diff options
Diffstat (limited to 'sound/softsynth/opl')
-rw-r--r-- | sound/softsynth/opl/dosbox.cpp | 355 | ||||
-rw-r--r-- | sound/softsynth/opl/dosbox.h | 122 | ||||
-rw-r--r-- | sound/softsynth/opl/mame.cpp | 46 | ||||
-rw-r--r-- | sound/softsynth/opl/mame.h | 34 | ||||
-rw-r--r-- | sound/softsynth/opl/opl.cpp | 1445 | ||||
-rw-r--r-- | sound/softsynth/opl/opl.h | 197 |
6 files changed, 2193 insertions, 6 deletions
diff --git a/sound/softsynth/opl/dosbox.cpp b/sound/softsynth/opl/dosbox.cpp new file mode 100644 index 0000000000..60bc417cdd --- /dev/null +++ b/sound/softsynth/opl/dosbox.cpp @@ -0,0 +1,355 @@ +/* ScummVM - Graphic Adventure Engine + * + * ScummVM is the legal property of its developers, whose names + * are too numerous to list here. Please refer to the COPYRIGHT + * file distributed with this source distribution. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. + * + * $URL$ + * $Id$ + */ + +/* + * Based on AdLib emulation code of DOSBox + * Copyright (C) 2002-2009 The DOSBox Team + * Licensed under GPLv2+ + * http://www.dosbox.com + */ + +#ifndef DISABLE_DOSBOX_OPL + +#include "dosbox.h" + +#include "common/system.h" + +#include <math.h> +#include <string.h> + +namespace OPL { +namespace DOSBox { + +Timer::Timer() { + masked = false; + overflow = false; + enabled = false; + counter = 0; + delay = 0; +} + +void Timer::update(double time) { + if (!enabled || !delay) + return; + double deltaStart = time - startTime; + // Only set the overflow flag when not masked + if (deltaStart >= 0 && !masked) + overflow = 1; +} + +void Timer::reset(double time) { + overflow = false; + if (!delay || !enabled) + return; + double delta = (time - startTime); + double rem = fmod(delta, delay); + double next = delay - rem; + startTime = time + next; +} + +void Timer::stop() { + enabled = false; +} + +void Timer::start(double time, int scale) { + //Don't enable again + if (enabled) + return; + enabled = true; + delay = 0.001 * (256 - counter) * scale; + startTime = time + delay; +} + +bool Chip::write(uint32 reg, uint8 val) { + switch (reg) { + case 0x02: + timer[0].counter = val; + return true; + case 0x03: + timer[1].counter = val; + return true; + case 0x04: + double time = g_system->getMillis() / 1000.0; + + if (val & 0x80) { + timer[0].reset(time); + timer[1].reset(time); + } else { + timer[0].update(time); + timer[1].update(time); + + if (val & 0x1) + timer[0].start(time, 80); + else + timer[0].stop(); + + timer[0].masked = (val & 0x40) > 0; + + if (timer[0].masked) + timer[0].overflow = false; + + if (val & 0x2) + timer[1].start(time, 320); + else + timer[1].stop(); + + timer[1].masked = (val & 0x20) > 0; + + if (timer[1].masked) + timer[1].overflow = false; + } + return true; + } + return false; +} + +uint8 Chip::read() { + double time = g_system->getMillis() / 1000.0; + + timer[0].update(time); + timer[1].update(time); + + uint8 ret = 0; + // Overflow won't be set if a channel is masked + if (timer[0].overflow) { + ret |= 0x40; + ret |= 0x80; + } + if (timer[1].overflow) { + ret |= 0x20; + ret |= 0x80; + } + return ret; +} + +namespace OPL2 { +#include "opl.cpp" + +struct Handler : public DOSBox::Handler { + void writeReg(uint32 reg, uint8 val) { + adlib_write(reg, val); + } + + uint32 writeAddr(uint32 port, uint8 val) { + return val; + } + + void generate(int16 *chan, uint samples) { + adlib_getsample(chan, samples); + } + + void init(uint rate) { + adlib_init(rate); + } +}; +} // end of namespace OPL2 + +namespace OPL3 { +#define OPLTYPE_IS_OPL3 +#include "opl.cpp" + +struct Handler : public DOSBox::Handler { + void writeReg(uint32 reg, uint8 val) { + adlib_write(reg,val); + } + + uint32 writeAddr(uint32 port, uint8 val) { + adlib_write_index(port, val); + return index; + } + + void generate(int16 *chan, uint samples) { + adlib_getsample(chan, samples); + } + + void init(uint rate) { + adlib_init(rate); + } +}; +} // end of namespace OPL3 + +OPL_DOSBox::OPL_DOSBox(kOplType type) : _type(type), _rate(0), _handler(0) { +} + +OPL_DOSBox::~OPL_DOSBox() { + free(); +} + +void OPL_DOSBox::free() { + delete _handler; + _handler = 0; +} + +bool OPL_DOSBox::init(int rate) { + free(); + + memset(&_reg, 0, sizeof(_reg)); + memset(_chip, 0, sizeof(_chip)); + + switch (_type) { + case kOpl2: + _handler = new OPL2::Handler(); + break; + + case kDualOpl2: + case kOpl3: + _handler = new OPL3::Handler(); + break; + + default: + return false; + } + + _handler->init(rate); + _rate = rate; + return true; +} + +void OPL_DOSBox::reset() { + init(_rate); +} + +void OPL_DOSBox::write(int port, int val) { + if (port&1) { + switch (_type) { + case kOpl2: + case kOpl3: + if (!_chip[0].write(_reg.normal, val)) + _handler->writeReg(_reg.normal, val); + break; + case kDualOpl2: + // Not a 0x??8 port, then write to a specific port + if (!(port & 0x8)) { + byte index = (port & 2) >> 1; + dualWrite(index, _reg.dual[index], val); + } else { + //Write to both ports + dualWrite(0, _reg.dual[0], val); + dualWrite(1, _reg.dual[1], val); + } + break; + } + } else { + // Ask the handler to write the address + // Make sure to clip them in the right range + switch (_type) { + case kOpl2: + _reg.normal = _handler->writeAddr(port, val) & 0xff; + break; + case kOpl3: + _reg.normal = _handler->writeAddr(port, val) & 0x1ff; + break; + case kDualOpl2: + // Not a 0x?88 port, when write to a specific side + if (!(port & 0x8)) { + byte index = (port & 2) >> 1; + _reg.dual[index] = val & 0xff; + } else { + _reg.dual[0] = val & 0xff; + _reg.dual[1] = val & 0xff; + } + break; + } + } +} + +byte OPL_DOSBox::read(int port) { + switch (_type) { + case kOpl2: + if (!(port & 1)) + //Make sure the low bits are 6 on opl2 + return _chip[0].read() | 0x6; + break; + case kOpl3: + if (!(port & 1)) + return _chip[0].read(); + break; + case kDualOpl2: + // Only return for the lower ports + if (port & 1) + return 0xff; + // Make sure the low bits are 6 on opl2 + return _chip[(port >> 1) & 1].read() | 0x6; + } + return 0; +} + +void OPL_DOSBox::writeReg(int r, int v) { + byte tempReg = 0; + switch (_type) { + case kOpl2: + case kDualOpl2: + case kOpl3: + // We can't use _handler->writeReg here directly, since it would miss timer changes. + + // Backup old setup register + tempReg = _reg.normal; + + // We need to set the register we want to write to via port 0x388 + write(0x388, r); + // Do the real writing to the register + write(0x389, v); + // Restore the old register + write(0x388, tempReg); + break; + }; +} + +void OPL_DOSBox::dualWrite(uint8 index, uint8 reg, uint8 val) { + // Make sure you don't use opl3 features + // Don't allow write to disable opl3 + if (reg == 5) + return; + + // Only allow 4 waveforms + if (reg >= 0xE0) + val &= 3; + + // Write to the timer? + if (_chip[index].write(reg, val)) + return; + + // Enabling panning + if (reg >= 0xc0 && reg < 0xc8) { + val &= 7; + val |= index ? 0xA0 : 0x50; + } + + uint32 fullReg = reg + (index ? 0x100 : 0); + _handler->writeReg(fullReg, val); +} + +void OPL_DOSBox::readBuffer(int16 *buffer, int length) { + // For stereo OPL cards, we divide the sample count by 2, + // to match stereo AudioStream behavior. + if (_type != kOpl2) + length >>= 1; + + _handler->generate(buffer, length); +} + +} // end of namespace DOSBox +} // end of namespace OPL + +#endif // !DISABLE_DOSBOX_ADLIB diff --git a/sound/softsynth/opl/dosbox.h b/sound/softsynth/opl/dosbox.h new file mode 100644 index 0000000000..f09ddf85e4 --- /dev/null +++ b/sound/softsynth/opl/dosbox.h @@ -0,0 +1,122 @@ +/* ScummVM - Graphic Adventure Engine + * + * ScummVM is the legal property of its developers, whose names + * are too numerous to list here. Please refer to the COPYRIGHT + * file distributed with this source distribution. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. + * + * $URL$ + * $Id$ + */ + +/* + * Based on OPL emulation code of DOSBox + * Copyright (C) 2002-2009 The DOSBox Team + * Licensed under GPLv2+ + * http://www.dosbox.com + */ + +#ifndef SOUND_SOFTSYNTH_OPL_DOSBOX_H +#define SOUND_SOFTSYNTH_OPL_DOSBOX_H + +#ifndef DISABLE_DOSBOX_OPL + +#include "sound/fmopl.h" + +namespace OPL { +namespace DOSBox { + +class Handler; + +struct Timer { + double startTime; + double delay; + bool enabled, overflow, masked; + uint8 counter; + + Timer(); + + //Call update before making any further changes + void update(double time); + + //On a reset make sure the start is in sync with the next cycle + void reset(double time); + + void stop(); + + void start(double time, int scale); +}; + +struct Chip { + //Last selected register + Timer timer[2]; + //Check for it being a write to the timer + bool write(uint32 addr, uint8 val); + //Read the current timer state, will use current double + uint8 read(); +}; + +class Handler { +public: + virtual ~Handler() {} + + // Write an address to a chip, returns the address the chip sets + virtual uint32 writeAddr(uint32 port, uint8 val) = 0; + // Write to a specific register in the chip + virtual void writeReg(uint32 addr, uint8 val) = 0; + // Generate a certain amount of samples + virtual void generate(int16 *chan, uint samples) = 0; + // Initialize at a specific sample rate and mode + virtual void init(uint rate) = 0; +}; + +class OPL_DOSBox : public OPL { +private: + kOplType _type; + uint _rate; + + Handler *_handler; + Chip _chip[2]; + union { + uint16 normal; + uint8 dual[2]; + } _reg; + + void free(); + void dualWrite(uint8 index, uint8 reg, uint8 val); +public: + OPL_DOSBox(kOplType type); + ~OPL_DOSBox(); + + bool init(int rate); + void reset(); + + void write(int a, int v); + byte read(int a); + + void writeReg(int r, int v); + + void readBuffer(int16 *buffer, int length); + bool isStereo() const { return _type != kOpl2; } +}; + +} // end of namespace DOSBox +} // end of namespace OPL + +#endif // !DISABLE_DOSBOX_OPL + +#endif + diff --git a/sound/softsynth/opl/mame.cpp b/sound/softsynth/opl/mame.cpp index 4834e586c3..6427469a59 100644 --- a/sound/softsynth/opl/mame.cpp +++ b/sound/softsynth/opl/mame.cpp @@ -31,12 +31,48 @@ #include <stdarg.h> #include <math.h> -#include "sound/fmopl.h" +#include "mame.h" #if defined (_WIN32_WCE) || defined (__SYMBIAN32__) || defined(PALMOS_MODE) || defined(__GP32__) || defined(GP2X) || defined (__MAEMO__) || defined(__DS__) || defined (__MINT__) #include "common/config-manager.h" #endif +namespace OPL { +namespace MAME { + +OPL_MAME::~OPL_MAME() { + MAME::OPLDestroy(_opl); + _opl = 0; +} + +bool OPL_MAME::init(int rate) { + if (_opl) + MAME::OPLDestroy(_opl); + + _opl = MAME::makeAdlibOPL(rate); + return (_opl != 0); +} + +void OPL_MAME::reset() { + MAME::OPLResetChip(_opl); +} + +void OPL_MAME::write(int a, int v) { + MAME::OPLWrite(_opl, a, v); +} + +byte OPL_MAME::read(int a) { + return MAME::OPLRead(_opl, a); +} + +void OPL_MAME::writeReg(int r, int v) { + MAME::OPLWriteReg(_opl, r, v); +} + +void OPL_MAME::readBuffer(int16 *buffer, int length) { + MAME::YM3812UpdateOne(_opl, buffer, length); +} + /* -------------------- preliminary define section --------------------- */ /* attack/decay rate time rate */ #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */ @@ -978,7 +1014,7 @@ static void OPL_UnLockTable(void) { /*******************************************************************************/ /* ---------- update one of chip ----------- */ -void YM3812UpdateOne(FM_OPL *OPL, int16 *buffer, int length, int interleave) { +void YM3812UpdateOne(FM_OPL *OPL, int16 *buffer, int length) { int i; int data; int16 *buf = buffer; @@ -1020,7 +1056,7 @@ void YM3812UpdateOne(FM_OPL *OPL, int16 *buffer, int length, int interleave) { /* limit check */ data = CLIP(outd[0], OPL_MINOUT, OPL_MAXOUT); /* store to sound buffer */ - buf[i << interleave] = data >> OPL_OUTSB; + buf[i] = data >> OPL_OUTSB; } OPL->amsCnt = amsCnt; @@ -1189,3 +1225,7 @@ FM_OPL *makeAdlibOPL(int rate) { OPLBuildTables(env_bits, eg_ent); return OPLCreate(OPL_TYPE_YM3812, 3579545, rate); } + +} // end of namespace MAME +} // end of namespace OPL + diff --git a/sound/softsynth/opl/mame.h b/sound/softsynth/opl/mame.h index 47f21c9956..a9835f3b97 100644 --- a/sound/softsynth/opl/mame.h +++ b/sound/softsynth/opl/mame.h @@ -26,12 +26,17 @@ */ -#ifndef SOUND_FMOPL_H -#define SOUND_FMOPL_H +#ifndef SOUND_SOFTSYNTH_OPL_MAME_H +#define SOUND_SOFTSYNTH_OPL_MAME_H #include "common/scummsys.h" #include "common/util.h" +#include "sound/fmopl.h" + +namespace OPL { +namespace MAME { + enum { FMOPL_ENV_BITS_HQ = 16, FMOPL_ENV_BITS_MQ = 8, @@ -165,9 +170,32 @@ int OPLWrite(FM_OPL *OPL, int a, int v); unsigned char OPLRead(FM_OPL *OPL, int a); int OPLTimerOver(FM_OPL *OPL, int c); void OPLWriteReg(FM_OPL *OPL, int r, int v); -void YM3812UpdateOne(FM_OPL *OPL, int16 *buffer, int length, int interleave = 0); +void YM3812UpdateOne(FM_OPL *OPL, int16 *buffer, int length); // Factory method FM_OPL *makeAdlibOPL(int rate); +// OPL API implementation +class OPL_MAME : public OPL { +private: + FM_OPL *_opl; +public: + OPL_MAME() : _opl(0) {} + ~OPL_MAME(); + + bool init(int rate); + void reset(); + + void write(int a, int v); + byte read(int a); + + void writeReg(int r, int v); + + void readBuffer(int16 *buffer, int length); + bool isStereo() const { return false; } +}; + +} // end of namespace MAME +} // end of namespace OPL + #endif diff --git a/sound/softsynth/opl/opl.cpp b/sound/softsynth/opl/opl.cpp new file mode 100644 index 0000000000..416f38a8ce --- /dev/null +++ b/sound/softsynth/opl/opl.cpp @@ -0,0 +1,1445 @@ +/* + * Copyright (C) 2002-2009 The DOSBox Team + * OPL2/OPL3 emulation library + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + + +/* + * Originally based on ADLIBEMU.C, an AdLib/OPL2 emulation library by Ken Silverman + * Copyright (C) 1998-2001 Ken Silverman + * Ken Silverman's official web site: "http://www.advsys.net/ken" + */ + +#include "opl.h" + + +static fltype recipsamp; // inverse of sampling rate +static Bit16s wavtable[WAVEPREC*3]; // wave form table + +// vibrato/tremolo tables +static Bit32s vib_table[VIBTAB_SIZE]; +static Bit32s trem_table[TREMTAB_SIZE*2]; + +static Bit32s vibval_const[BLOCKBUF_SIZE]; +static Bit32s tremval_const[BLOCKBUF_SIZE]; + +// vibrato value tables (used per-operator) +static Bit32s vibval_var1[BLOCKBUF_SIZE]; +static Bit32s vibval_var2[BLOCKBUF_SIZE]; + +// vibrato/trmolo value table pointers +static Bit32s *vibval1, *vibval2, *vibval3, *vibval4; +static Bit32s *tremval1, *tremval2, *tremval3, *tremval4; + + +// key scale level lookup table +static const fltype kslmul[4] = { + 0.0, 0.5, 0.25, 1.0 // -> 0, 3, 1.5, 6 dB/oct +}; + +// frequency multiplicator lookup table +static const fltype frqmul_tab[16] = { + 0.5,1,2,3,4,5,6,7,8,9,10,10,12,12,15,15 +}; +// calculated frequency multiplication values (depend on sampling rate) +static float frqmul[16]; + +// key scale levels +static Bit8u kslev[8][16]; + +// map a channel number to the register offset of the modulator (=register base) +static const Bit8u modulatorbase[9] = { + 0,1,2, + 8,9,10, + 16,17,18 +}; + +// map a register base to a modulator operator number or operator number +#if defined(OPLTYPE_IS_OPL3) +static const Bit8u regbase2modop[44] = { + 0,1,2,0,1,2,0,0,3,4,5,3,4,5,0,0,6,7,8,6,7,8, // first set + 18,19,20,18,19,20,0,0,21,22,23,21,22,23,0,0,24,25,26,24,25,26 // second set +}; +static const Bit8u regbase2op[44] = { + 0,1,2,9,10,11,0,0,3,4,5,12,13,14,0,0,6,7,8,15,16,17, // first set + 18,19,20,27,28,29,0,0,21,22,23,30,31,32,0,0,24,25,26,33,34,35 // second set +}; +#else +static const Bit8u regbase2modop[22] = { + 0,1,2,0,1,2,0,0,3,4,5,3,4,5,0,0,6,7,8,6,7,8 +}; +static const Bit8u regbase2op[22] = { + 0,1,2,9,10,11,0,0,3,4,5,12,13,14,0,0,6,7,8,15,16,17 +}; +#endif + + +// start of the waveform +static Bit32u waveform[8] = { + WAVEPREC, + WAVEPREC>>1, + WAVEPREC, + (WAVEPREC*3)>>2, + 0, + 0, + (WAVEPREC*5)>>2, + WAVEPREC<<1 +}; + +// length of the waveform as mask +static Bit32u wavemask[8] = { + WAVEPREC-1, + WAVEPREC-1, + (WAVEPREC>>1)-1, + (WAVEPREC>>1)-1, + WAVEPREC-1, + ((WAVEPREC*3)>>2)-1, + WAVEPREC>>1, + WAVEPREC-1 +}; + +// where the first entry resides +static Bit32u wavestart[8] = { + 0, + WAVEPREC>>1, + 0, + WAVEPREC>>2, + 0, + 0, + 0, + WAVEPREC>>3 +}; + +// envelope generator function constants +static fltype attackconst[4] = {1/2.82624,1/2.25280,1/1.88416,1/1.59744}; +static fltype decrelconst[4] = {1/39.28064,1/31.41608,1/26.17344,1/22.44608}; + + +void operator_advance(op_type* op_pt, Bit32s vib) { + op_pt->wfpos = op_pt->tcount; // waveform position + + // advance waveform time + op_pt->tcount += op_pt->tinc; + op_pt->tcount += (Bit32s)(op_pt->tinc)*vib/FIXEDPT; + + op_pt->generator_pos += generator_add; +} + +void operator_advance_drums(op_type* op_pt1, Bit32s vib1, op_type* op_pt2, Bit32s vib2, op_type* op_pt3, Bit32s vib3) { + Bit32u c1 = op_pt1->tcount/FIXEDPT; + Bit32u c3 = op_pt3->tcount/FIXEDPT; + Bit32u phasebit = (((c1 & 0x88) ^ ((c1<<5) & 0x80)) | ((c3 ^ (c3<<2)) & 0x20)) ? 