diff options
Diffstat (limited to 'sound/softsynth/opl/opl_impl.h')
-rw-r--r-- | sound/softsynth/opl/opl_impl.h | 1463 |
1 files changed, 0 insertions, 1463 deletions
diff --git a/sound/softsynth/opl/opl_impl.h b/sound/softsynth/opl/opl_impl.h deleted file mode 100644 index 0df8b5f884..0000000000 --- a/sound/softsynth/opl/opl_impl.h +++ /dev/null @@ -1,1463 +0,0 @@ -/* - * Copyright (C) 2002-2009 The DOSBox Team - * OPL2/OPL3 emulation library - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with this library; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - - -/* - * Originally based on ADLIBEMU.C, an AdLib/OPL2 emulation library by Ken Silverman - * Copyright (C) 1998-2001 Ken Silverman - * Ken Silverman's official web site: "http://www.advsys.net/ken" - */ - -#include "opl_inc.h" - - -static fltype recipsamp; // inverse of sampling rate -static Bit16s wavtable[WAVEPREC*3]; // wave form table - -// vibrato/tremolo tables -static Bit32s vib_table[VIBTAB_SIZE]; -static Bit32s trem_table[TREMTAB_SIZE*2]; - -static Bit32s vibval_const[BLOCKBUF_SIZE]; -static Bit32s tremval_const[BLOCKBUF_SIZE]; - -// vibrato value tables (used per-operator) -static Bit32s vibval_var1[BLOCKBUF_SIZE]; -static Bit32s vibval_var2[BLOCKBUF_SIZE]; - -// vibrato/trmolo value table pointers -static Bit32s *vibval1, *vibval2, *vibval3, *vibval4; -static Bit32s *tremval1, *tremval2, *tremval3, *tremval4; - - -// key scale level lookup table -static const fltype kslmul[4] = { - 0.0, 0.5, 0.25, 1.0 // -> 0, 3, 1.5, 6 dB/oct -}; - -// frequency multiplicator lookup table -static const fltype frqmul_tab[16] = { - 0.5,1,2,3,4,5,6,7,8,9,10,10,12,12,15,15 -}; -// calculated frequency multiplication values (depend on sampling rate) -static fltype frqmul[16]; - -// key scale levels -static Bit8u kslev[8][16]; - -// map a channel number to the register offset of the modulator (=register base) -static const Bit8u modulatorbase[9] = { - 0,1,2, - 8,9,10, - 16,17,18 -}; - -// map a register base to a modulator operator number or operator number -#if defined(OPLTYPE_IS_OPL3) -static const Bit8u regbase2modop[44] = { - 0,1,2,0,1,2,0,0,3,4,5,3,4,5,0,0,6,7,8,6,7,8, // first set - 18,19,20,18,19,20,0,0,21,22,23,21,22,23,0,0,24,25,26,24,25,26 // second set -}; -static const Bit8u regbase2op[44] = { - 0,1,2,9,10,11,0,0,3,4,5,12,13,14,0,0,6,7,8,15,16,17, // first set - 18,19,20,27,28,29,0,0,21,22,23,30,31,32,0,0,24,25,26,33,34,35 // second set -}; -#else -static const Bit8u regbase2modop[22] = { - 0,1,2,0,1,2,0,0,3,4,5,3,4,5,0,0,6,7,8,6,7,8 -}; -static const Bit8u regbase2op[22] = { - 0,1,2,9,10,11,0,0,3,4,5,12,13,14,0,0,6,7,8,15,16,17 -}; -#endif - - -// start of the waveform -static Bit32u waveform[8] = { - WAVEPREC, - WAVEPREC>>1, - WAVEPREC, - (WAVEPREC*3)>>2, - 0, - 0, - (WAVEPREC*5)>>2, - WAVEPREC<<1 -}; - -// length of the waveform as mask -static Bit32u wavemask[8] = { - WAVEPREC-1, - WAVEPREC-1, - (WAVEPREC>>1)-1, - (WAVEPREC>>1)-1, - WAVEPREC-1, - ((WAVEPREC*3)>>2)-1, - WAVEPREC>>1, - WAVEPREC-1 -}; - -// where the first entry resides -static Bit32u wavestart[8] = { - 0, - WAVEPREC>>1, - 0, - WAVEPREC>>2, - 0, - 0, - 0, - WAVEPREC>>3 -}; - -// envelope generator function constants -static fltype attackconst[4] = { - (fltype)(1/2.82624), - (fltype)(1/2.25280), - (fltype)(1/1.88416), - (fltype)(1/1.59744) -}; -static fltype decrelconst[4] = { - (fltype)(1/39.28064), - (fltype)(1/31.41608), - (fltype)(1/26.17344), - (fltype)(1/22.44608) -}; - - -void operator_advance(op_type* op_pt, Bit32s vib) { - op_pt->wfpos = op_pt->tcount; // waveform position - - // advance waveform time - op_pt->tcount += op_pt->tinc; - op_pt->tcount += (Bit32s)(op_pt->tinc)*vib/FIXEDPT; - - op_pt->generator_pos += generator_add; -} - -void operator_advance_drums(op_type* op_pt1, Bit32s vib1, op_type* op_pt2, Bit32s vib2, op_type* op_pt3, Bit32s vib3) { - Bit32u c1 = op_pt1->tcount/FIXEDPT; - Bit32u c3 = op_pt3->tcount/FIXEDPT; - Bit32u phasebit = (((c1 & 0x88) ^ ((c1<<5) & 0x80)) | ((c3 ^ (c3<<2)) & 0x20)) ? 0x02 : 0x00; - - Bit32u noisebit = rand()&1; - - Bit32u snare_phase_bit = (((Bitu)((op_pt1->tcount/FIXEDPT) / 0x100))&1); - - //Hihat - Bit32u inttm = (phasebit<<8) | (0x34<<(phasebit ^ (noisebit<<1))); - op_pt1->wfpos = inttm*FIXEDPT; // waveform position - // advance waveform time - op_pt1->tcount += op_pt1->tinc; - op_pt1->tcount += (Bit32s)(op_pt1->tinc)*vib1/FIXEDPT; - op_pt1->generator_pos += generator_add; - - //Snare - inttm = ((1+snare_phase_bit) ^ noisebit)<<8; - op_pt2->wfpos = inttm*FIXEDPT; // waveform position - // advance waveform time - op_pt2->tcount += op_pt2->tinc; - op_pt2->tcount += (Bit32s)(op_pt2->tinc)*vib2/FIXEDPT; - op_pt2->generator_pos += generator_add; - - //Cymbal - inttm = (1+phasebit)<<8; - op_pt3->wfpos = inttm*FIXEDPT; // waveform position - // advance waveform time - op_pt3->tcount += op_pt3->tinc; - op_pt3->tcount += (Bit32s)(op_pt3->tinc)*vib3/FIXEDPT; - op_pt3->generator_pos += generator_add; -} - - -// output level is sustained, mode changes only when operator is turned off (->release) -// or when the keep-sustained bit is turned off (->sustain_nokeep) -void operator_output(op_type* op_pt, Bit32s modulator, Bit32s trem) { - if (op_pt->op_state != OF_TYPE_OFF) { - op_pt->lastcval = op_pt->cval; - Bit32u i = (Bit32u)((op_pt->wfpos+modulator)/FIXEDPT); - - // wform: -16384 to 16383 (0x4000) - // trem : 32768 to 65535 (0x10000) - // step_amp: 0.0 to 1.0 - // vol : 1/2^14 to 1/2^29 (/0x4000; /1../0x8000) - - op_pt->cval = (Bit32s)(op_pt->step_amp*op_pt->vol*op_pt->cur_wform[i&op_pt->cur_wmask]*trem/16.0); - } -} - - -// no action, operator is off -void