From b33bf76c70bfaa9933c8c9bb12eb6d29d5cb2a88 Mon Sep 17 00:00:00 2001 From: Johannes Schickel Date: Wed, 6 May 2009 20:19:47 +0000 Subject: For the time being rename opl.h to opl_inc.h and opl.cpp to opl_impl.h, so MSVC does not try to compile the former opl.cpp. (Needs cleanup in the future anyway...) svn-id: r40365 --- sound/softsynth/opl/dosbox.cpp | 4 +- sound/softsynth/opl/opl.cpp | 1445 ---------------------------------------- sound/softsynth/opl/opl.h | 196 ------ sound/softsynth/opl/opl_impl.h | 1445 ++++++++++++++++++++++++++++++++++++++++ sound/softsynth/opl/opl_inc.h | 196 ++++++ 5 files changed, 1643 insertions(+), 1643 deletions(-) delete mode 100644 sound/softsynth/opl/opl.cpp delete mode 100644 sound/softsynth/opl/opl.h create mode 100644 sound/softsynth/opl/opl_impl.h create mode 100644 sound/softsynth/opl/opl_inc.h (limited to 'sound/softsynth') diff --git a/sound/softsynth/opl/dosbox.cpp b/sound/softsynth/opl/dosbox.cpp index ae1499ef49..db8f8109d7 100644 --- a/sound/softsynth/opl/dosbox.cpp +++ b/sound/softsynth/opl/dosbox.cpp @@ -145,7 +145,7 @@ uint8 Chip::read() { } namespace OPL2 { -#include "opl.cpp" +#include "opl_impl.h" struct Handler : public DOSBox::Handler { void writeReg(uint32 reg, uint8 val) { @@ -168,7 +168,7 @@ struct Handler : public DOSBox::Handler { namespace OPL3 { #define OPLTYPE_IS_OPL3 -#include "opl.cpp" +#include "opl_impl.h" struct Handler : public DOSBox::Handler { void writeReg(uint32 reg, uint8 val) { diff --git a/sound/softsynth/opl/opl.cpp b/sound/softsynth/opl/opl.cpp deleted file mode 100644 index 416f38a8ce..0000000000 --- a/sound/softsynth/opl/opl.cpp +++ /dev/null @@ -1,1445 +0,0 @@ -/* - * Copyright (C) 2002-2009 The DOSBox Team - * OPL2/OPL3 emulation library - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with this library; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - - -/* - * Originally based on ADLIBEMU.C, an AdLib/OPL2 emulation library by Ken Silverman - * Copyright (C) 1998-2001 Ken Silverman - * Ken Silverman's official web site: "http://www.advsys.net/ken" - */ - -#include "opl.h" - - -static fltype recipsamp; // inverse of sampling rate -static Bit16s wavtable[WAVEPREC*3]; // wave form table - -// vibrato/tremolo tables -static Bit32s vib_table[VIBTAB_SIZE]; -static Bit32s trem_table[TREMTAB_SIZE*2]; - -static Bit32s vibval_const[BLOCKBUF_SIZE]; -static Bit32s tremval_const[BLOCKBUF_SIZE]; - -// vibrato value tables (used per-operator) -static Bit32s vibval_var1[BLOCKBUF_SIZE]; -static Bit32s vibval_var2[BLOCKBUF_SIZE]; - -// vibrato/trmolo value table pointers -static Bit32s *vibval1, *vibval2, *vibval3, *vibval4; -static Bit32s *tremval1, *tremval2, *tremval3, *tremval4; - - -// key scale level lookup table -static const fltype kslmul[4] = { - 0.0, 0.5, 0.25, 1.0 // -> 0, 3, 1.5, 6 dB/oct -}; - -// frequency multiplicator lookup table -static const fltype frqmul_tab[16] = { - 0.5,1,2,3,4,5,6,7,8,9,10,10,12,12,15,15 -}; -// calculated frequency multiplication values (depend on sampling rate) -static float frqmul[16]; - -// key scale levels -static Bit8u kslev[8][16]; - -// map a channel number to the register offset of the modulator (=register base) -static const Bit8u modulatorbase[9] = { - 0,1,2, - 8,9,10, - 16,17,18 -}; - -// map a register base to a modulator operator number or operator number -#if defined(OPLTYPE_IS_OPL3) -static const Bit8u regbase2modop[44] = { - 0,1,2,0,1,2,0,0,3,4,5,3,4,5,0,0,6,7,8,6,7,8, // first set - 18,19,20,18,19,20,0,0,21,22,23,21,22,23,0,0,24,25,26,24,25,26 // second set -}; -static const Bit8u regbase2op[44] = { - 0,1,2,9,10,11,0,0,3,4,5,12,13,14,0,0,6,7,8,15,16,17, // first set - 18,19,20,27,28,29,0,0,21,22,23,30,31,32,0,0,24,25,26,33,34,35 // second set -}; -#else -static const Bit8u regbase2modop[22] = { - 0,1,2,0,1,2,0,0,3,4,5,3,4,5,0,0,6,7,8,6,7,8 -}; -static const Bit8u regbase2op[22] = { - 0,1,2,9,10,11,0,0,3,4,5,12,13,14,0,0,6,7,8,15,16,17 -}; -#endif - - -// start of the waveform -static Bit32u waveform[8] = { - WAVEPREC, - WAVEPREC>>1, - WAVEPREC, - (WAVEPREC*3)>>2, - 0, - 0, - (WAVEPREC*5)>>2, - WAVEPREC<<1 -}; - -// length of the waveform as mask -static Bit32u wavemask[8] = { - WAVEPREC-1, - WAVEPREC-1, - (WAVEPREC>>1)-1, - (WAVEPREC>>1)-1, - WAVEPREC-1, - ((WAVEPREC*3)>>2)-1, - WAVEPREC>>1, - WAVEPREC-1 -}; - -// where the first entry resides -static Bit32u wavestart[8] = { - 0, - WAVEPREC>>1, - 0, - WAVEPREC>>2, - 0, - 0, - 0, - WAVEPREC>>3 -}; - -// envelope generator function constants -static fltype attackconst[4] = {1/2.82624,1/2.25280,1/1.88416,1/1.59744}; -static fltype decrelconst[4] = {1/39.28064,1/31.41608,1/26.17344,1/22.44608}; - - -void operator_advance(op_type* op_pt, Bit32s vib) { - op_pt->wfpos = op_pt->tcount; // waveform position - - // advance waveform time - op_pt->tcount += op_pt->tinc; - op_pt->tcount += (Bit32s)(op_pt->tinc)*vib/FIXEDPT; - - op_pt->generator_pos += generator_add; -} - -void operator_advance_drums(op_type* op_pt1, Bit32s vib1, op_type* op_pt2, Bit32s vib2, op_type* op_pt3, Bit32s vib3) { - Bit32u c1 = op_pt1->tcount/FIXEDPT; - Bit32u c3 = op_pt3->tcount/FIXEDPT; - Bit32u phasebit = (((c1 & 0x88) ^ ((c1<<5) & 0x80)) | ((c3 ^ (c3<<2)) & 0x20)) ? 0x02 : 0x00; - - Bit32u noisebit = rand()&1; - - Bit32u snare_phase_bit = (((Bitu)((op_pt1->tcount/FIXEDPT) / 0x100))&1); - - //Hihat - Bit32u inttm = (phasebit<<8) | (0x34<<(phasebit ^ (noisebit<<1))); - op_pt1->wfpos = inttm*FIXEDPT; // waveform position - // advance waveform time - op_pt1->tcount += op_pt1->tinc; - op_pt1->tcount += (Bit32s)(op_pt1->tinc)*vib1/FIXEDPT; - op_pt1->generator_pos += generator_add; - - //Snare - inttm = ((1+snare_phase_bit) ^ noisebit)<<8; - op_pt2->wfpos = inttm*FIXEDPT; // waveform position - // advance waveform time - op_pt2->tcount += op_pt2->tinc; - op_pt2->tcount += (Bit32s)(op_pt2->tinc)*vib2/FIXEDPT; - op_pt2->generator_pos += generator_add; - - //Cymbal - inttm = (1+phasebit)<<8; - op_pt3->wfpos = inttm*FIXEDPT; // waveform position - // advance waveform time - op_pt3->tcount += op_pt3->tinc; - op_pt3->tcount += (Bit32s)(op_pt3->tinc)*vib3/FIXEDPT; - op_pt3->generator_pos += generator_add; -} - - -// output level is sustained, mode changes only when operator is turned off (->release) -// or when the keep-sustained bit is turned off (->sustain_nokeep) -void operator_output(op_type* op_pt, Bit32s modulator, Bit32s trem) { - if (op_pt->op_state != OF_TYPE_OFF) { - op_pt->lastcval = op_pt->cval; - Bit32u i = (Bit32u)((op_pt->wfpos+modulator)/FIXEDPT); - - // wform: -16384 to 16383 (0x4000) - // trem : 32768 to 65535 (0x10000) - // step_amp: 0.0 to 1.0 - // vol : 1/2^14 to 1/2^29 (/0x4000; /1../0x8000) - - op_pt->cval = (Bit32s)(op_pt->step_amp*op_pt->vol*op_pt->cur_wform[i&op_pt->cur_wmask]*trem/16.0); - } -} - - -// no action, operator is off -void operator_off(op_type* /*op_pt*/) { -} - -// output level is sustained, mode changes only when operator is turned off (->release) -// or when the keep-sustained bit is turned off (->sustain_nokeep) -void operator_sustain(op_type* op_pt) { - Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples - for (Bit32u ct=0; ctcur_env_step++; - } - op_pt->generator_pos -= num_steps_add*FIXEDPT; -} - -// operator in release mode, if output level reaches zero the operator is turned off -void operator_release(op_type* op_pt) { - // ??? boundary? - if (op_pt->amp > 0.00000001) { - // release phase - op_pt->amp *= op_pt->releasemul; - } - - Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples - for (Bit32u ct=0; ctcur_env_step++; // sample counter - if ((op_pt->cur_env_step & op_pt->env_step_r)==0) { - if (op_pt->amp <= 0.00000001) { - // release phase finished, turn off this operator - op_pt->amp = 0.0; - if (op_pt->op_state == OF_TYPE_REL) { - op_pt->op_state = OF_TYPE_OFF; - } - } - op_pt->step_amp = op_pt->amp; - } - } - op_pt->generator_pos -= num_steps_add*FIXEDPT; -} - -// operator in decay mode, if sustain level is reached the output level is either -// kept (sustain level keep enabled) or the operator is switched into release mode -void operator_decay(op_type* op_pt) { - if (op_pt->amp > op_pt->sustain_level) { - // decay phase - op_pt->amp *= op_pt->decaymul; - } - - Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples - for (Bit32u ct=0; ctcur_env_step++; - if ((op_pt->cur_env_step & op_pt->env_step_d)==0) { - if (op_pt->amp <= op_pt->sustain_level) { - // decay phase finished, sustain level reached - if (op_pt->sus_keep) { - // keep sustain level (until turned off) - op_pt->op_state = OF_TYPE_SUS; - op_pt->amp = op_pt->sustain_level; - } else { - // next: release phase - op_pt->op_state = OF_TYPE_SUS_NOKEEP; - } - } - op_pt->step_amp = op_pt->amp; - } - } - op_pt->generator_pos -= num_steps_add*FIXEDPT; -} - -// operator in attack mode, if full output level is reached, -// the operator is switched into decay mode -void operator_attack(op_type* op_pt) { - op_pt->amp = ((op_pt->a3*op_pt->amp + op_pt->a2)*op_pt->amp + op_pt->a1)*op_pt->amp + op_pt->a0; - - Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples - for (Bit32u ct=0; ctcur_env_step++; // next sample - if ((op_pt->cur_env_step & op_pt->env_step_a)==0) { // check if next step already reached - if (op_pt->amp > 1.0) { - // attack phase finished, next: decay - op_pt->op_state = OF_TYPE_DEC; - op_pt->amp = 1.0; - op_pt->step_amp = 1.0; - } - op_pt->step_skip_pos <<= 1; - if (op_pt->step_skip_pos==0) op_pt->step_skip_pos = 1; - if (op_pt->step_skip_pos & op_pt->env_step_skip_a) { // check if required to skip next step - op_pt->step_amp = op_pt->amp; - } - } - } - op_pt->generator_pos -= num_steps_add*FIXEDPT; -} - - -typedef void (*optype_fptr)(op_type*); - -optype_fptr opfuncs[6] = { - operator_attack, - operator_decay, - operator_release, - operator_sustain, // sustain phase (keeping level) - operator_release, // sustain_nokeep phase (release-style) - operator_off -}; - -void change_attackrate(Bitu regbase, op_type* op_pt) { - Bits attackrate = adlibreg[ARC_ATTR_DECR+regbase]>>4; - if (attackrate) { - fltype f = (fltype)(pow(FL2,(fltype)attackrate+(op_pt->toff>>2)-1)*attackconst[op_pt->toff&3]*recipsamp); - // attack rate coefficients - op_pt->a0 = (fltype)(0.0377*f); - op_pt->a1 = (fltype)(10.73*f+1); - op_pt->a2 = (fltype)(-17.57*f); - op_pt->a3 = (fltype)(7.42*f); - - Bits step_skip = attackrate*4 + op_pt->toff; - Bits steps = step_skip >> 2; - op_pt->env_step_a = (1<<(steps<=12?12-steps:0))-1; - - Bits step_num = (step_skip<=48)?(4-(step_skip&3)):0; - static Bit8u step_skip_mask[5] = {0xff, 0xfe, 0xee, 0xba, 0xaa}; - op_pt->env_step_skip_a = step_skip_mask[step_num]; - -#if defined(OPLTYPE_IS_OPL3) - if (step_skip>=60) { -#else - if (step_skip>=62) { -#endif - op_pt->a0 = (fltype)(2.0); // something that triggers an immediate transition to amp:=1.0 - op_pt->a1 = (fltype)(0.0); - op_pt->a2 = (fltype)(0.0); - op_pt->a3 = (fltype)(0.0); - } - } else { - // attack disabled - op_pt->a0 = 0.0; - op_pt->a1 = 1.0; - op_pt->a2 = 0.0; - op_pt->a3 = 0.0; - op_pt->env_step_a = 0; - op_pt->env_step_skip_a = 0; - } -} - -void change_decayrate(Bitu regbase, op_type* op_pt) { - Bits decayrate = adlibreg[ARC_ATTR_DECR+regbase]&15; - // decaymul should be 1.0 when decayrate==0 - if (decayrate) { - fltype f = (fltype)(-7.4493*decrelconst[op_pt->toff&3]*recipsamp); - op_pt->decaymul = (fltype)(pow(FL2,f*pow(FL2,(fltype)(decayrate+(op_pt->toff>>2))))); - Bits steps = (decayrate*4 + op_pt->toff) >> 2; - op_pt->env_step_d = (1<<(steps<=12?12-steps:0))-1; - } else { - op_pt->decaymul = 1.0; - op_pt->env_step_d = 0; - } -} - -void change_releaserate(Bitu regbase, op_type* op_pt) { - Bits releaserate = adlibreg[ARC_SUSL_RELR+regbase]&15; - // releasemul should be 1.0 when releaserate==0 - if (releaserate) { - fltype f = (fltype)(-7.4493*decrelconst[op_pt->toff&3]*recipsamp); - op_pt->releasemul = (fltype)(pow(FL2,f*pow(FL2,(fltype)(releaserate+(op_pt->toff>>2))))); - Bits steps = (releaserate*4 + op_pt->toff) >> 2; - op_pt->env_step_r = (1<<(steps<=12?12-steps:0))-1; - } else { - op_pt->releasemul = 1.0; - op_pt->env_step_r = 0; - } -} - -void change_sustainlevel(Bitu regbase, op_type* op_pt) { - Bits sustainlevel = adlibreg[ARC_SUSL_RELR+regbase]>>4; - // sustainlevel should be 0.0 when sustainlevel==15 (max) - if (sustainlevel<15) { - op_pt->sustain_level = (fltype)(pow(FL2,(fltype)sustainlevel * (-FL05))); - } else { - op_pt->sustain_level = 0.0; - } -} - -void change_waveform(Bitu regbase, op_type* op_pt) { -#if defined(OPLTYPE_IS_OPL3) - if (regbase>=ARC_SECONDSET) regbase -= (ARC_SECONDSET-22); // second set starts at 22 -#endif - // waveform selection - op_pt->cur_wmask = wavemask[wave_sel[regbase]]; - op_pt->cur_wform = &wavtable[waveform[wave_sel[regbase]]]; - // (might need to be adapted to waveform type here...) -} - -void change_keepsustain(Bitu regbase, op_type* op_pt) { - op_pt->sus_keep = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x20)>0; - if (op_pt->op_state==OF_TYPE_SUS) { - if (!op_pt->sus_keep) op_pt->op_state = OF_TYPE_SUS_NOKEEP; - } else if (op_pt->op_state==OF_TYPE_SUS_NOKEEP) { - if (op_pt->sus_keep) op_pt->op_state = OF_TYPE_SUS; - } -} - -// enable/disable vibrato/tremolo LFO effects -void change_vibrato(Bitu regbase, op_type* op_pt) { - op_pt->vibrato = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x40)!