0x02 : 0x00; + + Bit32u noisebit = rand()&1; + + Bit32u snare_phase_bit = (((Bitu)((op_pt1->tcount/FIXEDPT) / 0x100))&1); + + //Hihat + Bit32u inttm = (phasebit<<8) | (0x34<<(phasebit ^ (noisebit<<1))); + op_pt1->wfpos = inttm*FIXEDPT; // waveform position + // advance waveform time + op_pt1->tcount += op_pt1->tinc; + op_pt1->tcount += (Bit32s)(op_pt1->tinc)*vib1/FIXEDPT; + op_pt1->generator_pos += generator_add; + + //Snare + inttm = ((1+snare_phase_bit) ^ noisebit)<<8; + op_pt2->wfpos = inttm*FIXEDPT; // waveform position + // advance waveform time + op_pt2->tcount += op_pt2->tinc; + op_pt2->tcount += (Bit32s)(op_pt2->tinc)*vib2/FIXEDPT; + op_pt2->generator_pos += generator_add; + + //Cymbal + inttm = (1+phasebit)<<8; + op_pt3->wfpos = inttm*FIXEDPT; // waveform position + // advance waveform time + op_pt3->tcount += op_pt3->tinc; + op_pt3->tcount += (Bit32s)(op_pt3->tinc)*vib3/FIXEDPT; + op_pt3->generator_pos += generator_add; +} + + +// output level is sustained, mode changes only when operator is turned off (->release) +// or when the keep-sustained bit is turned off (->sustain_nokeep) +void operator_output(op_type* op_pt, Bit32s modulator, Bit32s trem) { + if (op_pt->op_state != OF_TYPE_OFF) { + op_pt->lastcval = op_pt->cval; + Bit32u i = (Bit32u)((op_pt->wfpos+modulator)/FIXEDPT); + + // wform: -16384 to 16383 (0x4000) + // trem : 32768 to 65535 (0x10000) + // step_amp: 0.0 to 1.0 + // vol : 1/2^14 to 1/2^29 (/0x4000; /1../0x8000) + + op_pt->cval = (Bit32s)(op_pt->step_amp*op_pt->vol*op_pt->cur_wform[i&op_pt->cur_wmask]*trem/16.0); + } +} + + +// no action, operator is off +void operator_off(op_type* /*op_pt*/) { +} + +// output level is sustained, mode changes only when operator is turned off (->release) +// or when the keep-sustained bit is turned off (->sustain_nokeep) +void operator_sustain(op_type* op_pt) { + Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples + for (Bit32u ct=0; ct<num_steps_add; ct++) { + op_pt->cur_env_step++; + } + op_pt->generator_pos -= num_steps_add*FIXEDPT; +} + +// operator in release mode, if output level reaches zero the operator is turned off +void operator_release(op_type* op_pt) { + // ??? boundary? + if (op_pt->amp > 0.00000001) { + // release phase + op_pt->amp *= op_pt->releasemul; + } + + Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples + for (Bit32u ct=0; ct<num_steps_add; ct++) { + op_pt->cur_env_step++; // sample counter + if ((op_pt->cur_env_step & op_pt->env_step_r)==0) { + if (op_pt->amp <= 0.00000001) { + // release phase finished, turn off this operator + op_pt->amp = 0.0; + if (op_pt->op_state == OF_TYPE_REL) { + op_pt->op_state = OF_TYPE_OFF; + } + } + op_pt->step_amp = op_pt->amp; + } + } + op_pt->generator_pos -= num_steps_add*FIXEDPT; +} + +// operator in decay mode, if sustain level is reached the output level is either +// kept (sustain level keep enabled) or the operator is switched into release mode +void operator_decay(op_type* op_pt) { + if (op_pt->amp > op_pt->sustain_level) { + // decay phase + op_pt->amp *= op_pt->decaymul; + } + + Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples + for (Bit32u ct=0; ct<num_steps_add; ct++) { + op_pt->cur_env_step++; + if ((op_pt->cur_env_step & op_pt->env_step_d)==0) { + if (op_pt->amp <= op_pt->sustain_level) { + // decay phase finished, sustain level reached + if (op_pt->sus_keep) { + // keep sustain level (until turned off) + op_pt->op_state = OF_TYPE_SUS; + op_pt->amp = op_pt->sustain_level; + } else { + // next: release phase + op_pt->op_state = OF_TYPE_SUS_NOKEEP; + } + } + op_pt->step_amp = op_pt->amp; + } + } + op_pt->generator_pos -= num_steps_add*FIXEDPT; +} + +// operator in attack mode, if full output level is reached, +// the operator is switched into decay mode +void operator_attack(op_type* op_pt) { + op_pt->amp = ((op_pt->a3*op_pt->amp + op_pt->a2)*op_pt->amp + op_pt->a1)*op_pt->amp + op_pt->a0; + + Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples + for (Bit32u ct=0; ct<num_steps_add; ct++) { + op_pt->cur_env_step++; // next sample + if ((op_pt->cur_env_step & op_pt->env_step_a)==0) { // check if next step already reached + if (op_pt->amp > 1.0) { + // attack phase finished, next: decay + op_pt->op_state = OF_TYPE_DEC; + op_pt->amp = 1.0; + op_pt->step_amp = 1.0; + } + op_pt->step_skip_pos <<= 1; + if (op_pt->step_skip_pos==0) op_pt->step_skip_pos = 1; + if (op_pt->step_skip_pos & op_pt->env_step_skip_a) { // check if required to skip next step + op_pt->step_amp = op_pt->amp; + } + } + } + op_pt->generator_pos -= num_steps_add*FIXEDPT; +} + + +typedef void (*optype_fptr)(op_type*); + +optype_fptr opfuncs[6] = { + operator_attack, + operator_decay, + operator_release, + operator_sustain, // sustain phase (keeping level) + operator_release, // sustain_nokeep phase (release-style) + operator_off +}; + +void change_attackrate(Bitu regbase, op_type* op_pt) { + Bits attackrate = adlibreg[ARC_ATTR_DECR+regbase]>>4; + if (attackrate) { + fltype f = (fltype)(pow(FL2,(fltype)attackrate+(op_pt->toff>>2)-1)*attackconst[op_pt->toff&3]*recipsamp); + // attack rate coefficients + op_pt->a0 = (fltype)(0.0377*f); + op_pt->a1 = (fltype)(10.73*f+1); + op_pt->a2 = (fltype)(-17.57*f); + op_pt->a3 = (fltype)(7.42*f); + + Bits step_skip = attackrate*4 + op_pt->toff; + Bits steps = step_skip >> 2; + op_pt->env_step_a = (1<<(steps<=12?12-steps:0))-1; + + Bits step_num = (step_skip<=48)?(4-(step_skip&3)):0; + static Bit8u step_skip_mask[5] = {0xff, 0xfe, 0xee, 0xba, 0xaa}; + op_pt->env_step_skip_a = step_skip_mask[step_num]; + +#if defined(OPLTYPE_IS_OPL3) + if (step_skip>=60) { +#else + if (step_skip>=62) { +#endif + op_pt->a0 = (fltype)(2.0); // something that triggers an immediate transition to amp:=1.0 + op_pt->a1 = (fltype)(0.0); + op_pt->a2 = (fltype)(0.0); + op_pt->a3 = (fltype)(0.0); + } + } else { + // attack disabled + op_pt->a0 = 0.0; + op_pt->a1 = 1.0; + op_pt->a2 = 0.0; + op_pt->a3 = 0.0; + op_pt->env_step_a = 0; + op_pt->env_step_skip_a = 0; + } +} + +void change_decayrate(Bitu regbase, op_type* op_pt) { + Bits decayrate = adlibreg[ARC_ATTR_DECR+regbase]&15; + // decaymul should be 1.0 when decayrate==0 + if (decayrate) { + fltype f = (fltype)(-7.4493*decrelconst[op_pt->toff&3]*recipsamp); + op_pt->decaymul = (fltype)(pow(FL2,f*pow(FL2,(fltype)(decayrate+(op_pt->toff>>2))))); + Bits steps = (decayrate*4 + op_pt->toff) >> 2; + op_pt->env_step_d = (1<<(steps<=12?12-steps:0))-1; + } else { + op_pt->decaymul = 1.0; + op_pt->env_step_d = 0; + } +} + +void change_releaserate(Bitu regbase, op_type* op_pt) { + Bits releaserate = adlibreg[ARC_SUSL_RELR+regbase]&15; + // releasemul should be 1.0 when releaserate==0 + if (releaserate) { + fltype f = (fltype)(-7.4493*decrelconst[op_pt->toff&3]*recipsamp); + op_pt->releasemul = (fltype)(pow(FL2,f*pow(FL2,(fltype)(releaserate+(op_pt->toff>>2))))); + Bits steps = (releaserate*4 + op_pt->toff) >> 2; + op_pt->env_step_r = (1<<(steps<=12?12-steps:0))-1; + } else { + op_pt->releasemul = 1.0; + op_pt->env_step_r = 0; + } +} + +void change_sustainlevel(Bitu