aboutsummaryrefslogtreecommitdiff
path: root/sound/mods/paula.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'sound/mods/paula.cpp')
-rw-r--r--sound/mods/paula.cpp65
1 files changed, 41 insertions, 24 deletions
diff --git a/sound/mods/paula.cpp b/sound/mods/paula.cpp
index 545390ff93..1f557e0ece 100644
--- a/sound/mods/paula.cpp
+++ b/sound/mods/paula.cpp
@@ -27,19 +27,20 @@
namespace Audio {
-Paula::Paula(bool stereo, int rate, int interruptFreq) :
- _stereo(stereo), _rate(rate), _intFreq(interruptFreq) {
+Paula::Paula(bool stereo, int rate, uint interruptFreq) :
+ _stereo(stereo), _rate(rate), _periodScale((double)kPalPaulaClock / rate), _intFreq(interruptFreq) {
clearVoices();
- _voice[0].panning = 63;
- _voice[1].panning = 191;
- _voice[2].panning = 191;
- _voice[3].panning = 63;
+ _voice[0].panning = 191;
+ _voice[1].panning = 63;
+ _voice[2].panning = 63;
+ _voice[3].panning = 191;
- if (_intFreq <= 0)
+ if (_intFreq == 0)
_intFreq = _rate;
- _curInt = _intFreq;
+ _curInt = 0;
+ _timerBase = 1;
_playing = false;
_end = true;
}
@@ -57,6 +58,7 @@ void Paula::clearVoice(byte voice) {
_voice[voice].period = 0;
_voice[voice].volume = 0;
_voice[voice].offset = 0;
+ _voice[voice].dmaCount = 0;
}
int Paula::readBuffer(int16 *buffer, const int numSamples) {
@@ -95,18 +97,17 @@ int Paula::readBufferIntern(int16 *buffer, const int numSamples) {
// Handle 'interrupts'. This gives subclasses the chance to adjust the channel data
// (e.g. insert new samples, do pitch bending, whatever).
- if (_curInt == _intFreq) {
+ if (_curInt == 0) {
+ _curInt = _intFreq;
interrupt();
- _curInt = 0;
}
// Compute how many samples to generate: at most the requested number of samples,
// of course, but we may stop earlier when an 'interrupt' is expected.
- const int nSamples = MIN(samples, _intFreq - _curInt);
+ const uint nSamples = MIN((uint)samples, _curInt);
// Loop over the four channels of the emulated Paula chip
for (int voice = 0; voice < NUM_VOICES; voice++) {
-
// No data, or paused -> skip channel
if (!_voice[voice].data || (_voice[voice].period <= 0))
continue;
@@ -115,8 +116,7 @@ int Paula::readBufferIntern(int16 *buffer, const int numSamples) {
// the requested output sampling rate (typicall 44.1 kHz or 22.05 kHz)
// as well as the "period" of the channel we are processing right now,
// to compute the correct output 'rate'.
- const double frequency = (7093789.2 / 2.0) / _voice[voice].period;
- frac_t rate = doubleToFrac(frequency / _rate);
+ frac_t rate = doubleToFrac(_periodScale / _voice[voice].period);
// Cap the volume
_voice[voice].volume = MIN((byte) 0x40, _voice[voice].volume);
@@ -126,50 +126,67 @@ int Paula::readBufferIntern(int16 *buffer, const int numSamples) {
frac_t offset = _voice[voice].offset;
frac_t sLen = intToFrac(_voice[voice].length);
const int8 *data = _voice[voice].data;
+ int dmaCount = _voice[voice].dmaCount;
int16 *p = buffer;
int end = 0;
int neededSamples = nSamples;
+ assert(offset < sLen);
// Compute the number of samples to generate; that is, either generate
// just as many as were requested, or until the buffer is used up.
// Note that dividing two frac_t yields an integer (as the denominators
// cancel out each other).
// Note that 'end' could be 0 here. No harm in that :-).
- end = MIN(neededSamples, (int)((sLen - offset + rate - 1) / rate));
+ const int leftSamples = (int)((sLen - offset + rate - 1) / rate);
+ end = MIN(neededSamples, leftSamples);
mixBuffer<stereo>(p, data, offset, rate, end, _voice[voice].volume, _voice[voice].panning);
neededSamples -= end;
- // If we have not yet generated enough samples, and looping is active: loop!
- if (neededSamples > 0 && _voice[voice].lengthRepeat > 2) {
-
- // At this point we know that we have used up all samples in the buffer, so reset it.
- _voice[voice].data = data = _voice[voice].dataRepeat;
+ if (leftSamples > 0 && end == leftSamples) {
+ dmaCount++;
+ data = _voice[voice].data = _voice[voice].dataRepeat;
_voice[voice].length = _voice[voice].lengthRepeat;
+ // TODO: offset -= sLen; but make sure there is no way offset >= 2*sLen
+ offset &= FRAC_LO_MASK;
+ }
+
+ // If we have not yet generated enough samples, and looping is active: loop!
+ if (neededSamples > 0 && _voice[voice].length > 2) {
sLen = intToFrac(_voice[voice].length);
// If the "rate" exceeds the sample rate, we would have to perform constant
// wrap arounds. So, apply the first step of the euclidean algorithm to
// achieve the same more efficiently: Take rate modulo sLen
+ // TODO: This messes up dmaCount and shouldnt happen?
if (sLen < rate)
- rate %= sLen;
+ warning("Paula: length %d is lesser than rate", _voice[voice].length);
+// rate %= sLen;
// Repeat as long as necessary.
while (neededSamples > 0) {
- offset = 0;
-
+ // TODO: offset -= sLen; but make sure there is no way offset >= 2*sLen
+ offset &= FRAC_LO_MASK;
+ dmaCount++;
// Compute the number of samples to generate (see above) and mix 'em.
end = MIN(neededSamples, (int)((sLen - offset + rate - 1) / rate));
mixBuffer<stereo>(p, data, offset, rate, end, _voice[voice].volume, _voice[voice].panning);
neededSamples -= end;
}
+
+ if (offset < sLen)
+ dmaCount--;
+ else
+ offset &= FRAC_LO_MASK;
+
}
// Write back the cached data
_voice[voice].offset = offset;
+ _voice[voice].dmaCount = dmaCount;
}
buffer += _stereo ? nSamples * 2 : nSamples;
- _curInt += nSamples;
+ _curInt -= nSamples;
samples -= nSamples;
}
return numSamples;