=0; - op_pt->tremolo = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x80)!=0; -} - -// change amount of self-feedback -void change_feedback(Bitu chanbase, op_type* op_pt) { - Bits feedback = adlibreg[ARC_FEEDBACK+chanbase]&14; - if (feedback) op_pt->mfbi = (Bit32s)(pow(FL2,(fltype)((feedback>>1)+8))); - else op_pt->mfbi = 0; -} - -void change_frequency(Bitu chanbase, Bitu regbase, op_type* op_pt) { - // frequency - Bit32u frn = ((((Bit32u)adlibreg[ARC_KON_BNUM+chanbase])&3)<<8) + (Bit32u)adlibreg[ARC_FREQ_NUM+chanbase]; - // block number/octave - Bit32u oct = ((((Bit32u)adlibreg[ARC_KON_BNUM+chanbase])>>2)&7); - op_pt->freq_high = (Bit32s)((frn>>7)&7); - - // keysplit - Bit32u note_sel = (adlibreg[8]>>6)&1; - op_pt->toff = ((frn>>9)&(note_sel^1)) | ((frn>>8)¬e_sel); - op_pt->toff += (oct<<1); - - // envelope scaling (KSR) - if (!(adlibreg[ARC_TVS_KSR_MUL+regbase]&0x10)) op_pt->toff >>= 2; - - // 20+a0+b0: - op_pt->tinc = (Bit32u)((((fltype)(frn<>6]*kslev[oct][frn>>6]); - op_pt->vol = (fltype)(pow(FL2,(fltype)(vol_in * -0.125 - 14))); - - // operator frequency changed, care about features that depend on it - change_attackrate(regbase,op_pt); - change_decayrate(regbase,op_pt); - change_releaserate(regbase,op_pt); -} - -void enable_operator(Bitu regbase, op_type* op_pt, Bit32u act_type) { - // check if this is really an off-on transition - if (op_pt->act_state == OP_ACT_OFF) { - Bits wselbase = regbase; - if (wselbase>=ARC_SECONDSET) wselbase -= (ARC_SECONDSET-22); // second set starts at 22 - - op_pt->tcount = wavestart[wave_sel[wselbase]]*FIXEDPT; - - // start with attack mode - op_pt->op_state = OF_TYPE_ATT; - op_pt->act_state |= act_type; - } -} - -void disable_operator(op_type* op_pt, Bit32u act_type) { - // check if this is really an on-off transition - if (op_pt->act_state != OP_ACT_OFF) { - op_pt->act_state &= (~act_type); - if (op_pt->act_state == OP_ACT_OFF) { - if (op_pt->op_state != OF_TYPE_OFF) op_pt->op_state = OF_TYPE_REL; - } - } -} - -void adlib_init(Bit32u samplerate) { - Bits i, j, oct; - - int_samplerate = samplerate; - - generator_add = (Bit32u)(INTFREQU*FIXEDPT/int_samplerate); - - - memset((void *)adlibreg,0,sizeof(adlibreg)); - memset((void *)op,0,sizeof(op_type)*MAXOPERATORS); - memset((void *)wave_sel,0,sizeof(wave_sel)); - - for (i=0;i=0;i--) { - frqmul[i] = (fltype)(frqmul_tab[i]*INTFREQU/(fltype)WAVEPREC*(fltype)FIXEDPT*recipsamp); - } - - status = 0; - index = 0; - - - // create vibrato table - vib_table[0] = 8; - vib_table[1] = 4; - vib_table[2] = 0; - vib_table[3] = -4; - for (i=4; i(VIBTAB_SIZE*FIXEDPT_LFO/8192*INTFREQU/int_samplerate); - vibtab_pos = 0; - - for (i=0; i -0.5/6 to 0) - for (i=14; i<41; i++) trem_table_int[i] = -i+14; // downwards (26 to 0 -> 0 to -1/6) - for (i=41; i<53; i++) trem_table_int[i] = i-40-26; // upwards (1 to 12 -> -1/6 to -0.5/6) - - for (i=0; i>1);i++) { - wavtable[(i<<1) +WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<1) )*PI*2/WAVEPREC)); - wavtable[(i<<1)+1+WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<1)+1)*PI*2/WAVEPREC)); - wavtable[i] = wavtable[(i<<1) +WAVEPREC]; - // table to be verified, alternative: (zero-less) -/* wavtable[(i<<1) +WAVEPREC] = (Bit16s)(16384*sin((fltype)(((i*2+1)<<1)-1)*PI/WAVEPREC)); - wavtable[(i<<1)+1+WAVEPREC] = (Bit16s)(16384*sin((fltype)(((i*2+1)<<1) )*PI/WAVEPREC)); - wavtable[i] = wavtable[(i<<1)-1+WAVEPREC]; */ - } - for (i=0;i<(WAVEPREC>>3);i++) { - wavtable[i+(WAVEPREC<<1)] = wavtable[i+(WAVEPREC>>3)]-16384; - wavtable[i+((WAVEPREC*17)>>3)] = wavtable[i+(WAVEPREC>>2)]+16384; - } - - // key scale level table verified ([table in book]*8/3) - kslev[7][0] = 0; kslev[7][1] = 24; kslev[7][2] = 32; kslev[7][3] = 37; - kslev[7][4] = 40; kslev[7][5] = 43; kslev[7][6] = 45; kslev[7][7] = 47; - kslev[7][8] = 48; - for (i=9;i<16;i++) kslev[7][i] = (Bit8u)(i+41); - for (j=6;j>=0;j--) { - for (i=0;i<16;i++) { - oct = (Bits)kslev[j+1][i]-8; - if (oct < 0) oct = 0; - kslev[j][i] = (Bit8u)oct; - } - } - } - -} - - - -void adlib_write(Bitu idx, Bit8u val) { - Bit32u second_set = idx&0x100; - adlibreg[idx] = val; - - switch (idx&0xf0) { - case ARC_CONTROL: - // here we check for the second set registers, too: - switch (idx) { - case 0x02: // timer1 counter - case 0x03: // timer2 counter - break; - case 0x04: - // IRQ reset, timer mask/start - if (val&0x80) { - // clear IRQ bits in status register - status &= ~0x60; - } else { - status = 0; - } - break; -#if defined(OPLTYPE_IS_OPL3) - case 0x04|ARC_SECONDSET: - // 4op enable/disable switches for each possible channel - op[0].is_4op = (val&1)>0; - op[3].is_4op_attached = op[0].is_4op; - op[1].is_4op = (val&2)>0; - op[4].is_4op_attached = op[1].is_4op; - op[2].is_4op = (val&4)>0; - op[5].is_4op_attached = op[2].is_4op; - op[18].is_4op = (val&8)>0; - op[21].is_4op_attached = op[18].is_4op; - op[19].is_4op = (val&16)>0; - op[22].is_4op_attached = op[19].is_4op; - op[20].is_4op = (val&32)>0; - op[23].is_4op_attached = op[20].is_4op; - break; - case 0x05|ARC_SECONDSET: - break; -#endif - case 0x08: - // CSW, note select - break; - default: - break; - } - break; - case ARC_TVS_KSR_MUL: - case ARC_TVS_KSR_MUL+0x10: { - // tremolo/vibrato/sustain keeping enabled; key scale rate; frequency multiplication - int num = idx&7; - Bitu base = (idx-ARC_TVS_KSR_MUL)&0xff; - if ((num<6) && (base<22)) { - Bitu modop = regbase2modop[second_set?(base+22):base]; - Bitu regbase = base+second_set; - Bitu chanbase = second_set?(modop-18+ARC_SECONDSET):modop; - - // change tremolo/vibrato and sustain keeping of this operator - op_type* op_ptr = &op[modop+((num<3) ? 0 : 9)]; - change_keepsustain(regbase,op_ptr); - change_vibrato(regbase,op_ptr); - - // change frequency calculations of this operator as - // key scale rate and frequency multiplicator can be changed -#if defined(OPLTYPE_IS_OPL3) - if ((adlibreg[0x105]&1) && (op[modop].is_4op_attached)) { - // operator uses frequency of channel - change_frequency(chanbase-3,regbase,op_ptr); - } else { - change_frequency(chanbase,regbase,op_ptr); - } -#else - change_frequency(chanbase,base,op_ptr); -#endif - } - } - break; - case ARC_KSL_OUTLEV: - case ARC_KSL_OUTLEV+0x10: { - // key scale level; output rate - int num = idx&7; - Bitu base = (idx-ARC_KSL_OUTLEV)&0xff; - if ((num<6) && (base<22)) { - Bitu modop = regbase2modop[second_set?(base+22):base]; - Bitu chanbase = second_set?