regbase, op_type* op_pt) { + Bits sustainlevel = adlibreg[ARC_SUSL_RELR+regbase]>>4; + // sustainlevel should be 0.0 when sustainlevel==15 (max) + if (sustainlevel<15) { + op_pt->sustain_level = (fltype)(pow(FL2,(fltype)sustainlevel * (-FL05))); + } else { + op_pt->sustain_level = 0.0; + } +} + +void change_waveform(Bitu regbase, op_type* op_pt) { +#if defined(OPLTYPE_IS_OPL3) + if (regbase>=ARC_SECONDSET) regbase -= (ARC_SECONDSET-22); // second set starts at 22 +#endif + // waveform selection + op_pt->cur_wmask = wavemask[wave_sel[regbase]]; + op_pt->cur_wform = &wavtable[waveform[wave_sel[regbase]]]; + // (might need to be adapted to waveform type here...) +} + +void change_keepsustain(Bitu regbase, op_type* op_pt) { + op_pt->sus_keep = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x20)>0; + if (op_pt->op_state==OF_TYPE_SUS) { + if (!op_pt->sus_keep) op_pt->op_state = OF_TYPE_SUS_NOKEEP; + } else if (op_pt->op_state==OF_TYPE_SUS_NOKEEP) { + if (op_pt->sus_keep) op_pt->op_state = OF_TYPE_SUS; + } +} + +// enable/disable vibrato/tremolo LFO effects +void change_vibrato(Bitu regbase, op_type* op_pt) { + op_pt->vibrato = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x40)!=0; + op_pt->tremolo = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x80)!=0; +} + +// change amount of self-feedback +void change_feedback(Bitu chanbase, op_type* op_pt) { + Bits feedback = adlibreg[ARC_FEEDBACK+chanbase]&14; + if (feedback) op_pt->mfbi = (Bit32s)(pow(FL2,(fltype)((feedback>>1)+8))); + else op_pt->mfbi = 0; +} + +void change_frequency(Bitu chanbase, Bitu regbase, op_type* op_pt) { + // frequency + Bit32u frn = ((((Bit32u)adlibreg[ARC_KON_BNUM+chanbase])&3)<<8) + (Bit32u)adlibreg[ARC_FREQ_NUM+chanbase]; + // block number/octave + Bit32u oct = ((((Bit32u)adlibreg[ARC_KON_BNUM+chanbase])>>2)&7); + op_pt->freq_high = (Bit32s)((frn>>7)&7); + + // keysplit + Bit32u note_sel = (adlibreg[8]>>6)&1; + op_pt->toff = ((frn>>9)&(note_sel^1)) | ((frn>>8)¬e_sel); + op_pt->toff += (oct<<1); + + // envelope scaling (KSR) + if (!(adlibreg[ARC_TVS_KSR_MUL+regbase]&0x10)) op_pt->toff >>= 2; + + // 20+a0+b0: + op_pt->tinc = (Bit32u)((((fltype)(frn<<oct))*frqmul[adlibreg[ARC_TVS_KSR_MUL+regbase]&15])); + // 40+a0+b0: + fltype vol_in = (fltype)((fltype)(adlibreg[ARC_KSL_OUTLEV+regbase]&63) + + kslmul[adlibreg[ARC_KSL_OUTLEV+regbase]>>6]*kslev[oct][frn>>6]); + op_pt->vol = (fltype)(pow(FL2,(fltype)(vol_in * -0.125 - 14))); + + // operator frequency changed, care about features that depend on it + change_attackrate(regbase,op_pt); + change_decayrate(regbase,op_pt); + change_releaserate(regbase,op_pt); +} + +void enable_operator(Bitu regbase, op_type* op_pt, Bit32u act_type) { + // check if this is really an off-on transition + if (op_pt->act_state == OP_ACT_OFF) { + Bits wselbase = regbase; + if (wselbase>=ARC_SECONDSET) wselbase -= (ARC_SECONDSET-22); // second set starts at 22 + + op_pt->tcount = wavestart[wave_sel[wselbase]]*FIXEDPT; + + // start with attack mode + op_pt->op_state = OF_TYPE_ATT; + op_pt->act_state |= act_type; + } +} + +void disable_operator(op_type* op_pt, Bit32u act_type) { + // check if this is really an on-off transition + if (op_pt->act_state != OP_ACT_OFF) { + op_pt->act_state &= (~act_type); + if (op_pt->act_state == OP_ACT_OFF) { + if (op_pt->op_state != OF_TYPE_OFF) op_pt->op_state = OF_TYPE_REL; + } + } +} + +void adlib_init(Bit32u samplerate) { + Bits i, j, oct; + + int_samplerate = samplerate; + + generator_add = (Bit32u)(INTFREQU*FIXEDPT/int_samplerate); + + + memset((void *)adlibreg,0,sizeof(adlibreg)); + memset((void *)op,0,sizeof(op_type)*MAXOPERATORS); + memset((void *)wave_sel,0,sizeof(wave_sel)); + + for (i=0;i<MAXOPERATORS;i++) { + op[i].op_state = OF_TYPE_OFF; + op[i].act_state = OP_ACT_OFF; + op[i].amp = 0.0; + op[i].step_amp = 0.0; + op[i].vol = 0.0; + op[i].tcount = 0; + op[i].tinc = 0; + op[i].toff = 0; + op[i].cur_wmask = wavemask[0]; + op[i].cur_wform = &wavtable[waveform[0]]; + op[i].freq_high = 0; + + op[i].generator_pos = 0; + op[i].cur_env_step = 0; + op[i].env_step_a = 0; + op[i].env_step_d = 0; + op[i].env_step_r = 0; + op[i].step_skip_pos = 0; + op[i].env_step_skip_a = 0; + +#if defined(OPLTYPE_IS_OPL3) + op[i].is_4op = false; + op[i].is_4op_attached = false; + op[i].left_pan = 1; + op[i].right_pan = 1; +#endif + } + + recipsamp = 1.0 / (fltype)int_samplerate; + for (i=15;i>=0;i--) { + frqmul[i] = (fltype)(frqmul_tab[i]*INTFREQU/(fltype)WAVEPREC*(fltype)FIXEDPT*recipsamp); + } + + status = 0; + index = 0; + + + // create vibrato table + vib_table[0] = 8; + vib_table[1] = 4; + vib_table[2] = 0; + vib_table[3] = -4; + for (i=4; i<VIBTAB_SIZE; i++) vib_table[i] = vib_table[i-4]*-1; + + // vibrato at ~6.1 ?? (opl3 docs say 6.1, opl4 docs say 6.0, y8950 docs say 6.4) + vibtab_add = static_cast<Bit32u>(VIBTAB_SIZE*FIXEDPT_LFO/8192*INTFREQU/int_samplerate); + vibtab_pos = 0; + + for (i=0; i<BLOCKBUF_SIZE; i++) vibval_const[i] = 0; + + + // create tremolo table + Bit32s trem_table_int[TREMTAB_SIZE]; + for (i=0; i<14; i++) trem_table_int[i] = i-13; // upwards (13 to 26 -> -0.5/6 to 0) + for (i=14; i<41; i++) trem_table_int[i] = -i+14; // downwards (26 to 0 -> 0 to -1/6) + for (i=41; i<53; i++) trem_table_int[i] = i-40-26; // upwards (1 to 12 -> -1/6 to -0.5/6) + + for (i=0; i<TREMTAB_SIZE; i++) { + // 0.0 .. -26/26*4.8/6 == [0.0 .. -0.8], 4/53 steps == [1 .. 0.57] + fltype trem_val1=(fltype)(((fltype)trem_table_int[i])*4.8/26.0/6.0); // 4.8db + fltype trem_val2=(fltype)((fltype)((Bit32s)(trem_table_int[i]/4))*1.2/6.0/6.0); // 1.2db (larger stepping) + + trem_table[i] = (Bit32s)(pow(FL2,trem_val1)*FIXEDPT); + trem_table[TREMTAB_SIZE+i] = (Bit32s)(pow(FL2,trem_val2)*FIXEDPT); + } + + // tremolo at 3.7hz + tremtab_add = (Bit32u)((fltype)TREMTAB_SIZE * TREM_FREQ * FIXEDPT_LFO / (fltype)int_samplerate); + tremtab_pos = 0; + + for (i=0; i<BLOCKBUF_SIZE; i++) tremval_const[i] = FIXEDPT; + + + static Bitu initfirstime = 0; + if (!initfirstime) { + initfirstime = 1; + + // create waveform tables + for (i=0;i<(WAVEPREC>>1);i++) { + wavtable[(i<<1) +WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<1) )*PI*2/WAVEPREC)); + wavtable[(i<<1)+1+WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<1)+1)*PI*2/WAVEPREC)); + wavtable[i] = wavtable[(i<<1) +WAVEPREC]; + // table to be verified, alternative: (zero-less) +/* wavtable[(i<<1) +WAVEPREC] = (Bit16s)(16384*sin((fltype)(((i*2+1)<<1)-1)*PI/WAVEPREC)); + wavtable[(i<<1)+1+WAVEPREC] = (Bit16s)(16384*sin((fltype)(((i*2+1)<<1) )*PI/WAVEPREC)); + wavtable[i] = wavtable[(i<<1)-1+WAVEPREC]; */ + } + for (i=0;i<(WAVEPREC>>3);i++) { + wavtable[i+(WAVEPREC<<1)] = wavtable[i+(WAVEPREC>>3)]-16384; + wavtable[i+((WAVEPREC*17)>>3)] = wavtable[i+(WAVEPREC>>2)]+16384; + } + + // key scale level table verified ([table in book]*8/3) + kslev[7][0] = 0; kslev[7][1] = 24; kslev[7][2] = 32; kslev[7][3] = 37; + kslev[7][4] = 40; kslev[7][5] = 43; kslev[7][6] = 45; kslev[7][7] = 47; + kslev[7][8] = 48; + for (i=9;i<16;i++) kslev[7][i] = (Bit8u)(i+41); + for (j=6;j>=0;j--) { + for (i=0;i<16;i++) { + oct = (Bits)kslev[j+1][i]-8; + if (oct < 0) oct = 0; + kslev[j][i] = (Bit8u)oct; + } + } + } + +} + + + +void adlib_write(Bitu idx, Bit8u val) { + Bit32u second_set = idx&0x100; + adlibreg[idx] = val; + + switch (idx&0xf0) { + case ARC_CONTROL: + // here we check for the second set registers, too: + switch (idx) { + case 0x02: // timer1 counter + case 0x03: // timer2 counter + break; + case 0x04: + // IRQ reset, timer mask/start + if (val&0x80) { + // clear IRQ bits in status register + status &= ~0x60; + } else { + status = 0; + } + break; +#if defined(OPLTYPE_IS_OPL3) + case 0x04|ARC_SECONDSET: + // 4op enable/disable switches for each possible channel + op[0].is_4op = (val&1)>0; + op[3].is_4op_attached = op[0].is_4op; + op[1].is_4op = (val&2)>0; + op[4].is_4op_attached = op[1].is_4op; + op[2].is_4op = (val&4)>0; + op[5].is_4op_attached = op[2].is_4op; + op[18].is_4op = (val&8)>0; + op[21].is_4op_attached = op[18].is_4op; + op[19].is_4op = (val&16)>0; + op[22].is_4op_attached = op[19].is_4op; + op[20].is_4op = (val&32)>0; + op[23].is_4op_attached = op[20].is_4op; + break; + case 0x05|ARC_SECONDSET: + break; +#endif + case 0x08: + // CSW, note select + break; + default: + break; + } + break; + case ARC_TVS_KSR_MUL: + case ARC_TVS_KSR_MUL+0x10: { + // tremolo/vibrato/sustain keeping enabled; key scale rate; frequency multiplication + int num = idx&7; + Bitu base = (idx-ARC_TVS_KSR_MUL)&0xff; + if ((num<6) && (base<22)) { + Bitu modop = regbase2modop[second_set?