2
-
-
-#if (BUILD_YM3812)
-
-static FM_OPL *OPL_YM3812[MAX_OPL_CHIPS]; /* array of pointers to the YM3812's */
-static int YM3812NumChips = 0; /* number of chips */
-
-int YM3812Init(int num, int clock, int rate)
-{
- int i;
-
- if (YM3812NumChips)
- return -1; /* duplicate init. */
-
- YM3812NumChips = num;
-
- for (i = 0;i < YM3812NumChips; i++)
- {
- /* emulator create */
- OPL_YM3812[i] = OPLCreate(OPL_TYPE_YM3812,clock,rate);
- if(OPL_YM3812[i] == NULL)
- {
- /* it's really bad - we run out of memeory */
- YM3812NumChips = 0;
- return -1;
- }
- }
-
- return 0;
-}
-
-void YM3812Shutdown(void)
-{
- int i;
-
- for (i = 0;i < YM3812NumChips; i++)
- {
- /* emulator shutdown */
- OPLDestroy(OPL_YM3812[i]);
- OPL_YM3812[i] = NULL;
- }
- YM3812NumChips = 0;
-}
-void YM3812ResetChip(int which)
-{
- OPLResetChip(OPL_YM3812[which]);
-}
-
-int YM3812Write(int which, int a, int v)
-{
- return OPLWrite(OPL_YM3812[which], a, v);
-}
-
-unsigned char YM3812Read(int which, int a)
-{
- /* YM3812 always returns bit2 and bit1 in HIGH state */
- return OPLRead(OPL_YM3812[which], a) | 0x06 ;
-}
-int YM3812TimerOver(int which, int c)
-{
- return OPLTimerOver(OPL_YM3812[which], c);
-}
-
-void YM3812SetTimerHandler(int which, OPL_TIMERHANDLER TimerHandler, int channelOffset)
-{
- OPLSetTimerHandler(OPL_YM3812[which], TimerHandler, channelOffset);
-}
-void YM3812SetIRQHandler(int which,OPL_IRQHANDLER IRQHandler,int param)
-{
- OPLSetIRQHandler(OPL_YM3812[which], IRQHandler, param);
-}
-void YM3812SetUpdateHandler(int which,OPL_UPDATEHANDLER UpdateHandler,int param)
-{
- OPLSetUpdateHandler(OPL_YM3812[which], UpdateHandler, param);
+ if (OPL->TimerHandler)
+ (OPL->TimerHandler)(OPL->TimerParam + c, (double)OPL->T[c] * OPL->TimerBase);
+ return OPL->status >> 7;
}
-
-
-/*
-** Generate samples for one of the YM3812's
-**
-** 'which' is the virtual YM3812 number
-** '*buffer' is the output buffer pointer
-** 'length' is the number of samples that should be generated
-*/
-void YM3812UpdateOne(int which, INT16 *buffer, int length)
-{
- FM_OPL *OPL = OPL_YM3812[which];
- UINT8 rhythm = OPL->rhythm&0x20;
- OPLSAMPLE *buf = buffer;
- int i;
-
- if( (void *)OPL != cur_chip ){
- cur_chip = (void *)OPL;
- /* rhythm slots */
- SLOT7_1 = &OPL->P_CH[7].SLOT[SLOT1];
- SLOT7_2 = &OPL->P_CH[7].SLOT[SLOT2];
- SLOT8_1 = &OPL->P_CH[8].SLOT[SLOT1];
- SLOT8_2 = &OPL->P_CH[8].SLOT[SLOT2];
- }
- for( i=0; i < length ; i++ )
- {
- int lt;
-
- output[0] = 0;
-
- advance_lfo(OPL);
-
- /* FM part */
- OPL_CALC_CH(&OPL->P_CH[0]);