(modop-18+ARC_SECONDSET):modop; - - // change frequency calculations of this operator as - // key scale level and output rate can be changed - op_type* op_ptr = &op[modop+((num<3) ? 0 : 9)]; -#if defined(OPLTYPE_IS_OPL3) - Bitu regbase = base+second_set; - if ((adlibreg[0x105]&1) && (op[modop].is_4op_attached)) { - // operator uses frequency of channel - change_frequency(chanbase-3,regbase,op_ptr); - } else { - change_frequency(chanbase,regbase,op_ptr); - } -#else - change_frequency(chanbase,base,op_ptr); -#endif - } - } - break; - case ARC_ATTR_DECR: - case ARC_ATTR_DECR+0x10: { - // attack/decay rates - int num = idx&7; - Bitu base = (idx-ARC_ATTR_DECR)&0xff; - if ((num<6) && (base<22)) { - Bitu regbase = base+second_set; - - // change attack rate and decay rate of this operator - op_type* op_ptr = &op[regbase2op[second_set?(base+22):base]]; - change_attackrate(regbase,op_ptr); - change_decayrate(regbase,op_ptr); - } - } - break; - case ARC_SUSL_RELR: - case ARC_SUSL_RELR+0x10: { - // sustain level; release rate - int num = idx&7; - Bitu base = (idx-ARC_SUSL_RELR)&0xff; - if ((num<6) && (base<22)) { - Bitu regbase = base+second_set; - - // change sustain level and release rate of this operator - op_type* op_ptr = &op[regbase2op[second_set?(base+22):base]]; - change_releaserate(regbase,op_ptr); - change_sustainlevel(regbase,op_ptr); - } - } - break; - case ARC_FREQ_NUM: { - // 0xa0-0xa8 low8 frequency - Bitu base = (idx-ARC_FREQ_NUM)&0xff; - if (base<9) { - Bits opbase = second_set?(base+18):base; -#if defined(OPLTYPE_IS_OPL3) - if ((adlibreg[0x105]&1) && op[opbase].is_4op_attached) break; -#endif - // regbase of modulator: - Bits modbase = modulatorbase[base]+second_set; - - Bitu chanbase = base+second_set; - - change_frequency(chanbase,modbase,&op[opbase]); - change_frequency(chanbase,modbase+3,&op[opbase+9]); -#if defined(OPLTYPE_IS_OPL3) - // for 4op channels all four operators are modified to the frequency of the channel - if ((adlibreg[0x105]&1) && op[second_set?(base+18):base].is_4op) { - change_frequency(chanbase,modbase+8,&op[opbase+3]); - change_frequency(chanbase,modbase+3+8,&op[opbase+3+9]); - } -#endif - } - } - break; - case ARC_KON_BNUM: { - if (idx == ARC_PERC_MODE) { -#if defined(OPLTYPE_IS_OPL3) - if (second_set) return; -#endif - - if ((val&0x30) == 0x30) { // BassDrum active - enable_operator(16,&op[6],OP_ACT_PERC); - change_frequency(6,16,&op[6]); - enable_operator(16+3,&op[6+9],OP_ACT_PERC); - change_frequency(6,16+3,&op[6+9]); - } else { - disable_operator(&op[6],OP_ACT_PERC); - disable_operator(&op[6+9],OP_ACT_PERC); - } - if ((val&0x28) == 0x28) { // Snare active - enable_operator(17+3,&op[16],OP_ACT_PERC); - change_frequency(7,17+3,&op[16]); - } else { - disable_operator(&op[16],OP_ACT_PERC); - } - if ((val&0x24) == 0x24) { // TomTom active - enable_operator(18,&op[8],OP_ACT_PERC); - change_frequency(8,18,&op[8]); - } else { - disable_operator(&op[8],OP_ACT_PERC); - } - if ((val&0x22) == 0x22) { // Cymbal active - enable_operator(18+3,&op[8+9],OP_ACT_PERC); - change_frequency(8,18+3,&op[8+9]); - } else { - disable_operator(&op[8+9],OP_ACT_PERC); - } - if ((val&0x21) == 0x21) { // Hihat active - enable_operator(17,&op[7],OP_ACT_PERC); - change_frequency(7,17,&op[7]); - } else { - disable_operator(&op[7],OP_ACT_PERC); - } - - break; - } - // regular 0xb0-0xb8 - Bitu base = (idx-ARC_KON_BNUM)&0xff; - if (base<9) { - Bits opbase = second_set?(base+18):base; -#if defined(OPLTYPE_IS_OPL3) - if ((adlibreg[0x105]&1) && op[opbase].is_4op_attached) break; -#endif - // regbase of modulator: - Bits modbase = modulatorbase[base]+second_set; - - if (val&32) { - // operator switched on - enable_operator(modbase,&op[opbase],OP_ACT_NORMAL); // modulator (if 2op) - enable_operator(modbase+3,&op[opbase+9],OP_ACT_NORMAL); // carrier (if 2op) -#if defined(OPLTYPE_IS_OPL3) - // for 4op channels all four operators are switched on - if ((adlibreg[0x105]&1) && op[opbase].is_4op) { - // turn on chan+3 operators as well - enable_operator(modbase+8,&op[opbase+3],OP_ACT_NORMAL); - enable_operator(modbase+3+8,&op[opbase+3+9],OP_ACT_NORMAL); - } -#endif - } else { - // operator switched off - disable_operator(&op[opbase],OP_ACT_NORMAL); - disable_operator(&op[opbase+9],OP_ACT_NORMAL); -#if defined(OPLTYPE_IS_OPL3) - // for 4op channels all four operators are switched off - if ((adlibreg[0x105]&1) && op[opbase].is_4op) { - // turn off chan+3 operators as well - disable_operator(&op[opbase+3],OP_ACT_NORMAL); - disable_operator(&op[opbase+3+9],OP_ACT_NORMAL); - } -#endif - } - - Bitu chanbase = base+second_set; - - // change frequency calculations of modulator and carrier (2op) as - // the frequency of the channel has changed - change_frequency(chanbase,modbase,&op[opbase]); - change_frequency(chanbase,modbase+3,&op[opbase+9]); -#if defined(OPLTYPE_IS_OPL3) - // for 4op channels all four operators are modified to the frequency of the channel - if ((adlibreg[0x105]&1) && op[second_set?(base+18):base].is_4op) { - // change frequency calculations of chan+3 operators as well - change_frequency(chanbase,modbase+8,&op[opbase+3]); - change_frequency(chanbase,modbase+3+8,&op[opbase+3+9]); - } -#endif - } - } - break; - case ARC_FEEDBACK: { - // 0xc0-0xc8 feedback/modulation type (AM/FM) - Bitu base = (idx-ARC_FEEDBACK)&0xff; - if (base<9) { - Bits opbase = second_set?(base+18):base; - Bitu chanbase = base+second_set; - change_feedback(chanbase,&op[opbase]); -#if defined(OPLTYPE_IS_OPL3) - // OPL3 panning - op[opbase].left_pan = ((val&0x10)>>4); - op[opbase].right_pan = ((val&0x20)>>5); -#endif - } - } - break; - case ARC_WAVE_SEL: - case ARC_WAVE_SEL+0x10: { - int num = idx&7; - Bitu base = (idx-ARC_WAVE_SEL)&0xff; - if ((num<6) && (base<22)) { -#if defined(OPLTYPE_IS_OPL3) - Bits wselbase = second_set?(base+22):base; // for easier mapping onto wave_sel[] - // change waveform - if (adlibreg[0x105]&1) wave_sel[wselbase] = val&7; // opl3 mode enabled, all waveforms accessible - else wave_sel[wselbase] = val&3; - op_type* op_ptr = &op[regbase2modop[wselbase]+((num<3) ? 0 : 9)]; - change_waveform(wselbase,op_ptr); -#else - if (adlibreg[0x01]&0x20) { - // wave selection enabled, change waveform - wave_sel[base] = val&3; - op_type* op_ptr = &op[regbase2modop[base]+((num<3) ? 0 : 9)]; - change_waveform(base,op_ptr); - } -#endif - } - } - break; - default: - break; - } -} - - -Bitu adlib_reg_read(Bitu port) { -#if defined(OPLTYPE_IS_OPL3) - // opl3-detection routines require ret&6 to be zero - if ((port&1)==0) { - return status; - } - return 0x00; -#else - // opl2-detection routines require ret&6 to be 6 - if ((port&1)==0) { - return status|6; - } - return 0xff; -#endif -} - -void adlib_write_index(Bitu port, Bit8u val) { - index = val; -#if defined(OPLTYPE_IS_OPL3) - if ((port&3)!