(base+22):base]; + Bitu regbase = base+second_set; + Bitu chanbase = second_set?(modop-18+ARC_SECONDSET):modop; + + // change tremolo/vibrato and sustain keeping of this operator + op_type* op_ptr = &op[modop+((num<3) ? 0 : 9)]; + change_keepsustain(regbase,op_ptr); + change_vibrato(regbase,op_ptr); + + // change frequency calculations of this operator as + // key scale rate and frequency multiplicator can be changed +#if defined(OPLTYPE_IS_OPL3) + if ((adlibreg[0x105]&1) && (op[modop].is_4op_attached)) { + // operator uses frequency of channel + change_frequency(chanbase-3,regbase,op_ptr); + } else { + change_frequency(chanbase,regbase,op_ptr); + } +#else + change_frequency(chanbase,base,op_ptr); +#endif + } + } + break; + case ARC_KSL_OUTLEV: + case ARC_KSL_OUTLEV+0x10: { + // key scale level; output rate + int num = idx&7; + Bitu base = (idx-ARC_KSL_OUTLEV)&0xff; + if ((num<6) && (base<22)) { + Bitu modop = regbase2modop[second_set?(base+22):base]; + Bitu chanbase = second_set?(modop-18+ARC_SECONDSET):modop; + + // change frequency calculations of this operator as + // key scale level and output rate can be changed + op_type* op_ptr = &op[modop+((num<3) ? 0 : 9)]; +#if defined(OPLTYPE_IS_OPL3) + Bitu regbase = base+second_set; + if ((adlibreg[0x105]&1) && (op[modop].is_4op_attached)) { + // operator uses frequency of channel + change_frequency(chanbase-3,regbase,op_ptr); + } else { + change_frequency(chanbase,regbase,op_ptr); + } +#else + change_frequency(chanbase,base,op_ptr); +#endif + } + } + break; + case ARC_ATTR_DECR: + case ARC_ATTR_DECR+0x10: { + // attack/decay rates + int num = idx&7; + Bitu base = (idx-ARC_ATTR_DECR)&0xff; + if ((num<6) && (base<22)) { + Bitu regbase = base+second_set; + + // change attack rate and decay rate of this operator + op_type* op_ptr = &op[regbase2op[second_set?(base+22):base]]; + change_attackrate(regbase,op_ptr); + change_decayrate(regbase,op_ptr); + } + } + break; + case ARC_SUSL_RELR: + case ARC_SUSL_RELR+0x10: { + // sustain level; release rate + int num = idx&7; + Bitu base = (idx-ARC_SUSL_RELR)&0xff; + if ((num<6) && (base<22)) { + Bitu regbase = base+second_set; + + // change sustain level and release rate of this operator + op_type* op_ptr = &op[regbase2op[second_set?(base+22):base]]; + change_releaserate(regbase,op_ptr); + change_sustainlevel(regbase,op_ptr); + } + } + break; + case ARC_FREQ_NUM: { + // 0xa0-0xa8 low8 frequency + Bitu base = (idx-ARC_FREQ_NUM)&0xff; + if (base<9) { + Bits opbase = second_set?(base+18):base; +#if defined(OPLTYPE_IS_OPL3) + if ((adlibreg[0x105]&1) && op[opbase].is_4op_attached) break; +#endif + // regbase of modulator: + Bits modbase = modulatorbase[base]+second_set; + + Bitu chanbase = base+second_set; + + change_frequency(chanbase,modbase,&op[opbase]); + change_frequency(chanbase,modbase+3,&op[opbase+9]); +#if defined(OPLTYPE_IS_OPL3) + // for 4op channels all four operators are modified to the frequency of the channel + if ((adlibreg[0x105]&1) && op[second_set?(base+18):base].is_4op) { + change_frequency(chanbase,modbase+8,&op[opbase+3]); + change_frequency(chanbase,modbase+3+8,&op[opbase+3+9]); + } +#endif + } + } + break; + case ARC_KON_BNUM: { + if (idx == ARC_PERC_MODE) { +#if defined(OPLTYPE_IS_OPL3) + if (second_set) return; +#endif + + if ((val&0x30) == 0x30) { // BassDrum active + enable_operator(16,&op[6],OP_ACT_PERC); + change_frequency(6,16,&op[6]); + enable_operator(16+3,&op[6+9],OP_ACT_PERC); + change_frequency(6,16+3,&op[6+9]); + } else { + disable_operator(&op[6],OP_ACT_PERC); + disable_operator(&op[6+9],OP_ACT_PERC); + } + if ((val&0x28) == 0x28) { // Snare active + enable_operator(17+3,&op[16],OP_ACT_PERC); + change_frequency(7,17+3,&op[16]); + } else { + disable_operator(&op[16],OP_ACT_PERC); + } + if ((val&0x24) == 0x24) { // TomTom active + enable_operator(18,&op[8],OP_ACT_PERC); + change_frequency(8,18,&op[8]); + } else { + disable_operator(&op[8],OP_ACT_PERC); + } + if ((val&0x22) == 0x22) { // Cymbal active + enable_operator(18+3,&op[8+9],OP_ACT_PERC); + change_frequency(8,18+3,&op[8+9]); + } else { + disable_operator(&op[8+9],OP_ACT_PERC); + } + if ((val&0x21) == 0x21) { // Hihat active + enable_operator(17,&op[7],OP_ACT_PERC); + change_frequency(7,17,&op[7]); + } else { + disable_operator(&op[7],OP_ACT_PERC); + } + + break; + } + // regular 0xb0-0xb8 + Bitu base = (idx-ARC_KON_BNUM)&0xff; + if (base<9) { + Bits opbase = second_set?(base+18):base; +#if defined(OPLTYPE_IS_OPL3) + if ((adlibreg[0x105]&1) && op[opbase].is_4op_attached) break; +#endif + // regbase of modulator: + Bits modbase = modulatorbase[base]+second_set; + + if (val&32) { + // operator switched on + enable_operator(modbase,&op[opbase],OP_ACT_NORMAL); // modulator (if 2op) + enable_operator(modbase+3,&op[opbase+9],OP_ACT_NORMAL); // carrier (if 2op) +#if defined(OPLTYPE_IS_OPL3) + // for 4op channels all four operators are switched on + if ((adlibreg[0x105]&1) && op[opbase].is_4op) { + // turn on chan+3 operators as well + enable_operator(modbase+8,&op[opbase+3],OP_ACT_NORMAL); + enable_operator(modbase+3+8,&op[opbase+3+9],OP_ACT_NORMAL); + } +#endif + } else { + // operator switched off + disable_operator(&op[opbase],OP_ACT_NORMAL); + disable_operator(&op[opbase+9],OP_ACT_NORMAL); +#if defined(OPLTYPE_IS_OPL3) + // for 4op channels all four operators are switched off + if ((adlibreg[0x105]&1) && op[opbase].is_4op) { + // turn off chan+3 operators as well + disable_operator(&op[opbase+3],OP_ACT_NORMAL); + disable_operator(&op[opbase+3+9],OP_ACT_NORMAL); + } +#endif + } + + Bitu chanbase = base+second_set; + + // change frequency calculations of modulator and carrier (2op) as + // the frequency of the channel has changed + change_frequency(chanbase,modbase,&op[opbase]); + change_frequency(chanbase,modbase+3,&op[opbase+9]); +#if defined(OPLTYPE_IS_OPL3) + // for 4op channels all four operators are modified to the frequency of the channel + if ((adlibreg[0x105]&1) && op[second_set?(base+18):base].is_4op) { + // change frequency calculations of chan+3 operators as well + change_frequency(chanbase,modbase+8,&op[opbase+3]); + change_frequency(chanbase,modbase+3+8,&op[opbase+3+9]); + } +#endif + } + } + break; + case ARC_FEEDBACK: { + // 0xc0-0xc8 feedback/modulation type (AM/FM) + Bitu base = (idx-ARC_FEEDBACK)&0xff; + if (base<9) { + Bits opbase = second_set?(base+18):base; + Bitu chanbase = base+second_set; + change_feedback(chanbase,&op[opbase]); +#if defined(OPLTYPE_IS_OPL3) + // OPL3 panning + op[opbase].left_pan = ((val&0x10)>>4); + op[opbase].right_pan = ((val&0x20)>>5); +#endif + } + } + break; + case ARC_WAVE_SEL: + case ARC_WAVE_SEL+0x10: { + int num = idx&7; + Bitu base = (idx-ARC_WAVE_SEL)&0xff; + if ((num<6) && (base<22)) { +#if defined(OPLTYPE_IS_OPL3) + Bits wselbase = second_set?(base+22):base; // for easier mapping onto wave_sel[] + // change waveform + if (adlibreg[0x105]&1) wave_sel[wselbase] = val&7; // opl3 mode enabled, all waveforms accessible + else wave_sel[wselbase] = val&3; + op_type* op_ptr = &op[regbase2modop[wselbase]+((num<3) ? 0 : 9)]; + change_waveform(wselbase,op_ptr); +#else + if (adlibreg[0x01]&0x20) { + // wave selection enabled, change waveform + wave_sel[base] = val&3; + op_type* op_ptr = &op[regbase2modop[base]+((num<3) ? 