operator_off(op_type* /*op_pt*/) { -} - -// output level is sustained, mode changes only when operator is turned off (->release) -// or when the keep-sustained bit is turned off (->sustain_nokeep) -void operator_sustain(op_type* op_pt) { - Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples - for (Bit32u ct=0; ct<num_steps_add; ct++) { - op_pt->cur_env_step++; - } - op_pt->generator_pos -= num_steps_add*FIXEDPT; -} - -// operator in release mode, if output level reaches zero the operator is turned off -void operator_release(op_type* op_pt) { - // ??? boundary? - if (op_pt->amp > 0.00000001) { - // release phase - op_pt->amp *= op_pt->releasemul; - } - - Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples - for (Bit32u ct=0; ct<num_steps_add; ct++) { - op_pt->cur_env_step++; // sample counter - if ((op_pt->cur_env_step & op_pt->env_step_r)==0) { - if (op_pt->amp <= 0.00000001) { - // release phase finished, turn off this operator - op_pt->amp = 0.0; - if (op_pt->op_state == OF_TYPE_REL) { - op_pt->op_state = OF_TYPE_OFF; - } - } - op_pt->step_amp = op_pt->amp; - } - } - op_pt->generator_pos -= num_steps_add*FIXEDPT; -} - -// operator in decay mode, if sustain level is reached the output level is either -// kept (sustain level keep enabled) or the operator is switched into release mode -void operator_decay(op_type* op_pt) { - if (op_pt->amp > op_pt->sustain_level) { - // decay phase - op_pt->amp *= op_pt->decaymul; - } - - Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples - for (Bit32u ct=0; ct<num_steps_add; ct++) { - op_pt->cur_env_step++; - if ((op_pt->cur_env_step & op_pt->env_step_d)==0) { - if (op_pt->amp <= op_pt->sustain_level) { - // decay phase finished, sustain level reached - if (op_pt->sus_keep) { - // keep sustain level (until turned off) - op_pt->op_state = OF_TYPE_SUS; - op_pt->amp = op_pt->sustain_level; - } else { - // next: release phase - op_pt->op_state = OF_TYPE_SUS_NOKEEP; - } - } - op_pt->step_amp = op_pt->amp; - } - } - op_pt->generator_pos -= num_steps_add*FIXEDPT; -} - -// operator in attack mode, if full output level is reached, -// the operator is switched into decay mode -void operator_attack(op_type* op_pt) { - op_pt->amp = ((op_pt->a3*op_pt->amp + op_pt->a2)*op_pt->amp + op_pt->a1)*op_pt->amp + op_pt->a0; - - Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples - for (Bit32u ct=0; ct<num_steps_add; ct++) { - op_pt->cur_env_step++; // next sample - if ((op_pt->cur_env_step & op_pt->env_step_a)==0) { // check if next step already reached - if (op_pt->amp > 1.0) { - // attack phase finished, next: decay - op_pt->op_state = OF_TYPE_DEC; - op_pt->amp = 1.0; - op_pt->step_amp = 1.0; - } - op_pt->step_skip_pos_a <<= 1; - if (op_pt->step_skip_pos_a==0) op_pt->step_skip_pos_a = 1; - if (op_pt->step_skip_pos_a & op_pt->env_step_skip_a) { // check if required to skip next step - op_pt->step_amp = op_pt->amp; - } - } - } - op_pt->generator_pos -= num_steps_add*FIXEDPT; -} - - -typedef void (*optype_fptr)(op_type*); - -optype_fptr opfuncs[6] = { - operator_attack, - operator_decay, - operator_release, - operator_sustain, // sustain phase (keeping level) - operator_release, // sustain_nokeep phase (release-style) - operator_off -}; - -void change_attackrate(Bitu regbase, op_type* op_pt) { - Bits attackrate = adlibreg[ARC_ATTR_DECR+regbase]>>4; - if (attackrate) { - fltype f = (fltype)(pow(FL2,(fltype)attackrate+(op_pt->toff>>2)-1)*attackconst[op_pt->toff&3]*recipsamp); - // attack rate coefficients - op_pt->a0 = (fltype)(0.0377*f); - op_pt->a1 = (fltype)(10.73*f+1); - op_pt->a2 = (fltype)(-17.57*f); - op_pt->a3 = (fltype)(7.42*f); - - Bits step_skip = attackrate*4 + op_pt->toff; - Bits steps = step_skip >> 2; - op_pt->env_step_a = (1<<(steps<=12?12-steps:0))-1; - - Bits step_num = (step_skip<=48)?(4-(step_skip&3)):0; - static Bit8u step_skip_mask[5] = {0xff, 0xfe, 0xee, 0xba, 0xaa}; - op_pt->env_step_skip_a = step_skip_mask[step_num]; - -#if defined(OPLTYPE_IS_OPL3) - if (step_skip>=60) { -#else - if (step_skip>=62) { -#endif - op_pt->a0 = (fltype)(2.0); // something that triggers an immediate transition to amp:=1.0 - op_pt->a1 = (fltype)(0.0); - op_pt->a2 = (fltype)(0.0); - op_pt->a3 = (fltype)(0.0); - } - } else { - // attack disabled - op_pt->a0 = 0.0; - op_pt->a1 = 1.0; - op_pt->a2 = 0.0; - op_pt->a3 = 0.0; - op_pt->env_step_a = 0; - op_pt->env_step_skip_a = 0; - } -} - -void change_decayrate(Bitu regbase, op_type* op_pt) { - Bits decayrate = adlibreg[ARC_ATTR_DECR+regbase]&15; - // decaymul should be 1.0 when decayrate==0 - if (decayrate) { - fltype f = (fltype)(-7.4493*decrelconst[op_pt->toff&3]*recipsamp); - op_pt->decaymul = (fltype)(pow(FL2,f*pow(FL2,(fltype)(decayrate+(op_pt->toff>>2))))); - Bits steps = (decayrate*4 + op_pt->toff) >> 2; - op_pt->env_step_d = (1<<(steps<=12?12-steps:0))-1; - } else { - op_pt->decaymul = 1.0; - op_pt->env_step_d = 0; - } -} - -void change_releaserate(Bitu regbase, op_type* op_pt) { - Bits releaserate = adlibreg[ARC_SUSL_RELR+regbase]&15; - // releasemul should be 1.0 when releaserate==0 - if (releaserate) { - fltype f = (fltype)(-7.4493*decrelconst[op_pt->toff&3]*recipsamp); - op_pt->releasemul = (fltype)(pow(FL2,f*pow(FL2,(fltype)(releaserate+(op_pt->toff>>2))))); - Bits steps = (releaserate*4 + op_pt->toff) >> 2; - op_pt->env_step_r = (1<<(steps<=12?12-steps:0))-1; - } else { - op_pt->releasemul = 1.0; - op_pt->env_step_r = 0; - } -} - -void change_sustainlevel(Bitu regbase, op_type* op_pt) { - Bits sustainlevel = adlibreg[ARC_SUSL_RELR+regbase]>>4; - // sustainlevel should be 0.0 when sustainlevel==15 (max) - if (sustainlevel<15) { - op_pt->sustain_level = (fltype)(pow(FL2,(fltype)sustainlevel * (-FL05))); - } else { - op_pt->sustain_level = 0.0; - } -} - -void change_waveform(Bitu regbase, op_type* op_pt) { -#if defined(OPLTYPE_IS_OPL3) - if (regbase>=ARC_SECONDSET) regbase -= (ARC_SECONDSET-22); // second set starts at 22 -#endif - // waveform selection - op_pt->cur_wmask = wavemask[wave_sel[regbase]]; - op_pt->cur_wform = &wavtable[waveform[wave_sel[regbase]]]; - // (might need to be adapted to waveform type here...) -} - -void change_keepsustain(Bitu regbase, op_type* op_pt) { - op_pt->sus_keep = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x20)>0; - if (op_pt->op_state==OF_TYPE_SUS) { - if (!op_pt->sus_keep) op_pt->op_state = OF_TYPE_SUS_NOKEEP; - } else if (op_pt->op_state==OF_TYPE_SUS_NOKEEP) { - if (op_pt->sus_keep) op_pt->op_state = OF_TYPE_SUS; - } -} - -// enable/disable vibrato/tremolo LFO effects -void change_vibrato(Bitu regbase, op_type* op_pt) { - op_pt->vibrato = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x40)!=0; - op_pt->tremolo = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x80)!=0; -} - -// change amount of self-feedback -void change_feedback(Bitu chanbase, op_type* op_pt) { - Bits feedback = adlibreg[ARC_FEEDBACK+chanbase]&14; - if (feedback) op_pt->mfbi = (Bit32s)(pow(FL2,(fltype)((feedback>>1)+8))); - else op_pt->mfbi = 0; -} - -void change_frequency(Bitu chanbase, Bitu regbase, op_type* op_pt) { - // frequency - Bit32u frn = ((((Bit32u)adlibreg[ARC_KON_BNUM+chanbase])&3)<<8) + (Bit32u)adlibreg[ARC_FREQ_NUM+chanbase]; - // block number/octave - Bit32u oct = ((((Bit32u)adlibreg[ARC_KON_BNUM+chanbase])>>2)&7); - op_pt->freq_high = (Bit32s)((frn>>7)&7); - - // keysplit - Bit32u note_sel = (adlibreg[8]>>6)&1; - op_pt->toff = ((frn>>9)&(note_sel^1)) | ((frn>>8)¬e_sel); - op_pt->toff += (oct<<1); - - // envelope scaling (KSR) - if (!(adlibreg[ARC_TVS_KSR_MUL+regbase]&0x10)) op_pt->toff >>= 2; - - // 20+a0+b0: - op_pt->tinc = (Bit32u)((((fltype)(frn<<oct))*frqmul[adlibreg[ARC_TVS_KSR_MUL+regbase]&15])); - // 40+a0+b0: - fltype vol_in = (fltype)((fltype)(adlibreg[ARC_KSL_OUTLEV+regbase]&63) + - kslmul[adlibreg[ARC_KSL_OUTLEV+regbase]>>6]*kslev[oct][frn>>6]); - op_pt->vol = (fltype)(pow(FL2,(fltype)(vol_in * -0.125 - 14))); - - // operator frequency changed, care about features that depend on it - change_attackrate(regbase,op_pt); - change_decayrate(regbase,op_pt); - change_releaserate(regbase,op_pt); -} - -void enable_operator(Bitu regbase, op_type* op_pt, Bit32u act_type) { - // check if this is really an off-on transition - if (op_pt->act_state == OP_ACT_OFF) { - Bits wselbase = regbase; - if (wselbase>=ARC_SECONDSET) wselbase -= (ARC_SECONDSET-22); // second set starts at 22 - - op_pt->tcount = wavestart[wave_sel[wselbase]]*FIXEDPT; - - // start with attack mode - op_pt->op_state = OF_TYPE_ATT; - op_pt->act_state |= act_type; - } -} - -void disable_operator(op_type* op_pt, Bit32u act_type) { - // check if this is really an on-off transition - if (op_pt->act_state != OP_ACT_OFF) { - op_pt->act_state &= (~act_type); - if (op_pt->act_state == OP_ACT_OFF) { - if (op_pt->op_state != OF_TYPE_OFF) op_pt->op_state = OF_TYPE_REL; - } - } -} - -void adlib_init(Bit32u samplerate) { - Bits i, j, oct; - - int_samplerate = samplerate; - - generator_add = (Bit32u)(INTFREQU*FIXEDPT/int_samplerate); - - - memset((void *)adlibreg,0,sizeof(adlibreg)); - memset((void *)op,0,sizeof(op_type)*MAXOPERATORS); - memset((void *)wave_sel,0,sizeof(wave_sel)); - - for (i=0;i<MAXOPERATORS;i++) { - op[i].op_state = OF_TYPE_OFF; - op[i].act_state = OP_ACT_OFF; - op[i].amp = 0.0; - op[i].step_amp = 0.0; - op[i].vol = 0.0; - op[i].tcount = 0; - op[i].tinc = 0; - op[i].toff = 0; - op[i].cur_wmask = wavemask[0]; - op[i].cur_wform = &wavtable[waveform[0]]; - op[i].freq_high = 0; - - op[i].generator_pos = 0; - op[i].cur_env_step = 0; - op[i].env_step_a = 0; - op[i].env_step_d = 0; - op[i].env_step_r = 0; - op[i].step_skip_pos_a = 0; - op[i].env_step_skip_a = 0; - -#if defined(OPLTYPE_IS_OPL3) - op[i].is_4op = false; - op[i].is_4op_attached = false; - op[i].left_pan = 1; - op[i].right_pan = 1; -#endif - } - - recipsamp = 1.0 / (fltype)int_samplerate; - for (i=15;i>=0;i--) { - frqmul[i] = (fltype)(frqmul_tab[i]*INTFREQU/(fltype)WAVEPREC*(fltype)FIXEDPT*recipsamp); - } - - status = 0; - opl_index = 0; - - - // create vibrato table - vib_table[0] = 8; - vib_table[1] = 4; - vib_table[2] = 0; - vib_table[3] = -4; - for (i=4; i<VIBTAB_SIZE; i++) vib_table[i] = vib_table[i-4]*-1; - - // vibrato at ~6.1 ?? (opl3 docs say 6.1, opl4 docs say 6.0, y8950 docs say 6.4) - vibtab_add = static_cast<Bit32u>(VIBTAB_SIZE*FIXEDPT_LFO/8192*INTFREQU/int_samplerate); - vibtab_pos = 0; - - for (i=0; i<BLOCKBUF_SIZE; i++) vibval_const[i] = 0; - - - // create tremolo table - Bit32s trem_table_int[TREMTAB_SIZE]; - for (i=0; i<14; i++) trem_table_int[i] = i-13; // upwards (13 to 26 -> -0.5/6 to 0) - for (i=14; i<41; i++) trem_table_int[i] = -i+14; // downwards (26 to 0 -> 0 to -1/6) - for (i=41; i<53; i++) trem_table_int[i] = i-40-26; // upwards (1 to 12 -> -1/6 to -0.5/6) - - for (i=0; i<TREMTAB_SIZE; i++) { - // 0.0 .. -26/26*4.8/6 == [0.0 .. -0.8], 4/53 steps == [1 .. 