=0) { - // possibly second set - if (((adlibreg[0x105]&1)!=0) || (index==5)) index |= ARC_SECONDSET; - } -#endif -} - -static inline void clipit16(Bit32s ival, Bit16s* outval) { - if (ival<32768) { - if (ival>-32769) { - *outval=(Bit16s)ival; - } else { - *outval = -32768; - } - } else { - *outval = 32767; - } -} - - - -// be careful with this -// uses cptr and chanval, outputs into outbufl(/outbufr) -// for opl3 check if opl3-mode is enabled (which uses stereo panning) -#undef CHANVAL_OUT -#if defined(OPLTYPE_IS_OPL3) -#define CHANVAL_OUT \ - if (adlibreg[0x105]&1) { \ - outbufl[i] += chanval*cptr[0].left_pan; \ - outbufr[i] += chanval*cptr[0].right_pan; \ - } else { \ - outbufl[i] += chanval; \ - } -#else -#define CHANVAL_OUT \ - outbufl[i] += chanval; -#endif - -void adlib_getsample(Bit16s* sndptr, Bits numsamples) { - Bits i, endsamples; - op_type* cptr; - - Bit32s outbufl[BLOCKBUF_SIZE]; -#if defined(OPLTYPE_IS_OPL3) - // second output buffer (right channel for opl3 stereo) - Bit32s outbufr[BLOCKBUF_SIZE]; -#endif - - // vibrato/tremolo lookup tables (global, to possibly be used by all operators) - Bit32s vib_lut[BLOCKBUF_SIZE]; - Bit32s trem_lut[BLOCKBUF_SIZE]; - - Bits samples_to_process = numsamples; - - for (Bits cursmp=0; cursmpBLOCKBUF_SIZE) endsamples = BLOCKBUF_SIZE; - - memset((void*)&outbufl,0,endsamples*sizeof(Bit32s)); -#if defined(OPLTYPE_IS_OPL3) - // clear second output buffer (opl3 stereo) - if (adlibreg[0x105]&1) memset((void*)&outbufr,0,endsamples*sizeof(Bit32s)); -#endif - - // calculate vibrato/tremolo lookup tables - Bit32s vib_tshift = ((adlibreg[ARC_PERC_MODE]&0x40)==0) ? 1 : 0; // 14cents/7cents switching - for (i=0;i=VIBTAB_SIZE) vibtab_pos-=VIBTAB_SIZE*FIXEDPT_LFO; - vib_lut[i] = vib_table[vibtab_pos/FIXEDPT_LFO]>>vib_tshift; // 14cents (14/100 of a semitone) or 7cents - - // cycle through tremolo table - tremtab_pos += tremtab_add; - if (tremtab_pos/FIXEDPT_LFO>=TREMTAB_SIZE) tremtab_pos-=TREMTAB_SIZE*FIXEDPT_LFO; - if (adlibreg[ARC_PERC_MODE]&0x80) trem_lut[i] = trem_table[tremtab_pos/FIXEDPT_LFO]; - else trem_lut[i] = trem_table[TREMTAB_SIZE+tremtab_pos/FIXEDPT_LFO]; - } - - if (adlibreg[ARC_PERC_MODE]&0x20) { - //BassDrum - cptr = &op[6]; - if (adlibreg[ARC_FEEDBACK+6]&1) { - // additive synthesis - if (cptr[9].op_state != OF_TYPE_OFF) { - if (cptr[9].vibrato) { - vibval1 = vibval_var1; - for (i=0;i=0; cur_ch--) { - // skip drum/percussion operators - if ((adlibreg[ARC_PERC_MODE]&0x20) && (cur_ch >= 6) && (cur_ch < 9)) continue; - - Bitu k = cur_ch; -#if defined(OPLTYPE_IS_OPL3) - if (cur_ch < 9) { - cptr = &op[cur_ch]; - } else { - cptr = &op[cur_ch+9]; // second set is operator18-operator35 - k += (-9+256); // second set uses registers 0x100 onwards - } - // check if this operator is part of a 4-op - if ((adlibreg[0x105]&1) && cptr->is_4op_attached) continue; -#else - cptr = &op[cur_ch]; -#endif - - // check for FM/AM - if (adlibreg[ARC_FEEDBACK+k]&1) { -#if defined(OPLTYPE_IS_OPL3) - if ((adlibreg[0x105]&1) && cptr->is_4op) { - if (adlibreg[ARC_FEEDBACK+k+3]&1) { - // AM-AM-style synthesis (op1[fb] + (op2 * op3) + op4) - if (cptr[0].op_state != OF_TYPE_OFF) { - if (cptr[0].vibrato) { - vibval1 = vibval_var1; - for (i=0;iis_4op) { - if (adlibreg[ARC_FEEDBACK+k+3]&1) { - // FM-AM-style synthesis ((op1[fb] * op2) + (op3 * op4)) - if ((cptr[0].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF)) { - if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) { - vibval1 = vibval_var1; - for (i=0;i 0, 3, 1.5, 6 dB/oct +}; + +// frequency multiplicator lookup table +static const fltype frqmul_tab[16] = { + 0.5,1,2,3,4,5,6,7,8,9,10,10,12,12,15,15 +}; +// calculated frequency multiplication values (depend on sampling rate) +static float frqmul[16]; + +// key scale levels +static Bit8u kslev[8][16]; + +// map a channel number to the register offset of the modulator (=register base) +static const Bit8u modulatorbase[9] = { + 0,1,2, + 8,9,10, + 16,17,18 +}; + +// map a register base to a modulator operator number or operator number +#if defined(OPLTYPE_IS_OPL3) +static const Bit8u regbase2modop[44] = { + 0,1,2,0,1,2,0,0,3,4,5,3,4,5,0,0,6,7,8,6,7,8, // first set + 18,19,20,18,19,20,0,0,21,22,23,21,22,23,0,0,24,25,26,24,25,26 // second set +}; +static const Bit8u regbase2op[44] = { + 0,1,2,9,10,11,0,0,3,4,5,12,13,14,0,0,6,7,8,15,16,17, // first set + 18,19,20,27,28,29,0,0,21,22,23,30,31,32,0,0,24,25,26,33,34,35 // second set +}; +#else +static const Bit8u regbase2modop[22] = { + 0,1,2,0,1,2,0,0,3,4,5,3,4,5,0,0,6,7,8,6,7,8 +}; +static const Bit8u regbase2op[22] = { + 0,1,2,9,10,11,0,0,3,4,5,12,13,14,0,0,6,7,8,15,16,17 +}; +#endif + + +// start of the waveform +static Bit32u waveform[8] = { + WAVEPREC, + WAVEPREC>>1, + WAVEPREC, + (WAVEPREC*3)>>2, + 0, + 0, + (WAVEPREC*5)>>2, + WAVEPREC<<1 +}; + +// length of the waveform as mask +static Bit32u wavemask[8] = { + WAVEPREC-1, + WAVEPREC-1, + (WAVEPREC>>1)-1, + (WAVEPREC>>1)-1, + WAVEPREC-1, + ((WAVEPREC*3)>>2)-1, + WAVEPREC>>1, + WAVEPREC-1 +}; + +// where the first entry resides +static Bit32u wavestart[8] = { + 0, + WAVEPREC>>1, + 0, + WAVEPREC>>2, + 0, + 0, + 0, + WAVEPREC>>3 +}; + +// envelope generator function constants +static fltype attackconst[4] = {1/2.82624,1/2.25280,1/1.88416,1/1.59744}; +static fltype decrelconst[4] = {1/39.28064,1/31.41608,1/26.17344,1/22.44608}; + + +void operator_advance(op_type* op_pt, Bit32s vib) { + op_pt->wfpos = op_pt->tcount; // waveform position + + // advance waveform time + op_pt->tcount += op_pt->tinc; + op_pt->tcount += (Bit32s)(op_pt->tinc)*vib/FIXEDPT; + + op_pt->generator_pos += generator_add; +} + +void operator_advance_drums(op_type* op_pt1, Bit32s vib1, op_type* op_pt2, Bit32s vib2, op_type* op_pt3, Bit32s vib3) { + Bit32u c1 = op_pt1->tcount/FIXEDPT; + Bit32u c3 = op_pt3->tcount/FIXEDPT; + Bit32u phasebit = (((c1 & 0x88) ^ ((c1<<5) & 0x80)) | ((c3 ^ (c3<<2)) & 0x20)) ? 