0 : 9)]; + change_waveform(base,op_ptr); + } +#endif + } + } + break; + default: + break; + } +} + + +Bitu adlib_reg_read(Bitu port) { +#if defined(OPLTYPE_IS_OPL3) + // opl3-detection routines require ret&6 to be zero + if ((port&1)==0) { + return status; + } + return 0x00; +#else + // opl2-detection routines require ret&6 to be 6 + if ((port&1)==0) { + return status|6; + } + return 0xff; +#endif +} + +void adlib_write_index(Bitu port, Bit8u val) { + index = val; +#if defined(OPLTYPE_IS_OPL3) + if ((port&3)!=0) { + // possibly second set + if (((adlibreg[0x105]&1)!=0) || (index==5)) index |= ARC_SECONDSET; + } +#endif +} + +static inline void clipit16(Bit32s ival, Bit16s* outval) { + if (ival<32768) { + if (ival>-32769) { + *outval=(Bit16s)ival; + } else { + *outval = -32768; + } + } else { + *outval = 32767; + } +} + + + +// be careful with this +// uses cptr and chanval, outputs into outbufl(/outbufr) +// for opl3 check if opl3-mode is enabled (which uses stereo panning) +#undef CHANVAL_OUT +#if defined(OPLTYPE_IS_OPL3) +#define CHANVAL_OUT \ + if (adlibreg[0x105]&1) { \ + outbufl[i] += chanval*cptr[0].left_pan; \ + outbufr[i] += chanval*cptr[0].right_pan; \ + } else { \ + outbufl[i] += chanval; \ + } +#else +#define CHANVAL_OUT \ + outbufl[i] += chanval; +#endif + +void adlib_getsample(Bit16s* sndptr, Bits numsamples) { + Bits i, endsamples; + op_type* cptr; + + Bit32s outbufl[BLOCKBUF_SIZE]; +#if defined(OPLTYPE_IS_OPL3) + // second output buffer (right channel for opl3 stereo) + Bit32s outbufr[BLOCKBUF_SIZE]; +#endif + + // vibrato/tremolo lookup tables (global, to possibly be used by all operators) + Bit32s vib_lut[BLOCKBUF_SIZE]; + Bit32s trem_lut[BLOCKBUF_SIZE]; + + Bits samples_to_process = numsamples; + + for (Bits cursmp=0; cursmp<samples_to_process; cursmp+=endsamples) { + endsamples = samples_to_process-cursmp; + if (endsamples>BLOCKBUF_SIZE) endsamples = BLOCKBUF_SIZE; + + memset((void*)&outbufl,0,endsamples*sizeof(Bit32s)); +#if defined(OPLTYPE_IS_OPL3) + // clear second output buffer (opl3 stereo) + if (adlibreg[0x105]&1) memset((void*)&outbufr,0,endsamples*sizeof(Bit32s)); +#endif + + // calculate vibrato/tremolo lookup tables + Bit32s vib_tshift = ((adlibreg[ARC_PERC_MODE]&0x40)==0) ? 1 : 0; // 14cents/7cents switching + for (i=0;i<endsamples;i++) { + // cycle through vibrato table + vibtab_pos += vibtab_add; + if (vibtab_pos/FIXEDPT_LFO>=VIBTAB_SIZE) vibtab_pos-=VIBTAB_SIZE*FIXEDPT_LFO; + vib_lut[i] = vib_table[vibtab_pos/FIXEDPT_LFO]>>vib_tshift; // 14cents (14/100 of a semitone) or 7cents + + // cycle through tremolo table + tremtab_pos += tremtab_add; + if (tremtab_pos/FIXEDPT_LFO>=TREMTAB_SIZE) tremtab_pos-=TREMTAB_SIZE*FIXEDPT_LFO; + if (adlibreg[ARC_PERC_MODE]&0x80) trem_lut[i] = trem_table[tremtab_pos/FIXEDPT_LFO]; + else trem_lut[i] = trem_table[TREMTAB_SIZE+tremtab_pos/FIXEDPT_LFO]; + } + + if (adlibreg[ARC_PERC_MODE]&0x20) { + //BassDrum + cptr = &op[6]; + if (adlibreg[ARC_FEEDBACK+6]&1) { + // additive synthesis + if (cptr[9].op_state != OF_TYPE_OFF) { + if (cptr[9].vibrato) { + vibval1 = vibval_var1; + for (i=0;i<endsamples;i++) + vibval1[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC); + } else vibval1 = vibval_const; + if (cptr[9].tremolo) tremval1 = trem_lut; // tremolo enabled, use table + else tremval1 = tremval_const; + + // calculate channel output + for (i=0;i<endsamples;i++) { + operator_advance(&cptr[9],vibval1[i]); + opfuncs[cptr[9].op_state](&cptr[9]); + operator_output(&cptr[9],0,tremval1[i]); + + Bit32s chanval = cptr[9].cval*2; + CHANVAL_OUT + } + } + } else { + // frequency modulation + if ((cptr[9].op_state != OF_TYPE_OFF) || (cptr[0].op_state != OF_TYPE_OFF)) { + if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) { + vibval1 = vibval_var1; + for (i=0;i<endsamples;i++) + vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC); + } else vibval1 = vibval_const; + if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) { + vibval2 = vibval_var2; + for (i=0;i<endsamples;i++) + vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC); + } else vibval2 = vibval_const; + if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table + else tremval1 = tremval_const; + if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table + else tremval2 = tremval_const; + + // calculate channel output + for (i=0;i<endsamples;i++) { + operator_advance(&cptr[0],vibval1[i]); + opfuncs[cptr[0].op_state](&cptr[0]); + operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]); + + operator_advance(&cptr[9],vibval2[i]); + opfuncs[cptr[9].op_state](&cptr[9]); + operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]); + + Bit32s chanval = cptr[9].cval*2; + CHANVAL_OUT + } + } + } + + //TomTom (j=8) + if (op[8].op_state != OF_TYPE_OFF) { + cptr = &op[8]; + if (cptr[0].vibrato) { + vibval3 = vibval_var1; + for (i=0;i<endsamples;i++) + vibval3[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC); + } else vibval3 = vibval_const; + + if (cptr[0].tremolo) tremval3 = trem_lut; // tremolo enabled, use table + else tremval3 = tremval_const; + + // calculate channel output + for (i=0;i<endsamples;i++) { + operator_advance(&cptr[0],vibval3[i]); + opfuncs[cptr[0].op_state](&cptr[0]); //TomTom + operator_output(&cptr[0],0,tremval3[i]); + Bit32s chanval = cptr[0].cval*2; + CHANVAL_OUT + } + } + + //Snare/Hihat (j=7), Cymbal (j=8) + if ((op[7].op_state != OF_TYPE_OFF) || (op[16].op_state != OF_TYPE_OFF) || + (op[17].op_state != OF_TYPE_OFF)) { + cptr = &op[7]; + if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) { + vibval1 = vibval_var1; + for (i=0;i<endsamples;i++) + vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC); + } else vibval1 = vibval_const; + if ((cptr[9].vibrato) && (cptr[9].op_state == OF_TYPE_OFF)) { + vibval2 = vibval_var2; + for (i=0;i<endsamples;i++) + vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC); + } else vibval2 = vibval_const; + + if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table + else tremval1 = tremval_const; + if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table + else tremval2 = tremval_const; + + cptr = &op[8]; + if ((cptr[9].vibrato) && (cptr[9].op_state == OF_TYPE_OFF)) { + vibval4 = vibval_var2; + for (i=0;i<endsamples;i++) + vibval4[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC); + } else vibval4 = vibval_const; + + if (cptr[9].tremolo) tremval4 = trem_lut; // tremolo enabled, use table + else tremval4 = tremval_const; + + // calculate channel output + for (i=0;i<endsamples;i++) { + operator_advance_drums(&op[7],vibval1[i],&op[7+9],vibval2[i],&op[8+9],vibval4[i]); + + opfuncs[op[7].op_state](&op[7]); //Hihat + operator_output(&op[7],0,tremval1[i]); + + opfuncs[op[7+9].op_state](&op[7+9]); //Snare + operator_output(&op[7+9],0,tremval2[i]); + + opfuncs[op[8+9].op_state](&op[8+9]); //Cymbal + operator_output(&op[8+9],0,tremval4[i]); + + Bit32s chanval = (op[7].cval + op[7+9].cval + op[8+9].cval)*2; + CHANVAL_OUT + } + } + } + + Bitu max_channel = NUM_CHANNELS; +#if defined(OPLTYPE_IS_OPL3) + if ((adlibreg[0x105]&1)==0) max_channel = NUM_CHANNELS/2; +#endif + for (Bits cur_ch=max_channel-1; cur_ch>=0; cur_ch--) { + // skip drum/percussion operators + if ((adlibreg[ARC_PERC_MODE]&0x20) && (cur_ch >= 6) && (cur_ch < 9)) continue; + + Bitu k = cur_ch; +#if defined(OPLTYPE_IS_OPL3) + if (cur_ch < 9) { + cptr = &op[cur_ch]; + } else { + cptr = &op[cur_ch+9]; // second set is operator18-operator35 + k += (-9+256); // second set uses registers 0x100 onwards + } + // check if this operator is part of a 4-op + if ((adlibreg[0x105]&1) && cptr->is_4op_attached) continue; +#else + cptr = &op[cur_ch]; +#endif + + // check for FM/AM + if (adlibreg[ARC_FEEDBACK+k]&1) { +#if defined(OPLTYPE_IS_OPL3) + if ((adlibreg[0x105]&1) && cptr->is_4op) { + if (adlibreg[ARC_FEEDBACK+k+3]&1) { + // AM-AM-style synthesis (op1[fb] + (op2 * op3) + op4) + if (cptr[0].op_state != OF_TYPE_OFF) { + if (cptr[0].vibrato) { + vibval1 = vibval_var1; + for (i=0;i<endsamples;i++) + vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC); + } else vibval1 = vibval_const; + if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table + else tremval1 = tremval_const; + + // calculate channel output + for (i=0;i<endsamples;i++) { + operator_advance(&cptr[0],vibval1[i]); + opfuncs[cptr[0].op_state](&cptr[0]); + operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]); + + Bit32s chanval = cptr[0].cval; + CHANVAL_OUT + } + } + + if ((cptr[3].