0.57] - fltype trem_val1=(fltype)(((fltype)trem_table_int[i])*4.8/26.0/6.0); // 4.8db - fltype trem_val2=(fltype)((fltype)((Bit32s)(trem_table_int[i]/4))*1.2/6.0/6.0); // 1.2db (larger stepping) - - trem_table[i] = (Bit32s)(pow(FL2,trem_val1)*FIXEDPT); - trem_table[TREMTAB_SIZE+i] = (Bit32s)(pow(FL2,trem_val2)*FIXEDPT); - } - - // tremolo at 3.7hz - tremtab_add = (Bit32u)((fltype)TREMTAB_SIZE * TREM_FREQ * FIXEDPT_LFO / (fltype)int_samplerate); - tremtab_pos = 0; - - for (i=0; i<BLOCKBUF_SIZE; i++) tremval_const[i] = FIXEDPT; - - - static Bitu initfirstime = 0; - if (!initfirstime) { - initfirstime = 1; - - // create waveform tables - for (i=0;i<(WAVEPREC>>1);i++) { - wavtable[(i<<1) +WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<1) )*PI*2/WAVEPREC)); - wavtable[(i<<1)+1+WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<1)+1)*PI*2/WAVEPREC)); - wavtable[i] = wavtable[(i<<1) +WAVEPREC]; - // alternative: (zero-less) -/* wavtable[(i<<1) +WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<2)+1)*PI/WAVEPREC)); - wavtable[(i<<1)+1+WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<2)+3)*PI/WAVEPREC)); - wavtable[i] = wavtable[(i<<1)-1+WAVEPREC]; */ - } - for (i=0;i<(WAVEPREC>>3);i++) { - wavtable[i+(WAVEPREC<<1)] = wavtable[i+(WAVEPREC>>3)]-16384; - wavtable[i+((WAVEPREC*17)>>3)] = wavtable[i+(WAVEPREC>>2)]+16384; - } - - // key scale level table verified ([table in book]*8/3) - kslev[7][0] = 0; kslev[7][1] = 24; kslev[7][2] = 32; kslev[7][3] = 37; - kslev[7][4] = 40; kslev[7][5] = 43; kslev[7][6] = 45; kslev[7][7] = 47; - kslev[7][8] = 48; - for (i=9;i<16;i++) kslev[7][i] = (Bit8u)(i+41); - for (j=6;j>=0;j--) { - for (i=0;i<16;i++) { - oct = (Bits)kslev[j+1][i]-8; - if (oct < 0) oct = 0; - kslev[j][i] = (Bit8u)oct; - } - } - } - -} - - - -void adlib_write(Bitu idx, Bit8u val) { - Bit32u second_set = idx&0x100; - adlibreg[idx] = val; - - switch (idx&0xf0) { - case ARC_CONTROL: - // here we check for the second set registers, too: - switch (idx) { - case 0x02: // timer1 counter - case 0x03: // timer2 counter - break; - case 0x04: - // IRQ reset, timer mask/start - if (val&0x80) { - // clear IRQ bits in status register - status &= ~0x60; - } else { - status = 0; - } - break; -#if defined(OPLTYPE_IS_OPL3) - case 0x04|ARC_SECONDSET: - // 4op enable/disable switches for each possible channel - op[0].is_4op = (val&1)>0; - op[3].is_4op_attached = op[0].is_4op; - op[1].is_4op = (val&2)>0; - op[4].is_4op_attached = op[1].is_4op; - op[2].is_4op = (val&4)>0; - op[5].is_4op_attached = op[2].is_4op; - op[18].is_4op = (val&8)>0; - op[21].is_4op_attached = op[18].is_4op; - op[19].is_4op = (val&16)>0; - op[22].is_4op_attached = op[19].is_4op; - op[20].is_4op = (val&32)>0; - op[23].is_4op_attached = op[20].is_4op; - break; - case 0x05|ARC_SECONDSET: - break; -#endif - case 0x08: - // CSW, note select - break; - default: - break; - } - break; - case ARC_TVS_KSR_MUL: - case ARC_TVS_KSR_MUL+0x10: { - // tremolo/vibrato/sustain keeping enabled; key scale rate; frequency multiplication - int num = idx&7; - Bitu base = (idx-ARC_TVS_KSR_MUL)&0xff; - if ((num<6) && (base<22)) { -#if defined(OPLTYPE_IS_OPL3) - Bitu modop = regbase2modop[second_set?(base+22):base]; -#else - Bitu modop = regbase2modop[base]; -#endif - Bitu regbase = base+second_set; - Bitu chanbase = second_set?(modop-18+ARC_SECONDSET):modop; - - // change tremolo/vibrato and sustain keeping of this operator - op_type* op_ptr = &op[modop+((num<3) ? 0 : 9)]; - change_keepsustain(regbase,op_ptr); - change_vibrato(regbase,op_ptr); - - // change frequency calculations of this operator as - // key scale rate and frequency multiplicator can be changed -#if defined(OPLTYPE_IS_OPL3) - if ((adlibreg[0x105]&1) && (op[modop].is_4op_attached)) { - // operator uses frequency of channel - change_frequency(chanbase-3,regbase,op_ptr); - } else { - change_frequency(chanbase,regbase,op_ptr); - } -#else - change_frequency(chanbase,base,op_ptr); -#endif - } - } - break; - case ARC_KSL_OUTLEV: - case ARC_KSL_OUTLEV+0x10: { - // key scale level; output rate - int num = idx&7; - Bitu base = (idx-ARC_KSL_OUTLEV)&0xff; - if ((num<6) && (base<22)) { -#if defined(OPLTYPE_IS_OPL3) - Bitu modop = regbase2modop[second_set?(base+22):base]; -#else - Bitu modop = regbase2modop[base]; -#endif - Bitu chanbase = second_set?(modop-18+ARC_SECONDSET):modop; - - // change frequency calculations of this operator as - // key scale level and output rate can be changed - op_type* op_ptr = &op[modop+((num<3) ? 0 : 9)]; -#if defined(OPLTYPE_IS_OPL3) - Bitu regbase = base+second_set; - if ((adlibreg[0x105]&1) && (op[modop].is_4op_attached)) { - // operator uses frequency of channel - change_frequency(chanbase-3,regbase,op_ptr); - } else { - change_frequency(chanbase,regbase,op_ptr); - } -#else - change_frequency(chanbase,base,op_ptr); -#endif - } - } - break; - case ARC_ATTR_DECR: - case ARC_ATTR_DECR+0x10: { - // attack/decay rates - int num = idx&7; - Bitu base = (idx-ARC_ATTR_DECR)&0xff; - if ((num<6) && (base<22)) { - Bitu regbase = base+second_set; - - // change attack rate and decay rate of this operator - op_type* op_ptr = &op[regbase2op[second_set?(base+22):base]]; - change_attackrate(regbase,op_ptr); - change_decayrate(regbase,op_ptr); - } - } - break; - case ARC_SUSL_RELR: - case ARC_SUSL_RELR+0x10: { - // sustain level; release rate - int num = idx&7; - Bitu base = (idx-ARC_SUSL_RELR)&0xff; - if ((num<6) && (base<22)) { - Bitu regbase = base+second_set; - - // change sustain level and release rate of this operator - op_type* op_ptr = &op[regbase2op[second_set?(base+22):base]]; - change_releaserate(regbase,op_ptr); - change_sustainlevel(regbase,op_ptr); - } - } - break; - case ARC_FREQ_NUM: { - // 0xa0-0xa8 low8 frequency - Bitu base = (idx-ARC_FREQ_NUM)&0xff; - if (base<9) { - Bits opbase = second_set?(base+18):base; -#if defined(OPLTYPE_IS_OPL3) - if ((adlibreg[0x105]&1) && op[opbase].is_4op_attached) break; -#endif - // regbase of modulator: - Bits modbase = modulatorbase[base]+second_set; - - Bitu chanbase = base+second_set; - - change_frequency(chanbase,modbase,&op[opbase]); - change_frequency(chanbase,modbase+3,&op[opbase+9]); -#if defined(OPLTYPE_IS_OPL3) - // for 4op channels all four operators are modified to the frequency of the channel - if ((adlibreg[0x105]&1) && op[second_set?