- OPL_CALC_CH(&OPL->P_CH[1]);
- OPL_CALC_CH(&OPL->P_CH[2]);
- OPL_CALC_CH(&OPL->P_CH[3]);
- OPL_CALC_CH(&OPL->P_CH[4]);
- OPL_CALC_CH(&OPL->P_CH[5]);
-
- if(!rhythm)
- {
- OPL_CALC_CH(&OPL->P_CH[6]);
- OPL_CALC_CH(&OPL->P_CH[7]);
- OPL_CALC_CH(&OPL->P_CH[8]);
- }
- else /* Rhythm part */
- {
- OPL_CALC_RH(&OPL->P_CH[0], (OPL->noise_rng>>0)&1 );
- }
-
- lt = output[0];
-
- lt >>= FINAL_SH;
-
- /* limit check */
- lt = limit( lt , MAXOUT, MINOUT );
-
- #ifdef SAVE_SAMPLE
- SAVE_ALL_CHANNELS
- #endif
-
- /* store to sound buffer */
- buf[i] = lt;
-
- advancex(OPL);
- }
-
-}
-#endif /* BUILD_YM3812 */
-
-
-
-#if (BUILD_YM3526)
-
-static FM_OPL *OPL_YM3526[MAX_OPL_CHIPS]; /* array of pointers to the YM3526's */
-static int YM3526NumChips = 0; /* number of chips */
-
-int YM3526Init(int num, int clock, int rate)
-{
- int i;
-
- if (YM3526NumChips)
- return -1; /* duplicate init. */
-
- YM3526NumChips = num;
-
- for (i = 0;i < YM3526NumChips; i++)
- {
- /* emulator create */
- OPL_YM3526[i] = OPLCreate(OPL_TYPE_YM3526,clock,rate);
- if(OPL_YM3526[i] == NULL)
- {
- /* it's really bad - we run out of memeory */
- YM3526NumChips = 0;
- return -1;
- }
- }
-
- return 0;
-}
-
-void YM3526Shutdown(void)
-{
- int i;
-
- for (i = 0;i < YM3526NumChips; i++)
- {
- /* emulator shutdown */
- OPLDestroy(OPL_YM3526[i]);
- OPL_YM3526[i] = NULL;
- }
- YM3526NumChips = 0;
-}
-void YM3526ResetChip(int which)
-{
- OPLResetChip(OPL_YM3526[which]);
-}
-
-int YM3526Write(int which, int a, int v)
-{
- return OPLWrite(OPL_YM3526[which], a, v);
-}
-
-unsigned char YM3526Read(int which, int a)
-{
- return OPLRead(OPL_YM3526[which], a);
-}
-int YM3526TimerOver(int which, int c)
-{
- return OPLTimerOver(OPL_YM3526[which], c);
-}
-
-void YM3526SetTimerHandler(int which, OPL_TIMERHANDLER TimerHandler, int channelOffset)
-{
- OPLSetTimerHandler(OPL_YM3526[which], TimerHandler, channelOffset);
-}
-void YM3526SetIRQHandler(int which,OPL_IRQHANDLER IRQHandler,int param)
-{
- OPLSetIRQHandler(OPL_YM3526[which], IRQHandler, param);
-}
-void YM3526SetUpdateHandler(int which,OPL_UPDATEHANDLER UpdateHandler,int param)
-{
- OPLSetUpdateHandler(OPL_YM3526[which], UpdateHandler, param);
-}
-
-
-/*
-** Generate samples for one of the YM3526's
-**
-** 'which' is the virtual YM3526 number
-** '*buffer' is the output buffer pointer
-** 'length' is the number of samples that should be generated
-*/
-void YM3526UpdateOne(int which, INT16 *buffer, int length)
-{
- FM_OPL *OPL = OPL_YM3526[which];
- UINT8 rhythm = OPL->rhythm&0x20;