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF)) { + if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) { + vibval1 = vibval_var1; + for (i=0;i<endsamples;i++) + vibval1[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC); + } else vibval1 = vibval_const; + if (cptr[9].tremolo) tremval1 = trem_lut; // tremolo enabled, use table + else tremval1 = tremval_const; + if (cptr[3].tremolo) tremval2 = trem_lut; // tremolo enabled, use table + else tremval2 = tremval_const; + + // calculate channel output + for (i=0;i<endsamples;i++) { + operator_advance(&cptr[9],vibval1[i]); + opfuncs[cptr[9].op_state](&cptr[9]); + operator_output(&cptr[9],0,tremval1[i]); + + operator_advance(&cptr[3],0); + opfuncs[cptr[3].op_state](&cptr[3]); + operator_output(&cptr[3],cptr[9].cval*FIXEDPT,tremval2[i]); + + Bit32s chanval = cptr[3].cval; + CHANVAL_OUT + } + } + + if (cptr[3+9].op_state != OF_TYPE_OFF) { + if (cptr[3+9].tremolo) tremval1 = trem_lut; // tremolo enabled, use table + else tremval1 = tremval_const; + + // calculate channel output + for (i=0;i<endsamples;i++) { + operator_advance(&cptr[3+9],0); + opfuncs[cptr[3+9].op_state](&cptr[3+9]); + operator_output(&cptr[3+9],0,tremval1[i]); + + Bit32s chanval = cptr[3+9].cval; + CHANVAL_OUT + } + } + } else { + // AM-FM-style synthesis (op1[fb] + (op2 * op3 * op4)) + if (cptr[0].op_state != OF_TYPE_OFF) { + if (cptr[0].vibrato) { + vibval1 = vibval_var1; + for (i=0;i<endsamples;i++) + vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC); + } else vibval1 = vibval_const; + if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table + else tremval1 = tremval_const; + + // calculate channel output + for (i=0;i<endsamples;i++) { + operator_advance(&cptr[0],vibval1[i]); + opfuncs[cptr[0].op_state](&cptr[0]); + operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]); + + Bit32s chanval = cptr[0].cval; + CHANVAL_OUT + } + } + + if ((cptr[9].op_state != OF_TYPE_OFF) || (cptr[3].op_state != OF_TYPE_OFF) || (cptr[3+9].op_state != OF_TYPE_OFF)) { + if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) { + vibval1 = vibval_var1; + for (i=0;i<endsamples;i++) + vibval1[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC); + } else vibval1 = vibval_const; + if (cptr[9].tremolo) tremval1 = trem_lut; // tremolo enabled, use table + else tremval1 = tremval_const; + if (cptr[3].tremolo) tremval2 = trem_lut; // tremolo enabled, use table + else tremval2 = tremval_const; + if (cptr[3+9].tremolo) tremval3 = trem_lut; // tremolo enabled, use table + else tremval3 = tremval_const; + + // calculate channel output + for (i=0;i<endsamples;i++) { + operator_advance(&cptr[9],vibval1[i]); + opfuncs[cptr[9].op_state](&cptr[9]); + operator_output(&cptr[9],0,tremval1[i]); + + operator_advance(&cptr[3],0); + opfuncs[cptr[3].op_state](&cptr[3]); + operator_output(&cptr[3],cptr[9].cval*FIXEDPT,tremval2[i]); + + operator_advance(&cptr[3+9],0); + opfuncs[cptr[3+9].op_state](&cptr[3+9]); + operator_output(&cptr[3+9],cptr[3].cval*FIXEDPT,tremval3[i]); + + Bit32s chanval = cptr[3+9].cval; + CHANVAL_OUT + } + } + } + continue; + } +#endif + // 2op additive synthesis + if ((cptr[9].op_state == OF_TYPE_OFF) && (cptr[0].op_state == OF_TYPE_OFF)) continue; + if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) { + vibval1 = vibval_var1; + for (i=0;i<endsamples;i++) + vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC); + } else vibval1 = vibval_const; + if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) { + vibval2 = vibval_var2; + for (i=0;i<endsamples;i++) + vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC); + } else vibval2 = vibval_const; + if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table + else tremval1 = tremval_const; + if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table + else tremval2 = tremval_const; + + // calculate channel output + for (i=0;i<endsamples;i++) { + // carrier1 + operator_advance(&cptr[0],vibval1[i]); + opfuncs[cptr[0].op_state](&cptr[0]); + operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]); + + // carrier2 + operator_advance(&cptr[9],vibval2[i]); + opfuncs[cptr[9].op_state](&cptr[9]); + operator_output(&cptr[9],0,tremval2[i]); + + Bit32s chanval = cptr[9].cval + cptr[0].cval; + CHANVAL_OUT + } + } else { +#if defined(OPLTYPE_IS_OPL3) + if ((adlibreg[0x105]&1) && cptr->is_4op) { + if (adlibreg[ARC_FEEDBACK+k+3]&1) { + // FM-AM-style synthesis ((op1[fb] * op2) + (op3 * op4)) + if ((cptr[0].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF)) { + if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) { + vibval1 = vibval_var1; + for (i=0;i<endsamples;i++) + vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC); + } else vibval1 = vibval_const; + if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) { + vibval2 = vibval_var2; + for (i=0;i<endsamples;i++) + vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC); + } else vibval2 = vibval_const; + if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table + else tremval1 = tremval_const; + if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table + else tremval2 = tremval_const; + + // calculate channel output + for (i=0;i<endsamples;i++) { + operator_advance(&cptr[0],vibval1[i]); + opfuncs[cptr[0].op_state](&cptr[0]); + operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]); + + operator_advance(&cptr[9],vibval2[i]); + opfuncs[cptr[9].op_state](&cptr[9]); + operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]); + + Bit32s chanval = cptr[9].cval; + CHANVAL_OUT + } + } + + if ((cptr[3].op_state != OF_TYPE_OFF) || (cptr[3+9].op_state != OF_TYPE_OFF)) { + if (cptr[3].tremolo) tremval1 = trem_lut; // tremolo enabled, use table + else tremval1 = tremval_const; + if (cptr[3+9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table + else tremval2 = tremval_const; + + // calculate channel output + for (i=0;i<endsamples;i++) { + operator_advance(&cptr[3],0); + opfuncs[cptr[3].op_state](&cptr[3]); + operator_output(&cptr[3],0,tremval1[i]); + + operator_advance(&cptr[3+9],0); + opfuncs[cptr[3+9].op_state](&cptr[3+9]); + operator_output(&cptr[3+9],cptr[3].cval*FIXEDPT,tremval2[i]); + + Bit32s chanval = cptr[3+9].cval; + CHANVAL_OUT + } + } + + } else { + // FM-FM-style synthesis (op1[fb] * op2 * op3 * op4) + if ((cptr[0].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF) || + (cptr[3].op_state != OF_TYPE_OFF) || (cptr[3+9].op_state != OF_TYPE_OFF)) { + if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) { + vibval1 = vibval_var1; + for (i=0;i<endsamples;i++) + vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC); + } else vibval1 = vibval_const; + if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) { + vibval2 = vibval_var2; + for (i=0;i<endsamples;i++) + vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC); + } else vibval2 = vibval_const; + if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table + else tremval1 = tremval_const; + if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table + else tremval2 = tremval_const; + if (cptr[3].tremolo) tremval3 = trem_lut; // tremolo enabled, use table + else tremval3 = tremval_const; + if (cptr[3+9].tremolo) tremval4 = trem_lut; // tremolo enabled, use table + else tremval4 = tremval_const; + + // calculate channel output + for (i=0;i<endsamples;i++) { + operator_advance(&cptr[0],vibval1[i]); + opfuncs[cptr[0].op_state](&cptr[0]); + operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]); + + operator_advance(&cptr[9],vibval2[i]); + opfuncs[cptr[9].op_state](&cptr[9]); + operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]); + + operator_advance(&cptr[3],0); + opfuncs[cptr[3].op_state](&cptr[3]); + operator_output(&cptr[3],cptr[9].cval*FIXEDPT,tremval3[i]); + + operator_advance(&cptr[3+9],0); + opfuncs[cptr[3+9].op_state](&cptr[3+9]); + operator_output(&cptr[3+9],cptr[3].cval*FIXEDPT,tremval4[i]); + + Bit32s