(base+18):base].is_4op) { - change_frequency(chanbase,modbase+8,&op[opbase+3]); - change_frequency(chanbase,modbase+3+8,&op[opbase+3+9]); - } -#endif - } - } - break; - case ARC_KON_BNUM: { - if (idx == ARC_PERC_MODE) { -#if defined(OPLTYPE_IS_OPL3) - if (second_set) return; -#endif - - if ((val&0x30) == 0x30) { // BassDrum active - enable_operator(16,&op[6],OP_ACT_PERC); - change_frequency(6,16,&op[6]); - enable_operator(16+3,&op[6+9],OP_ACT_PERC); - change_frequency(6,16+3,&op[6+9]); - } else { - disable_operator(&op[6],OP_ACT_PERC); - disable_operator(&op[6+9],OP_ACT_PERC); - } - if ((val&0x28) == 0x28) { // Snare active - enable_operator(17+3,&op[16],OP_ACT_PERC); - change_frequency(7,17+3,&op[16]); - } else { - disable_operator(&op[16],OP_ACT_PERC); - } - if ((val&0x24) == 0x24) { // TomTom active - enable_operator(18,&op[8],OP_ACT_PERC); - change_frequency(8,18,&op[8]); - } else { - disable_operator(&op[8],OP_ACT_PERC); - } - if ((val&0x22) == 0x22) { // Cymbal active - enable_operator(18+3,&op[8+9],OP_ACT_PERC); - change_frequency(8,18+3,&op[8+9]); - } else { - disable_operator(&op[8+9],OP_ACT_PERC); - } - if ((val&0x21) == 0x21) { // Hihat active - enable_operator(17,&op[7],OP_ACT_PERC); - change_frequency(7,17,&op[7]); - } else { - disable_operator(&op[7],OP_ACT_PERC); - } - - break; - } - // regular 0xb0-0xb8 - Bitu base = (idx-ARC_KON_BNUM)&0xff; - if (base<9) { - Bits opbase = second_set?(base+18):base; -#if defined(OPLTYPE_IS_OPL3) - if ((adlibreg[0x105]&1) && op[opbase].is_4op_attached) break; -#endif - // regbase of modulator: - Bits modbase = modulatorbase[base]+second_set; - - if (val&32) { - // operator switched on - enable_operator(modbase,&op[opbase],OP_ACT_NORMAL); // modulator (if 2op) - enable_operator(modbase+3,&op[opbase+9],OP_ACT_NORMAL); // carrier (if 2op) -#if defined(OPLTYPE_IS_OPL3) - // for 4op channels all four operators are switched on - if ((adlibreg[0x105]&1) && op[opbase].is_4op) { - // turn on chan+3 operators as well - enable_operator(modbase+8,&op[opbase+3],OP_ACT_NORMAL); - enable_operator(modbase+3+8,&op[opbase+3+9],OP_ACT_NORMAL); - } -#endif - } else { - // operator switched off - disable_operator(&op[opbase],OP_ACT_NORMAL); - disable_operator(&op[opbase+9],OP_ACT_NORMAL); -#if defined(OPLTYPE_IS_OPL3) - // for 4op channels all four operators are switched off - if ((adlibreg[0x105]&1) && op[opbase].is_4op) { - // turn off chan+3 operators as well - disable_operator(&op[opbase+3],OP_ACT_NORMAL); - disable_operator(&op[opbase+3+9],OP_ACT_NORMAL); - } -#endif - } - - Bitu chanbase = base+second_set; - - // change frequency calculations of modulator and carrier (2op) as - // the frequency of the channel has changed - change_frequency(chanbase,modbase,&op[opbase]); - change_frequency(chanbase,modbase+3,&op[opbase+9]); -#if defined(OPLTYPE_IS_OPL3) - // for 4op channels all four operators are modified to the frequency of the channel - if ((adlibreg[0x105]&1) && op[second_set?(base+18):base].is_4op) { - // change frequency calculations of chan+3 operators as well - change_frequency(chanbase,modbase+8,&op[opbase+3]); - change_frequency(chanbase,modbase+3+8,&op[opbase+3+9]); - } -#endif - } - } - break; - case ARC_FEEDBACK: { - // 0xc0-0xc8 feedback/modulation type (AM/FM) - Bitu base = (idx-ARC_FEEDBACK)&0xff; - if (base<9) { - Bits opbase = second_set?(base+18):base; - Bitu chanbase = base+second_set; - change_feedback(chanbase,&op[opbase]); -#if defined(OPLTYPE_IS_OPL3) - // OPL3 panning - op[opbase].left_pan = ((val&0x10)>>4); - op[opbase].right_pan = ((val&0x20)>>5); -#endif - } - } - break; - case ARC_WAVE_SEL: - case ARC_WAVE_SEL+0x10: { - int num = idx&7; - Bitu base = (idx-ARC_WAVE_SEL)&0xff; - if ((num<6) && (base<22)) { -#if defined(OPLTYPE_IS_OPL3) - Bits wselbase = second_set?(base+22):base; // for easier mapping onto wave_sel[] - // change waveform - if (adlibreg[0x105]&1) wave_sel[wselbase] = val&7; // opl3 mode enabled, all waveforms accessible - else wave_sel[wselbase] = val&3; - op_type* op_ptr = &op[regbase2modop[wselbase]+((num<3) ? 0 : 9)]; - change_waveform(wselbase,op_ptr); -#else - if (adlibreg[0x01]&0x20) { - // wave selection enabled, change waveform - wave_sel[base] = val&3; - op_type* op_ptr = &op[regbase2modop[base]+((num<3) ? 0 : 9)]; - change_waveform(base,op_ptr); - } -#endif - } - } - break; - default: - break; - } -} - - -Bitu adlib_reg_read(Bitu port) { -#if defined(OPLTYPE_IS_OPL3) - // opl3-detection routines require ret&6 to be zero - if ((port&1)==0) { - return status; - } - return 0x00; -#else - // opl2-detection routines require ret&6 to be 6 - if ((port&1)==0) { - return status|6; - } - return 0xff; -#endif -} - -void adlib_write_index(Bitu port, Bit8u val) { - opl_index = val; -#if defined(OPLTYPE_IS_OPL3) - if ((port&3)!=0) { - // possibly second set - if (((adlibreg[0x105]&1)!