- OPLSAMPLE *buf = buffer;
- int i;
-
- if( (void *)OPL != cur_chip ){
- cur_chip = (void *)OPL;
- /* rhythm slots */
- SLOT7_1 = &OPL->P_CH[7].SLOT[SLOT1];
- SLOT7_2 = &OPL->P_CH[7].SLOT[SLOT2];
- SLOT8_1 = &OPL->P_CH[8].SLOT[SLOT1];
- SLOT8_2 = &OPL->P_CH[8].SLOT[SLOT2];
- }
- for( i=0; i < length ; i++ )
- {
- int lt;
-
- output[0] = 0;
-
- advance_lfo(OPL);
-
- /* FM part */
- OPL_CALC_CH(&OPL->P_CH[0]);
- OPL_CALC_CH(&OPL->P_CH[1]);
- OPL_CALC_CH(&OPL->P_CH[2]);
- OPL_CALC_CH(&OPL->P_CH[3]);
- OPL_CALC_CH(&OPL->P_CH[4]);
- OPL_CALC_CH(&OPL->P_CH[5]);
-
- if(!rhythm)
- {
- OPL_CALC_CH(&OPL->P_CH[6]);
- OPL_CALC_CH(&OPL->P_CH[7]);
- OPL_CALC_CH(&OPL->P_CH[8]);
- }
- else /* Rhythm part */
- {
- OPL_CALC_RH(&OPL->P_CH[0], (OPL->noise_rng>>0)&1 );
- }
-
- lt = output[0];
-
- lt >>= FINAL_SH;
-
- /* limit check */
- lt = limit( lt , MAXOUT, MINOUT );
-
- #ifdef SAVE_SAMPLE
- SAVE_ALL_CHANNELS
- #endif
-
- /* store to sound buffer */
- buf[i] = lt;
-
- advance(OPL);
- }
-
-}
-#endif /* BUILD_YM3526 */
-
-
-
-
-#if BUILD_Y8950
-
-static FM_OPL *OPL_Y8950[MAX_OPL_CHIPS]; /* array of pointers to the Y8950's */
-static int Y8950NumChips = 0; /* number of chips */
-
-int Y8950Init(int num, int clock, int rate)
-{
- int i;
-
- if (Y8950NumChips)
- return -1; /* duplicate init. */
-
- Y8950NumChips = num;
-
- for (i = 0;i < Y8950NumChips; i++)
- {
- /* emulator create */
- OPL_Y8950[i] = OPLCreate(OPL_TYPE_Y8950,clock,rate);
- if(OPL_Y8950[i] == NULL)
- {
- /* it's really bad - we run out of memeory */
- Y8950NumChips = 0;
- return -1;
- }
- }
-
- return 0;
-}
-
-void Y8950Shutdown(void)
-{
- int i;
-
- for (i = 0;i < Y8950NumChips; i++)
- {
- /* emulator shutdown */
- OPLDestroy(OPL_Y8950[i]);
- OPL_Y8950[i] = NULL;
- }
- Y8950NumChips = 0;
-}
-void Y8950ResetChip(int which)
-{
- OPLResetChip(OPL_Y8950[which]);
-}
-
-int Y8950Write(int which, int a, int v)
-{
- return OPLWrite(OPL_Y8950[which], a, v);
-}
-
-unsigned char Y8950Read(int which, int a)
-{
- return OPLRead(OPL_Y8950[which], a);
-}
-int Y8950TimerOver(int which, int c)
-{
- return OPLTimerOver(OPL_Y8950[which], c);
-}
-
-void Y8950SetTimerHandler(int which, OPL_TIMERHANDLER TimerHandler, int channelOffset)
-{
- OPLSetTimerHandler(OPL_Y8950[which], TimerHandler, channelOffset);
-}
-void Y8950SetIRQHandler(int which,OPL_IRQHANDLER IRQHandler,int param)
-{
- OPLSetIRQHandler(OPL_Y8950[which], IRQHandler, param);
-}
-void Y8950SetUpdateHandler(int which,OPL_UPDATEHANDLER UpdateHandler,int param)
-{