0x02 : 0x00; + + Bit32u noisebit = rand()&1; + + Bit32u snare_phase_bit = (((Bitu)((op_pt1->tcount/FIXEDPT) / 0x100))&1); + + //Hihat + Bit32u inttm = (phasebit<<8) | (0x34<<(phasebit ^ (noisebit<<1))); + op_pt1->wfpos = inttm*FIXEDPT; // waveform position + // advance waveform time + op_pt1->tcount += op_pt1->tinc; + op_pt1->tcount += (Bit32s)(op_pt1->tinc)*vib1/FIXEDPT; + op_pt1->generator_pos += generator_add; + + //Snare + inttm = ((1+snare_phase_bit) ^ noisebit)<<8; + op_pt2->wfpos = inttm*FIXEDPT; // waveform position + // advance waveform time + op_pt2->tcount += op_pt2->tinc; + op_pt2->tcount += (Bit32s)(op_pt2->tinc)*vib2/FIXEDPT; + op_pt2->generator_pos += generator_add; + + //Cymbal + inttm = (1+phasebit)<<8; + op_pt3->wfpos = inttm*FIXEDPT; // waveform position + // advance waveform time + op_pt3->tcount += op_pt3->tinc; + op_pt3->tcount += (Bit32s)(op_pt3->tinc)*vib3/FIXEDPT; + op_pt3->generator_pos += generator_add; +} + + +// output level is sustained, mode changes only when operator is turned off (->release) +// or when the keep-sustained bit is turned off (->sustain_nokeep) +void operator_output(op_type* op_pt, Bit32s modulator, Bit32s trem) { + if (op_pt->op_state != OF_TYPE_OFF) { + op_pt->lastcval = op_pt->cval; + Bit32u i = (Bit32u)((op_pt->wfpos+modulator)/FIXEDPT); + + // wform: -16384 to 16383 (0x4000) + // trem : 32768 to 65535 (0x10000) + // step_amp: 0.0 to 1.0 + // vol : 1/2^14 to 1/2^29 (/0x4000; /1../0x8000) + + op_pt->cval = (Bit32s)(op_pt->step_amp*op_pt->vol*op_pt->cur_wform[i&op_pt->cur_wmask]*trem/16.0); + } +} + + +// no action, operator is off +void operator_off(op_type* /*op_pt*/) { +} + +// output level is sustained, mode changes only when operator is turned off (->release) +// or when the keep-sustained bit is turned off (->sustain_nokeep) +void operator_sustain(op_type* op_pt) { + Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples + for (Bit32u ct=0; ctcur_env_step++; + } + op_pt->generator_pos -= num_steps_add*FIXEDPT; +} + +// operator in release mode, if output level reaches zero the operator is turned off +void operator_release(op_type* op_pt) { + // ??? boundary? + if (op_pt->amp > 0.00000001) { + // release phase + op_pt->amp *= op_pt->releasemul; + } + + Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples + for (Bit32u ct=0; ctcur_env_step++; // sample counter + if ((op_pt->cur_env_step & op_pt->env_step_r)==0) { + if (op_pt->amp <= 0.00000001) { + // release phase finished, turn off this operator + op_pt->amp = 0.0; + if (op_pt->op_state == OF_TYPE_REL) { + op_pt->op_state = OF_TYPE_OFF; + } + } + op_pt->step_amp = op_pt->amp; + } + } + op_pt->generator_pos -= num_steps_add*FIXEDPT; +} + +// operator in decay mode, if sustain level is reached the output level is either +// kept (sustain level keep enabled) or the operator is switched into release mode +void operator_decay(op_type* op_pt) { + if (op_pt->amp > op_pt->sustain_level) { + // decay phase + op_pt->amp *= op_pt->decaymul; + } + + Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples + for (Bit32u ct=0; ctcur_env_step++; + if ((op_pt->cur_env_step & op_pt->env_step_d)==0) { + if (op_pt->amp <= op_pt->sustain_level) { + // decay phase finished, sustain level reached + if (op_pt->sus_keep) { + // keep sustain level (until turned off) + op_pt->op_state = OF_TYPE_SUS; + op_pt->amp = op_pt->sustain_level; + } else { + // next: release phase + op_pt->op_state = OF_TYPE_SUS_NOKEEP; + } + } + op_pt->step_amp = op_pt->amp; + } + } + op_pt->generator_pos -= num_steps_add*FIXEDPT; +} + +// operator in attack mode, if full output level is reached, +// the operator is switched into decay mode +void operator_attack(op_type* op_pt) { + op_pt->amp = ((op_pt->a3*op_pt->amp + op_pt->a2)*op_pt->amp + op_pt->a1)*op_pt->amp + op_pt->a0; + + Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples + for (Bit32u ct=0; ctcur_env_step++; // next sample + if ((op_pt->cur_env_step & op_pt->env_step_a)==0) { // check if next step already reached + if (op_pt->amp > 1.0) { + // attack phase finished, next: decay + op_pt->op_state = OF_TYPE_DEC; + op_pt->amp = 1.0; + op_pt->step_amp = 1.0; + } + op_pt->step_skip_pos <<= 1; + if (op_pt->step_skip_pos==0) op_pt->step_skip_pos = 1; + if (op_pt->step_skip_pos & op_pt->env_step_skip_a) { // check if required to skip next step + op_pt->step_amp = op_pt->amp; + } + } + } + op_pt->generator_pos -= num_steps_add*FIXEDPT; +} + + +typedef void (*optype_fptr)(op_type*); + +optype_fptr opfuncs[6] = { + operator_attack, + operator_decay, + operator_release, + operator_sustain, // sustain phase (keeping level) + operator_release, // sustain_nokeep phase (release-style) + operator_off +}; + +void change_attackrate(Bitu regbase, op_type* op_pt) { + Bits attackrate = adlibreg[ARC_ATTR_DECR+regbase]>>4; + if (attackrate) { + fltype f = (fltype)(pow(FL2,(fltype)attackrate+(op_pt->toff>>2)-1)*attackconst[op_pt->toff&3]*recipsamp); + // attack rate coefficients + op_pt->a0 = (fltype)(0.0377*f); + op_pt->a1 = (fltype)(10.73*f+1); + op_pt->a2 = (fltype)(-17.57*f); + op_pt->a3 = (fltype)(7.42*f); + + Bits step_skip = attackrate*4 + op_pt->toff; + Bits steps = step_skip >> 2; + op_pt->env_step_a = (1<<(steps<=12?12-steps:0))-1; + + Bits step_num = (step_skip<=48)?(4-(step_skip&3)):0; + static Bit8u step_skip_mask[5] = {0xff, 0xfe, 0xee, 0xba, 0xaa}; + op_pt->env_step_skip_a = step_skip_mask[step_num]; + +#if defined(OPLTYPE_IS_OPL3) + if (step_skip>=60) { +#else + if (step_skip>=62) { +#endif + op_pt->a0 = (fltype)(2.0); // something that triggers an immediate transition to amp:=1.0 + op_pt->a1 = (fltype)(0.0); + op_pt->a2 = (fltype)(0.0); + op_pt->a3 = (fltype)(0.0); + } + } else { + // attack disabled + op_pt->a0 = 0.0; + op_pt->a1 = 1.0; + op_pt->a2 = 0.0; + op_pt->a3 = 0.0; + op_pt->env_step_a = 0; + op_pt->env_step_skip_a = 0; + } +} + +void change_decayrate(Bitu regbase, op_type* op_pt) { + Bits decayrate = adlibreg[ARC_ATTR_DECR+regbase]&15; + // decaymul should be 1.0 when decayrate==0 + if (decayrate) { + fltype f = (fltype)(-7.4493*decrelconst[op_pt->toff&3]*recipsamp); + op_pt->decaymul = (fltype)(pow(FL2,f*pow(FL2,(fltype)(decayrate+(op_pt->toff>>2))))); + Bits steps = (decayrate*4 + op_pt->toff) >> 2; + op_pt->env_step_d = (1<<(steps<=12?12-steps:0))-1; + } else { + op_pt->decaymul = 1.0; + op_pt->env_step_d = 0; + } +} + +void change_releaserate(Bitu regbase, op_type* op_pt) { + Bits releaserate = adlibreg[ARC_SUSL_RELR+regbase]&15; + // releasemul should be 1.0 when releaserate==0 + if (releaserate) { + fltype f = (fltype)(-7.4493*decrelconst[op_pt->toff&3]*recipsamp); + op_pt->releasemul = (fltype)(pow(FL2,f*pow(FL2,(fltype)(releaserate+(op_pt->toff>>2))))); + Bits steps = (releaserate*4 + op_pt->toff) >> 2; + op_pt->env_step_r = (1<<(steps<=12?12-steps:0))-1; + } else { + op_pt->releasemul = 1.0; + op_pt->env_step_r = 0; + } +} + +void change_sustainlevel(Bitu regbase, op_type* op_pt) { + Bits sustainlevel = adlibreg[ARC_SUSL_RELR+regbase]>>4; + // sustainlevel