=0) || (opl_index==5)) opl_index |= ARC_SECONDSET; - } -#endif -} - -static inline void clipit16(Bit32s ival, Bit16s* outval) { - if (ival<32768) { - if (ival>-32769) { - *outval=(Bit16s)ival; - } else { - *outval = -32768; - } - } else { - *outval = 32767; - } -} - - - -// be careful with this -// uses cptr and chanval, outputs into outbufl(/outbufr) -// for opl3 check if opl3-mode is enabled (which uses stereo panning) -#undef CHANVAL_OUT -#if defined(OPLTYPE_IS_OPL3) -#define CHANVAL_OUT \ - if (adlibreg[0x105]&1) { \ - outbufl[i] += chanval*cptr[0].left_pan; \ - outbufr[i] += chanval*cptr[0].right_pan; \ - } else { \ - outbufl[i] += chanval; \ - } -#else -#define CHANVAL_OUT \ - outbufl[i] += chanval; -#endif - -void adlib_getsample(Bit16s* sndptr, Bits numsamples) { - Bits i, endsamples; - op_type* cptr; - - Bit32s outbufl[BLOCKBUF_SIZE]; -#if defined(OPLTYPE_IS_OPL3) - // second output buffer (right channel for opl3 stereo) - Bit32s outbufr[BLOCKBUF_SIZE]; -#endif - - // vibrato/tremolo lookup tables (global, to possibly be used by all operators) - Bit32s vib_lut[BLOCKBUF_SIZE]; - Bit32s trem_lut[BLOCKBUF_SIZE]; - - Bits samples_to_process = numsamples; - - for (Bits cursmp=0; cursmp<samples_to_process; cursmp+=endsamples) { - endsamples = samples_to_process-cursmp; - if (endsamples>BLOCKBUF_SIZE) endsamples = BLOCKBUF_SIZE; - - memset((void*)&outbufl,0,endsamples*sizeof(Bit32s)); -#if defined(OPLTYPE_IS_OPL3) - // clear second output buffer (opl3 stereo) - if (adlibreg[0x105]&1) memset((void*)&outbufr,0,endsamples*sizeof(Bit32s)); -#endif - - // calculate vibrato/tremolo lookup tables - Bit32s vib_tshift = ((adlibreg[ARC_PERC_MODE]&0x40)==0) ? 1 : 0; // 14cents/7cents switching - for (i=0;i<endsamples;i++) { - // cycle through vibrato table - vibtab_pos += vibtab_add; - if (vibtab_pos/FIXEDPT_LFO>=VIBTAB_SIZE) vibtab_pos-=VIBTAB_SIZE*FIXEDPT_LFO; - vib_lut[i] = vib_table[vibtab_pos/FIXEDPT_LFO]>>vib_tshift; // 14cents (14/100 of a semitone) or 7cents - - // cycle through tremolo table - tremtab_pos += tremtab_add; - if (tremtab_pos/FIXEDPT_LFO>=TREMTAB_SIZE) tremtab_pos-=TREMTAB_SIZE*FIXEDPT_LFO; - if (adlibreg[ARC_PERC_MODE]&0x80) trem_lut[i] = trem_table[tremtab_pos/FIXEDPT_LFO]; - else trem_lut[i] = trem_table[TREMTAB_SIZE+tremtab_pos/FIXEDPT_LFO]; - } - - if (adlibreg[ARC_PERC_MODE]&0x20) { - //BassDrum - cptr = &op[6]; - if (adlibreg[ARC_FEEDBACK+6]&1) { - // additive synthesis - if (cptr[9].op_state != OF_TYPE_OFF) { - if (cptr[9].vibrato) { - vibval1 = vibval_var1; - for (i=0;i<endsamples;i++) - vibval1[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC); - } else vibval1 = vibval_const; - if (cptr[9].tremolo) tremval1 = trem_lut; // tremolo enabled, use table - else tremval1 = tremval_const; - - // calculate channel output - for (i=0;i<endsamples;i++) { - operator_advance(&cptr[9],vibval1[i]); - opfuncs[cptr[9].op_state](&cptr[9]); - operator_output(&cptr[9],0,tremval1[i]); - - Bit32s chanval = cptr[9].cval*2; - CHANVAL_OUT - } - } - } else { - // frequency modulation - if ((cptr[9].op_state != OF_TYPE_OFF) || (cptr[0].op_state != OF_TYPE_OFF)) { - if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) { - vibval1 = vibval_var1; - for (i=0;i<endsamples;i++) - vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC); - } else vibval1 = vibval_const; - if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) { - vibval2 = vibval_var2; - for (i=0;i<endsamples;i++) - vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC); - } else vibval2 = vibval_const; - if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table - else tremval1 = tremval_const; - if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table - else tremval2 = tremval_const; - - // calculate channel output - for (i=0;i<endsamples;i++) { - operator_advance(&cptr[0],vibval1[i]); - opfuncs[cptr[0].op_state](&cptr[0]); - operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]); - - operator_advance(&cptr[9],vibval2[i]); - opfuncs[cptr[9].op_state](&cptr[9]); - operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]); - - Bit32s chanval = cptr[9].cval*2; - CHANVAL_OUT - } - } - } - - //TomTom (j=8) - if (op[8].op_state != OF_TYPE_OFF) { - cptr = &op[8]; - if (cptr[0].vibrato) { - vibval3 = vibval_var1; - for (i=0;i<endsamples;i++) - vibval3[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC); - } else vibval3 = vibval_const; - - if (cptr[0].tremolo) tremval3 = trem_lut; // tremolo enabled, use table - else tremval3 = tremval_const; - - // calculate channel output - for (i=0;i<endsamples;i++) { - operator_advance(&cptr[0],vibval3[i]); - opfuncs[cptr[0].op_state](&cptr[0]); //TomTom - operator_output(&cptr[0],0,tremval3[i]); - Bit32s chanval = cptr[0].cval*2; - CHANVAL_OUT - } - } - - //Snare/Hihat (j=7), Cymbal (j=8) - if ((op[7].op_state != OF_TYPE_OFF) || (op[16].op_state != OF_TYPE_OFF) || - (op[17].op_state != OF_TYPE_OFF)) { - cptr = &op[7]; - if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) { - vibval1 = vibval_var1; - for (i=0;i<endsamples;i++) - vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC); - } else vibval1 = vibval_const; - if ((cptr[9].vibrato) && (cptr[9].op_state == OF_TYPE_OFF)) { - vibval2 = vibval_var2; - for (i=0;i<endsamples;i++) - vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC); - } else vibval2 = vibval_const; - - if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table - else tremval1 = tremval_const; - if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table - else tremval2 = tremval_const; - - cptr = &op[8]; - if ((cptr[9].vibrato) && (cptr[9].op_state == OF_TYPE_OFF)) { - vibval4 = vibval_var2; - for (i=0;i<endsamples;i++) - vibval4[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC); - } else vibval4 = vibval_const; - - if (cptr[9].tremolo) tremval4 = trem_lut; // tremolo enabled, use table - else tremval4 = tremval_const; - - // calculate channel output - for (i=0;i<endsamples;i++) { - operator_advance_drums(&op[7],vibval1[i],&op[7+9],vibval2[i],&op[8+9],vibval4[i]); - - opfuncs[op[7].op_state](&op[7]); //Hihat - operator_output(&op[7],0,tremval1[i]); - - opfuncs[op[7+9].op_state](&op[7+9]); //Snare - operator_output(&op[7+9],0,tremval2[i]); - - opfuncs[op[8+9].op_state](&op[8+9]); //Cymbal - operator_output(&op[8+9],0,tremval4[i]); - - Bit32s chanval = (op[7].cval + op[7+9].cval + op[8+9].cval)*2; - CHANVAL_OUT - } - } - } - - Bitu max_channel = NUM_CHANNELS; -#if defined(OPLTYPE_IS_OPL3) - if ((adlibreg[0x105]&1)==0) max_channel = NUM_CHANNELS/2; -#endif - for (Bits cur_ch=max_channel-1; cur_ch>=0; cur_ch--) { - // skip drum/percussion operators - if ((adlibreg[ARC_PERC_MODE]&0x20) && (cur_ch >= 6) && (cur_ch < 9)) continue; - - Bitu k = cur_ch; -#if defined(OPLTYPE_IS_OPL3) - if (cur_ch < 9) { - cptr = &op[cur_ch]; - } else { - cptr = &op[cur_ch+9]; // second set is operator18-operator35 - k += (-9+256); // second set uses registers 0x100 onwards - } - // check if this operator is part of a 4-op - if ((adlibreg[0x105]&1) && cptr->is_4op_attached) continue; -#else - cptr = &op[cur_ch]; -#endif - - // check for FM/AM - if (adlibreg[ARC_FEEDBACK+k]&1) { -#if defined(OPLTYPE_IS_OPL3) - if ((adlibreg[0x105]&1) && cptr->is_4op) { - if (adlibreg[ARC_FEEDBACK+k+3]&1) { - // AM-AM-style synthesis (op1[fb] + (op2 * op3) + op4) - if (cptr[0].op_state != OF_TYPE_OFF) { - if (cptr[0].vibrato) { - vibval1 = vibval_var1; - for (i=0;i<endsamples;i++) - vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC); - } else vibval1 = vibval_const; - if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table - else tremval1 = tremval_const; - - // calculate channel output - for (i=0;i<endsamples;i++) { - operator_advance(&cptr[0],vibval1[i]); - opfuncs[cptr[0].op_state](&cptr[0]); - operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]); - - Bit32s chanval = cptr[0].cval; - CHANVAL_OUT - } - } - - if ((cptr[3].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF)) { - if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) { - vibval1 = vibval_var1; - for (i=0;i<endsamples;i++) - vibval1[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC); - } else vibval1 = vibval_const; - if (cptr[9].tremolo) tremval1 = trem_lut; // tremolo enabled, use table - else tremval1 = tremval_const; - if (cptr[3].tremolo) tremval2 = trem_lut; // tremolo enabled, use table - else tremval2 = tremval_const; - - // calculate channel output - for (i=0;i<endsamples;i++) { - operator_advance(&cptr[9],vibval1[i]); - opfuncs[cptr[9].op_state](&cptr[9]); - operator_output(&cptr[9],0,tremval1[i]); - - operator_advance(&cptr[3],0); - opfuncs[cptr[3].op_state](&cptr[3]); - operator_output(&cptr[3],cptr[9].cval*FIXEDPT,tremval2[i]); - - Bit32s chanval = cptr[3].cval; - CHANVAL_OUT - } - } - - if (cptr[3+9].op_state != OF_TYPE_OFF) { - if (cptr[3+9].tremolo) tremval1 = trem_lut; // tremolo enabled, use table - else tremval1 = tremval_const; - - // calculate channel output - for (i=0;i<endsamples;i++) { - operator_advance(&cptr[3+9],0); - opfuncs[cptr[3+9].op_state](&cptr[3+9]); - operator_output(&cptr[3+9],0,tremval1[i]); - - Bit32s chanval = cptr[3+9].cval; - CHANVAL_OUT - } - } - } else { - // AM-FM-style synthesis (op1[fb] + (op2 * op3 * op4)) - if (cptr[0].op_state != OF_TYPE_OFF) { - if (cptr[0].vibrato) { - vibval1 = vibval_var1; - for (i=0;i<endsamples;i++) - vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC); - } else vibval1 = vibval_const; - if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table - else tremval1 = tremval_const; - - // calculate channel output - for (i=0;i<endsamples;i++) { - operator_advance(&cptr[0],vibval1[i]); - opfuncs[cptr[0].op_state](&cptr[0]); - operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]); - - Bit32s chanval = cptr[0].cval; - CHANVAL_OUT - } - } - - if ((cptr[9].op_state != OF_TYPE_OFF) || (cptr[3].op_state != OF_TYPE_OFF) || (cptr[3+9].op_state != OF_TYPE_OFF)) { - if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) { - vibval1 = vibval_var1; - for (i=0;i<endsamples;i++) - vibval1[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC); - } else vibval1 = vibval_const; - if (cptr[9].tremolo) tremval1 = trem_lut; // tremolo enabled, use table - else tremval1 = tremval_const; - if (cptr[3].tremolo) tremval2 = trem_lut; // tremolo enabled, use table - else tremval2 = tremval_const; - if (cptr[3+9].tremolo) tremval3 = trem_lut; // tremolo enabled, use table - else tremval3 = tremval_const; - - // calculate channel output - for (i=0;i<endsamples;i++) { - operator_advance(&cptr[9],vibval1[i]); - opfuncs[cptr[9].op_state](&cptr[9]); - operator_output(&cptr[9],0,tremval1[i]); - - operator_advance(&cptr[3],0); - opfuncs[cptr[3].op_state](&cptr[3]); - operator_output(&cptr[3],cptr[9].cval*FIXEDPT,tremval2[i]); - - operator_advance(&cptr[3+9],0); - opfuncs[cptr[3+9].op_state](&cptr[3+9]); - operator_output(&cptr[3+9],cptr[3].cval*FIXEDPT,tremval3[i]); - - Bit32s chanval = cptr[3+9].cval; - CHANVAL_OUT - } - } - } - continue; - } -#endif - // 2op additive synthesis - if ((cptr[9].op_state == OF_TYPE_OFF) && (cptr[0].op_state == OF_TYPE_OFF)) continue; - if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) { - vibval1 = vibval_var1; - for (i=0;i<endsamples;i++) - vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC); - } else vibval1 = vibval_const; - if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) { - vibval2 = vibval_var2; - for (i=0;i<endsamples;i++) - vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC); - } else vibval2 = vibval_const; - if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table - else tremval1 = tremval_const; - if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table - else tremval2 = tremval_const; - - // calculate channel output - for (i=0;i<endsamples;i++) { - // carrier1 - operator_advance(&cptr[0],vibval1[i]); - opfuncs[cptr[0].op_state](&cptr[0]); - operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]); - - // carrier2 - operator_advance(&cptr[9],vibval2[i]); - opfuncs[cptr[9].op_state](&cptr[9]); - operator_output(&cptr[9],0,tremval2[i]); - - Bit32s chanval = cptr[9].cval + cptr[0].cval; - CHANVAL_OUT - } - } else { -#if defined(OPLTYPE_IS_OPL3) - if ((adlibreg[0x105]&1) && cptr->is_4op) { - if (adlibreg[ARC_FEEDBACK+k+3]&1) { - // FM-AM-style synthesis ((op1[fb] * op2) + (op3 * op4)) - if ((cptr[0].