- OPLSetUpdateHandler(OPL_Y8950[which], UpdateHandler, param);
-}
-
-void Y8950SetDeltaTMemory(int which, void * deltat_rom, int deltat_rom_size )
-{
- FM_OPL *OPL = OPL_Y8950[which];
- OPL->deltat->memory = (UINT8 *)(deltat_rom);
- OPL->deltat->memory_size = deltat_rom_size;
-}
-
-/*
-** Generate samples for one of the Y8950's
-**
-** 'which' is the virtual Y8950 number
-** '*buffer' is the output buffer pointer
-** 'length' is the number of samples that should be generated
-*/
-void Y8950UpdateOne(int which, INT16 *buffer, int length)
-{
- int i;
- FM_OPL *OPL = OPL_Y8950[which];
- UINT8 rhythm = OPL->rhythm&0x20;
- YM_DELTAT *DELTAT = OPL->deltat;
- OPLSAMPLE *buf = buffer;
-
- /* setup DELTA-T unit */
- YM_DELTAT_DECODE_PRESET(DELTAT);
-
- if( (void *)OPL != cur_chip ){
- cur_chip = (void *)OPL;
- /* rhythm slots */
- SLOT7_1 = &OPL->P_CH[7].SLOT[SLOT1];
- SLOT7_2 = &OPL->P_CH[7].SLOT[SLOT2];
- SLOT8_1 = &OPL->P_CH[8].SLOT[SLOT1];
- SLOT8_2 = &OPL->P_CH[8].SLOT[SLOT2];
-
- }
- for( i=0; i < length ; i++ )
- {
- int lt;
-
- output[0] = 0;
- output_deltat[0] = 0;
-
- advance_lfo(OPL);
-
- /* deltaT ADPCM */
- if( DELTAT->portstate )
- YM_DELTAT_ADPCM_CALC(DELTAT);
-
- /* FM part */
- OPL_CALC_CH(&OPL->P_CH[0]);
- OPL_CALC_CH(&OPL->P_CH[1]);
- OPL_CALC_CH(&OPL->P_CH[2]);
- OPL_CALC_CH(&OPL->P_CH[3]);
- OPL_CALC_CH(&OPL->P_CH[4]);
- OPL_CALC_CH(&OPL->P_CH[5]);
-
- if(!rhythm)
- {
- OPL_CALC_CH(&OPL->P_CH[6]);
- OPL_CALC_CH(&OPL->P_CH[7]);
- OPL_CALC_CH(&OPL->P_CH[8]);
- }
- else /* Rhythm part */
- {
- OPL_CALC_RH(&OPL->P_CH[0], (OPL->noise_rng>>0)&1 );
- }
-
- lt = output[0] + (output_deltat[0]>>11);
-
- lt >>= FINAL_SH;
-
- /* limit check */
- lt = limit( lt , MAXOUT, MINOUT );
-
- #ifdef SAVE_SAMPLE
- SAVE_ALL_CHANNELS
- #endif
-
- /* store to sound buffer */
- buf[i] = lt;
-
- advance(OPL);
- }
-
- /* deltaT START flag */
- if( !DELTAT->portstate )
- OPL->status &= 0xfe;
-
- if( DELTAT->eos ) //AT: set bit 4 of OPL status register on EOS
- {
- DELTAT->eos = 0;
- OPL->status |= 0x10;
- }
-}
-
-void Y8950SetPortHandler(int which,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
-{
- FM_OPL *OPL = OPL_Y8950[which];
- OPL->porthandler_w = PortHandler_w;
- OPL->porthandler_r = PortHandler_r;
- OPL->port_param = param;
-}
-
-void Y8950SetKeyboardHandler(int which,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
-{
- FM_OPL *OPL = OPL_Y8950[which];
- OPL->keyboardhandler_w = KeyboardHandler_w;
- OPL->keyboardhandler_r = KeyboardHandler_r;
- OPL->keyboard_param = param;
-}
-
-#endif
-