should be 0.0 when sustainlevel==15 (max) + if (sustainlevel<15) { + op_pt->sustain_level = (fltype)(pow(FL2,(fltype)sustainlevel * (-FL05))); + } else { + op_pt->sustain_level = 0.0; + } +} + +void change_waveform(Bitu regbase, op_type* op_pt) { +#if defined(OPLTYPE_IS_OPL3) + if (regbase>=ARC_SECONDSET) regbase -= (ARC_SECONDSET-22); // second set starts at 22 +#endif + // waveform selection + op_pt->cur_wmask = wavemask[wave_sel[regbase]]; + op_pt->cur_wform = &wavtable[waveform[wave_sel[regbase]]]; + // (might need to be adapted to waveform type here...) +} + +void change_keepsustain(Bitu regbase, op_type* op_pt) { + op_pt->sus_keep = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x20)>0; + if (op_pt->op_state==OF_TYPE_SUS) { + if (!op_pt->sus_keep) op_pt->op_state = OF_TYPE_SUS_NOKEEP; + } else if (op_pt->op_state==OF_TYPE_SUS_NOKEEP) { + if (op_pt->sus_keep) op_pt->op_state = OF_TYPE_SUS; + } +} + +// enable/disable vibrato/tremolo LFO effects +void change_vibrato(Bitu regbase, op_type* op_pt) { + op_pt->vibrato = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x40)!=0; + op_pt->tremolo = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x80)!=0; +} + +// change amount of self-feedback +void change_feedback(Bitu chanbase, op_type* op_pt) { + Bits feedback = adlibreg[ARC_FEEDBACK+chanbase]&14; + if (feedback) op_pt->mfbi = (Bit32s)(pow(FL2,(fltype)((feedback>>1)+8))); + else op_pt->mfbi = 0; +} + +void change_frequency(Bitu chanbase, Bitu regbase, op_type* op_pt) { + // frequency + Bit32u frn = ((((Bit32u)adlibreg[ARC_KON_BNUM+chanbase])&3)<<8) + (Bit32u)adlibreg[ARC_FREQ_NUM+chanbase]; + // block number/octave + Bit32u oct = ((((Bit32u)adlibreg[ARC_KON_BNUM+chanbase])>>2)&7); + op_pt->freq_high = (Bit32s)((frn>>7)&7); + + // keysplit + Bit32u note_sel = (adlibreg[8]>>6)&1; + op_pt->toff = ((frn>>9)&(note_sel^1)) | ((frn>>8)¬e_sel); + op_pt->toff += (oct<<1); + + // envelope scaling (KSR) + if (!(adlibreg[ARC_TVS_KSR_MUL+regbase]&0x10)) op_pt->toff >>= 2; + + // 20+a0+b0: + op_pt->tinc = (Bit32u)((((fltype)(frn<>6]*kslev[oct][frn>>6]); + op_pt->vol = (fltype)(pow(FL2,(fltype)(vol_in * -0.125 - 14))); + + // operator frequency changed, care about features that depend on it + change_attackrate(regbase,op_pt); + change_decayrate(regbase,op_pt); + change_releaserate(regbase,op_pt); +} + +void enable_operator(Bitu regbase, op_type* op_pt, Bit32u act_type) { + // check if this is really an off-on transition + if (op_pt->act_state == OP_ACT_OFF) { + Bits wselbase = regbase; + if (wselbase>=ARC_SECONDSET) wselbase -= (ARC_SECONDSET-22); // second set starts at 22 + + op_pt->tcount = wavestart[wave_sel[wselbase]]*FIXEDPT; + + // start with attack mode + op_pt->op_state = OF_TYPE_ATT; + op_pt->act_state |= act_type; + } +} + +void disable_operator(op_type* op_pt, Bit32u act_type) { + // check if this is really an on-off transition + if (op_pt->act_state != OP_ACT_OFF) { + op_pt->act_state &= (~act_type); + if (op_pt->act_state == OP_ACT_OFF) { + if (op_pt->op_state != OF_TYPE_OFF) op_pt->op_state = OF_TYPE_REL; + } + } +} + +void adlib_init(Bit32u samplerate) { + Bits i, j, oct; + + int_samplerate = samplerate; + + generator_add = (Bit32u)(INTFREQU*FIXEDPT/int_samplerate); + + + memset((void *)adlibreg,0,sizeof(adlibreg)); + memset((void *)op,0,sizeof(op_type)*MAXOPERATORS); + memset((void *)wave_sel,0,sizeof(wave_sel)); + + for (i=0;i=0;i--) { + frqmul[i] = (fltype)(frqmul_tab[i]*INTFREQU/(fltype)WAVEPREC*(fltype)FIXEDPT*recipsamp); + } + + status = 0; + index = 0; + + + // create vibrato table + vib_table[0] = 8; + vib_table[1] = 4; + vib_table[2] = 0; + vib_table[3] = -4; + for (i=4; i(VIBTAB_SIZE*FIXEDPT_LFO/8192*INTFREQU/int_samplerate); + vibtab_pos = 0; + + for (i=0; i -0.5/6 to 0) + for (i=14; i<41; i++) trem_table_int[i] = -i+14; // downwards (26 to 0 -> 0 to -1/6) + for (i=41; i<53; i++) trem_table_int[i] = i-40-26; // upwards (1 to 12 -> -1/6 to -0.5/6) + + for (i=0; i>1);i++) { + wavtable[(i<<1) +WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<1) )*PI*2/WAVEPREC)); + wavtable[(i<<1)+1+WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<1)+1)*PI*2/WAVEPREC)); + wavtable[i] = wavtable[(i<<1) +WAVEPREC]; + // table to be verified, alternative: (zero-less) +/* wavtable[(i<<1) +WAVEPREC] = (Bit16s)(16384*sin((fltype)(((i*2+1)<<1)-1)*PI/WAVEPREC)); + wavtable[(i<<1)+1+WAVEPREC] = (Bit16s)(16384*sin((fltype)(((i*2+1)<<1) )*PI/WAVEPREC)); + wavtable[i] = wavtable[(i<<1)-1+WAVEPREC]; */ + } + for (i=0;i<(WAVEPREC>>3);i++) { + wavtable[i+(WAVEPREC<<1)] = wavtable[i+(WAVEPREC>>3)]-16384; + wavtable[i+((WAVEPREC*17)>>3)] = wavtable[i+(WAVEPREC>>2)]+16384; + } + + // key scale level table verified ([table in book]*8/3) + kslev[7][0] = 0; kslev[7][1] = 24; kslev[7][2] = 32; kslev[7][3] = 37; + kslev[7][4] = 40; kslev[7][5] = 43; kslev[7][6] = 45; kslev[7][7] = 47; + kslev[7][8] = 48; + for (i=9;i<16;i++) kslev[7][i] = (Bit8u)(i+41); + for (j=6;j>=0;j--) { + for (i=0;i<16;i++) { + oct = (Bits)kslev[j+1][i]-8; + if (oct < 0) oct = 0; + kslev[j][i] = (Bit8u)oct; + } + } + } + +} + + + +void adlib_write(Bitu idx, Bit8u val) { + Bit32u second_set = idx&0x100; + adlibreg[idx] = val; + + switch (idx&0xf0) { + case ARC_CONTROL: + // here we check for the second set registers, too: + switch (idx) { + case 0x02: // timer1 counter + case 0x03: // timer2 counter + break; + case 0x04: + // IRQ reset, timer mask/start + if (val&0x80) { + // clear IRQ bits in status register + status &= ~0x60; + } else { + status = 0; + } + break; +#if defined(OPLTYPE_IS_OPL3) + case 0x04|ARC_SECONDSET: + // 4op enable/disable switches for each possible channel + op[0].is_4op = (val&1)>0; + op[3].is_4op_attached = op[0].is_4op; + op[1].is_4op = (val&2)>0; + op[4].is_4op_attached = op[1].is_4op; + op[2].is_4op = (val&4)>0; + op[5].is_4op_attached = op[2].is_4op; + op[18].is_4op = (val&8)>0; + op[21].is_4op_attached = op[18].is_4op; + op[19].is_4op = (val&16)>0; + op[22].is_4op_attached = op[19].is_4op; + op[20].is_4op = (val&32)>0; + op[23].is_4op_attached = op[20].is_4op; + break; + case 0x05|ARC_SECONDSET: + break; +#endif + case 0x08: + // CSW, note select + break; + default: + break; + } + break; + case ARC_TVS_KSR_MUL: + case ARC_TVS_KSR_MUL+0x10: { + // tremolo/vibrato/sustain keeping enabled; key scale rate; frequency multiplication + int num = idx&7; + Bitu base = (idx-ARC_TVS_KSR_MUL)&0xff; + if ((num<6) && (base<22)) { + Bitu modop = regbase2modop[second_set?(base+22):base]; + Bitu regbase = base+second_set; + Bitu chanbase = second_set?