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF)) { - if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) { - vibval1 = vibval_var1; - for (i=0;i<endsamples;i++) - vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC); - } else vibval1 = vibval_const; - if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) { - vibval2 = vibval_var2; - for (i=0;i<endsamples;i++) - vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC); - } else vibval2 = vibval_const; - if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table - else tremval1 = tremval_const; - if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table - else tremval2 = tremval_const; - - // calculate channel output - for (i=0;i<endsamples;i++) { - operator_advance(&cptr[0],vibval1[i]); - opfuncs[cptr[0].op_state](&cptr[0]); - operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]); - - operator_advance(&cptr[9],vibval2[i]); - opfuncs[cptr[9].op_state](&cptr[9]); - operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]); - - Bit32s chanval = cptr[9].cval; - CHANVAL_OUT - } - } - - if ((cptr[3].op_state != OF_TYPE_OFF) || (cptr[3+9].op_state != OF_TYPE_OFF)) { - if (cptr[3].tremolo) tremval1 = trem_lut; // tremolo enabled, use table - else tremval1 = tremval_const; - if (cptr[3+9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table - else tremval2 = tremval_const; - - // calculate channel output - for (i=0;i<endsamples;i++) { - operator_advance(&cptr[3],0); - opfuncs[cptr[3].op_state](&cptr[3]); - operator_output(&cptr[3],0,tremval1[i]); - - operator_advance(&cptr[3+9],0); - opfuncs[cptr[3+9].op_state](&cptr[3+9]); - operator_output(&cptr[3+9],cptr[3].cval*FIXEDPT,tremval2[i]); - - Bit32s chanval = cptr[3+9].cval; - CHANVAL_OUT - } - } - - } else { - // FM-FM-style synthesis (op1[fb] * op2 * op3 * op4) - if ((cptr[0].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF) || - (cptr[3].op_state != OF_TYPE_OFF) || (cptr[3+9].op_state != OF_TYPE_OFF)) { - if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) { - vibval1 = vibval_var1; - for (i=0;i<endsamples;i++) - vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC); - } else vibval1 = vibval_const; - if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) { - vibval2 = vibval_var2; - for (i=0;i<endsamples;i++) - vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC); - } else vibval2 = vibval_const; - if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table - else tremval1 = tremval_const; - if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table - else tremval2 = tremval_const; - if (cptr[3].tremolo) tremval3 = trem_lut; // tremolo enabled, use table - else tremval3 = tremval_const; - if (cptr[3+9].tremolo) tremval4 = trem_lut; // tremolo enabled, use table - else tremval4 = tremval_const; - - // calculate channel output - for (i=0;i<endsamples;i++) { - operator_advance(&cptr[0],vibval1[i]); - opfuncs[cptr[0].op_state](&cptr[0]); - operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]); - - operator_advance(&cptr[9],vibval2[i]); - opfuncs[cptr[9].op_state](&cptr[9]); - operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]); - - operator_advance(&cptr[3],0); - opfuncs[cptr[3].op_state](&cptr[3]); - operator_output(&cptr[3],cptr[9].cval*FIXEDPT,tremval3[i]); - - operator_advance(&cptr[3+9],0); - opfuncs[cptr[3+9].op_state](&cptr[3+9]); - operator_output(&cptr[3+9],cptr[3].cval*FIXEDPT,tremval4[i]); - - Bit32s chanval = cptr[3+9].cval; - CHANVAL_OUT - } - } - } - continue; - } -#endif - // 2op frequency modulation - if ((cptr[9].op_state == OF_TYPE_OFF) && (cptr[0].op_state == OF_TYPE_OFF)) continue; - if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) { - vibval1 = vibval_var1; - for (i=0;i<endsamples;i++) - vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC); - } else vibval1 = vibval_const; - if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) { - vibval2 = vibval_var2; - for (i=0;i<endsamples;i++) - vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC); - } else vibval2 = vibval_const; - if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table - else tremval1 = tremval_const; - if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table - else tremval2 = tremval_const; - - // calculate channel output - for (i=0;i<endsamples;i++) { - // modulator - operator_advance(&cptr[0],vibval1[i]); - opfuncs[cptr[0].op_state](&cptr[0]); - operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]); - - // carrier - operator_advance(&cptr[9],vibval2[i]); - opfuncs[cptr[9].op_state](&cptr[9]); - operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]); - - Bit32s chanval = cptr[9].cval; - CHANVAL_OUT - } - } - } - -#if defined(OPLTYPE_IS_OPL3) - if (adlibreg[0x105]&1) { - // convert to 16bit samples (stereo) - for (i=0;i<endsamples;i++) { - clipit16(outbufl[i] * 2,sndptr++); - clipit16(outbufr[i] * 2,sndptr++); - } - } else { - // convert to 16bit samples (mono) - for (i=0;i<endsamples;i++) { - clipit16(outbufl[i] * 2,sndptr++); - clipit16(outbufl[i] * 2,sndptr++); - } - } -#else - // convert to 16bit samples - for (i=0;i<endsamples;i++) - clipit16(outbufl[i] * 2,sndptr++); -#endif - - } -} |