chanval = cptr[3+9].cval; + CHANVAL_OUT + } + } + } + continue; + } +#endif + // 2op frequency modulation + if ((cptr[9].op_state == OF_TYPE_OFF) && (cptr[0].op_state == OF_TYPE_OFF)) continue; + if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) { + vibval1 = vibval_var1; + for (i=0;i<endsamples;i++) + vibval1[i] = (Bit32s)((vib_lut[i]*cptr[0].freq_high/8)*FIXEDPT*VIBFAC); + } else vibval1 = vibval_const; + if ((cptr[9].vibrato) && (cptr[9].op_state != OF_TYPE_OFF)) { + vibval2 = vibval_var2; + for (i=0;i<endsamples;i++) + vibval2[i] = (Bit32s)((vib_lut[i]*cptr[9].freq_high/8)*FIXEDPT*VIBFAC); + } else vibval2 = vibval_const; + if (cptr[0].tremolo) tremval1 = trem_lut; // tremolo enabled, use table + else tremval1 = tremval_const; + if (cptr[9].tremolo) tremval2 = trem_lut; // tremolo enabled, use table + else tremval2 = tremval_const; + + // calculate channel output + for (i=0;i<endsamples;i++) { + // modulator + operator_advance(&cptr[0],vibval1[i]); + opfuncs[cptr[0].op_state](&cptr[0]); + operator_output(&cptr[0],(cptr[0].lastcval+cptr[0].cval)*cptr[0].mfbi/2,tremval1[i]); + + // carrier + operator_advance(&cptr[9],vibval2[i]); + opfuncs[cptr[9].op_state](&cptr[9]); + operator_output(&cptr[9],cptr[0].cval*FIXEDPT,tremval2[i]); + + Bit32s chanval = cptr[9].cval; + CHANVAL_OUT + } + } + } + +#if defined(OPLTYPE_IS_OPL3) + if (adlibreg[0x105]&1) { + // convert to 16bit samples (stereo) + for (i=0;i<endsamples;i++) { + clipit16(outbufl[i],sndptr++); + clipit16(outbufr[i],sndptr++); + } + } else { + // convert to 16bit samples (mono) + for (i=0;i<endsamples;i++) { + clipit16(outbufl[i],sndptr++); + clipit16(outbufl[i],sndptr++); + } + } +#else + // convert to 16bit samples + for (i=0;i<endsamples;i++) + clipit16(outbufl[i],sndptr++); +#endif + + } +} diff --git a/sound/softsynth/opl/opl.h b/sound/softsynth/opl/opl.h new file mode 100644 index 0000000000..4a04f9a0b7 --- /dev/null +++ b/sound/softsynth/opl/opl.h @@ -0,0 +1,197 @@ +/* + * Copyright (C) 2002-2009 The DOSBox Team + * OPL2/OPL3 emulation library + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + + +/* + * Originally based on ADLIBEMU.C, an AdLib/OPL2 emulation library by Ken Silverman + * Copyright (C) 1998-2001 Ken Silverman + * Ken Silverman's official web site: "http://www.advsys.net/ken" + */ + + +#define fltype double + +/* + define Bits, Bitu, Bit32s, Bit32u, Bit16s, Bit16u, Bit8s, Bit8u here +*/ + +typedef uint Bitu; +typedef int Bits; +typedef uint32 Bit32u; +typedef int32 Bit32s; +typedef uint16 Bit16u; +typedef int16 Bit16s; +typedef uint8 Bit8u; +typedef int8 Bit8s; + +#undef NUM_CHANNELS +#if defined(OPLTYPE_IS_OPL3) +#define NUM_CHANNELS 18 +#else +#define NUM_CHANNELS 9 +#endif + +#define MAXOPERATORS (NUM_CHANNELS*2) + + +#define FL05 ((fltype)0.5) +#define FL2 ((fltype)2.0) + +#ifdef PI +#undef PI +#endif + +#define PI ((fltype)3.1415926535897932384626433832795) + + +#define FIXEDPT 0x10000 // fixed-point calculations using 16+16 +#define FIXEDPT_LFO 0x1000000 // fixed-point calculations using 8+24 + +#define WAVEPREC 1024 // waveform precision (10 bits) + +#define INTFREQU ((fltype)(14318180.0 / 288.0)) // clocking of the chip + + +#define OF_TYPE_ATT 0 +#define OF_TYPE_DEC 1 +#define OF_TYPE_REL 2 +#define OF_TYPE_SUS 3 +#define OF_TYPE_SUS_NOKEEP 4 +#define OF_TYPE_OFF 5 + +#define ARC_CONTROL 0x00 +#define ARC_TVS_KSR_MUL 0x20 +#define ARC_KSL_OUTLEV 0x40 +#define ARC_ATTR_DECR 0x60 +#define ARC_SUSL_RELR 0x80 +#define ARC_FREQ_NUM 0xa0 +#define ARC_KON_BNUM 0xb0 +#define ARC_PERC_MODE 0xbd +#define ARC_FEEDBACK 0xc0 +#define ARC_WAVE_SEL 0xe0 + +#define ARC_SECONDSET 0x100 // second operator set for OPL3 + + +#define OP_ACT_OFF 0x00 +#define OP_ACT_NORMAL 0x01 // regular channel activated (bitmasked) +#define OP_ACT_PERC 0x02 // percussion channel activated (bitmasked) + +#define BLOCKBUF_SIZE 512 + + +// vibrato constants +#define VIBTAB_SIZE 8 +#define VIBFAC 70/50000 // no braces, integer mul/div + +// tremolo constants and table +#define TREMTAB_SIZE 53 +#define TREM_FREQ ((fltype)(3.7)) // tremolo at 3.7hz + + +/* operator struct definition + For OPL2 all 9 channels consist of two operators each, carrier and modulator. + Channel x has operators x as modulator and operators (9+x) as carrier. + For OPL3 all 18 channels consist either of two operators (2op mode) or four + operators (4op mode) which is determined through register4 of the second + adlib register set. + Only the channels 0,1,2 (first set) and 9,10,11 (second set) can act as + 4op channels. The two additional operators for a channel y come from the + 2op channel y+3 so the operatorss y, (9+y), y+3, (9+y)+3 make up a 4op + channel. +*/ +typedef struct operator_struct { + Bit32s cval, lastcval; // current output/last output (used for feedback) + Bit32u tcount, wfpos, tinc; // time (position in waveform) and time increment + fltype amp, step_amp; // and amplification (envelope) + fltype vol; // volume + fltype sustain_level; // sustain level + Bit32s mfbi; // feedback amount + fltype a0, a1, a2, a3; // attack rate function coefficients + fltype decaymul, releasemul; // decay/release rate functions + Bit32u op_state; // current state of operator (attack/decay/sustain/release/off) + Bit32u toff; + Bit32s freq_high; // highest three bits of the frequency, used for vibrato calculations + Bit16s* cur_wform; // start of selected waveform + Bit32u cur_wmask; // mask for selected waveform + Bit32u act_state; // activity state (regular, percussion) + bool sus_keep; // keep sustain level when decay finished + bool vibrato,tremolo; // vibrato/tremolo enable bits + + // variables used to provide non-continuous envelopes + Bit32u generator_pos; // for non-standard sample rates we need to determine how many samples have passed + Bits cur_env_step; // current (standardized) sample position + Bits env_step_a,env_step_d,env_step_r; // number of std samples of one step (for attack/decay/release mode) + Bit8u step_skip_pos; // position of 8-cyclic step skipping (always 2^x to check against mask) + Bits env_step_skip_a; // bitmask that determines if a step is skipped (respective bit is zero then) + +#if defined(OPLTYPE_IS_OPL3) + bool is_4op,is_4op_attached; // base of a 4op channel/part of a 4op channel + Bit32s left_pan,right_pan; // opl3 stereo panning amount +#endif +} op_type; + +// per-chip variables +Bitu chip_num; +op_type op[MAXOPERATORS]; + +Bits int_samplerate; + +Bit8u status; +Bit32u index; +#if defined(OPLTYPE_IS_OPL3) +Bit8u adlibreg[512]; // adlib register set (including second set) +Bit8u wave_sel[44]; // waveform selection +#else +Bit8u adlibreg[256]; // adlib register set +Bit8u wave_sel[22]; // waveform selection +#endif + + +// vibrato/tremolo increment/counter +Bit32u vibtab_pos; +Bit32u vibtab_add; +Bit32u tremtab_pos; +Bit32u tremtab_add; + + +// enable an operator +void enable_operator(Bitu regbase, op_type* op_pt); + +// functions to change parameters of an operator +void change_frequency(Bitu chanbase, Bitu regbase, op_type* op_pt); + +void change_attackrate(Bitu regbase, op_type* op_pt); +void change_decayrate(Bitu regbase, op_type* op_pt); +void change_releaserate(Bitu regbase, op_type* op_pt); +void change_sustainlevel(Bitu regbase, op_type* op_pt); +void change_waveform(Bitu regbase, op_type* op_pt); +void change_keepsustain(Bitu regbase, op_type* op_pt); +void change_vibrato(Bitu regbase, op_type* op_pt); +void change_feedback(Bitu chanbase, op_type* op_pt); + +// general functions +void adlib_init(Bit32u samplerate); +void adlib_write(Bitu idx, Bit8u val); +void adlib_getsample(Bit16s* sndptr, Bits numsamples); + +Bitu adlib_reg_read(Bitu port); +void adlib_write_index(Bitu port, Bit8u val); + +static Bit32u generator_add; // should be a chip parameter |