(modop-18+ARC_SECONDSET):modop; + + // change tremolo/vibrato and sustain keeping of this operator + op_type* op_ptr = &op[modop+((num<3) ? 0 : 9)]; + change_keepsustain(regbase,op_ptr); + change_vibrato(regbase,op_ptr); + + // change frequency calculations of this operator as + // key scale rate and frequency multiplicator can be changed +#if defined(OPLTYPE_IS_OPL3) + if ((adlibreg[0x105]&1) && (op[modop].is_4op_attached)) { + // operator uses frequency of channel + change_frequency(chanbase-3,regbase,op_ptr); + } else { + change_frequency(chanbase,regbase,op_ptr); + } +#else + change_frequency(chanbase,base,op_ptr); +#endif + } + } + break; + case ARC_KSL_OUTLEV: + case ARC_KSL_OUTLEV+0x10: { + // key scale level; output rate + int num = idx&7; + Bitu base = (idx-ARC_KSL_OUTLEV)&0xff; + if ((num<6) && (base<22)) { + Bitu modop = regbase2modop[second_set?(base+22):base]; + Bitu chanbase = second_set?(modop-18+ARC_SECONDSET):modop; + + // change frequency calculations of this operator as + // key scale level and output rate can be changed + op_type* op_ptr = &op[modop+((num<3) ? 0 : 9)]; +#if defined(OPLTYPE_IS_OPL3) + Bitu regbase = base+second_set; + if ((adlibreg[0x105]&1) && (op[modop].is_4op_attached)) { + // operator uses frequency of channel + change_frequency(chanbase-3,regbase,op_ptr); + } else { + change_frequency(chanbase,regbase,op_ptr); + } +#else + change_frequency(chanbase,base,op_ptr); +#endif + } + } + break; + case ARC_ATTR_DECR: + case ARC_ATTR_DECR+0x10: { + // attack/decay rates + int num = idx&7; + Bitu base = (idx-ARC_ATTR_DECR)&0xff; + if ((num<6) && (base<22)) { + Bitu regbase = base+second_set; + + // change attack rate and decay rate of this operator + op_type* op_ptr = &op[regbase2op[second_set?(base+22):base]]; + change_attackrate(regbase,op_ptr); + change_decayrate(regbase,op_ptr); + } + } + break; + case ARC_SUSL_RELR: + case ARC_SUSL_RELR+0x10: { + // sustain level; release rate + int num = idx&7; + Bitu base = (idx-ARC_SUSL_RELR)&0xff; + if ((num<6) && (base<22)) { + Bitu regbase = base+second_set; + + // change sustain level and release rate of this operator + op_type* op_ptr = &op[regbase2op[second_set?(base+22):base]]; + change_releaserate(regbase,op_ptr); + change_sustainlevel(regbase,op_ptr); + } + } + break; + case ARC_FREQ_NUM: { + // 0xa0-0xa8 low8 frequency + Bitu base = (idx-ARC_FREQ_NUM)&0xff; + if (base<9) { + Bits opbase = second_set?(base+18):base; +#if defined(OPLTYPE_IS_OPL3) + if ((adlibreg[0x105]&1) && op[opbase].is_4op_attached) break; +#endif + // regbase of modulator: + Bits modbase = modulatorbase[base]+second_set; + + Bitu chanbase = base+second_set; + + change_frequency(chanbase,modbase,&op[opbase]); + change_frequency(chanbase,modbase+3,&op[opbase+9]); +#if defined(OPLTYPE_IS_OPL3) + // for 4op channels all four operators are modified to the frequency of the channel + if ((adlibreg[0x105]&1) && op[second_set?(base+18):base].is_4op) { + change_frequency(chanbase,modbase+8,&op[opbase+3]); + change_frequency(chanbase,modbase+3+8,&op[opbase+3+9]); + } +#endif + } + } + break; + case ARC_KON_BNUM: { + if (idx == ARC_PERC_MODE) { +#if defined(OPLTYPE_IS_OPL3) + if (second_set) return; +#endif + + if ((val&0x30) == 0x30) { // BassDrum active + enable_operator(16,&op[6],OP_ACT_PERC); + change_frequency(6,16,&op[6]); + enable_operator(16+3,&op[6+9],OP_ACT_PERC); + change_frequency(6,16+3,&op[6+9]); + } else { + disable_operator(&op[6],OP_ACT_PERC); + disable_operator(&op[6+9],OP_ACT_PERC); + } + if ((val&0x28) == 0x28) { // Snare active + enable_operator(17+3,&op[16],OP_ACT_PERC); + change_frequency(7,17+3,&op[16]); + } else { + disable_operator(&op[16],OP_ACT_PERC); + } + if ((val&0x24) == 0x24) { // TomTom active + enable_operator(18,&op[8],OP_ACT_PERC); + change_frequency(8,18,&op[8]); + } else { + disable_operator(&op[8],OP_ACT_PERC); + } + if ((val&0x22) == 0x22) { // Cymbal active + enable_operator(18+3,&op[8+9],OP_ACT_PERC); + change_frequency(8,18+3,&op[8+9]); + } else { + disable_operator(&op[8+9],OP_ACT_PERC); + } + if ((val&0x21) == 0x21) { // Hihat active + enable_operator(17,&op[7],OP_ACT_PERC); + change_frequency(7,17,&op[7]); + } else { + disable_operator(&op[7],OP_ACT_PERC); + } + + break; + } + // regular 0xb0-0xb8 + Bitu base = (idx-ARC_KON_BNUM)&0xff; + if (base<9) { + Bits opbase = second_set?(base+18):base; +#if defined(OPLTYPE_IS_OPL3) + if ((adlibreg[0x105]&1) && op[opbase].is_4op_attached) break; +#endif + // regbase of modulator: + Bits modbase = modulatorbase[base]+second_set; + + if (val&32) { + // operator switched on + enable_operator(modbase,&op[opbase],OP_ACT_NORMAL); // modulator (if 2op) + enable_operator(modbase+3,&op[opbase+9],OP_ACT_NORMAL); // carrier (if 2op) +#if defined(OPLTYPE_IS_OPL3) + // for 4op channels all four operators are switched on + if ((adlibreg[0x105]&1) && op[opbase].is_4op) { + // turn on chan+3 operators as well + enable_operator(modbase+8,&op[opbase+3],OP_ACT_NORMAL); + enable_operator(modbase+3+8,&op[opbase+3+9],OP_ACT_NORMAL); + } +#endif + } else { + // operator switched off + disable_operator(&op[opbase],OP_ACT_NORMAL); + disable_operator(&op[opbase+9],OP_ACT_NORMAL); +#if defined(OPLTYPE_IS_OPL3) + // for 4op channels all four operators are switched off + if ((adlibreg[0x105]&1) && op[opbase].is_4op) { + // turn off chan+3 operators as well + disable_operator(&op[opbase+3],OP_ACT_NORMAL); + disable_operator(&op[opbase+3+9],OP_ACT_NORMAL); + } +#endif + } + + Bitu chanbase = base+second_set; + + // change frequency calculations of modulator and carrier (2op) as + // the frequency of the channel has changed + change_frequency(chanbase,modbase,&op[opbase]); + change_frequency(chanbase,modbase+3,&op[opbase+9]); +#if defined(OPLTYPE_IS_OPL3) + // for 4op channels all four operators are modified to the frequency of the channel + if ((adlibreg[0x105]&1) && op[second_set?(base+18):base].is_4op) { + // change frequency calculations of chan+3 operators as well + change_frequency(chanbase,modbase+8,&op[opbase+3]); + change_frequency(chanbase,modbase+3+8,&op[opbase+3+9]); + } +#endif + } + } + break; + case ARC_FEEDBACK: { + // 0xc0-0xc8 feedback/modulation type (AM/FM) + Bitu base = (idx-ARC_FEEDBACK)&0xff; + if (base<9) { + Bits opbase = second_set?(base+18):base; + Bitu chanbase = base+second_set; + change_feedback(chanbase,&op[opbase]); +#if defined(OPLTYPE_IS_OPL3) + // OPL3 panning + op[opbase].left_pan = ((val&0x10)>>4); + op[opbase].right_pan = ((val&0x20)>>5); +#endif + } + } + break; + case ARC_WAVE_SEL: + case ARC_WAVE_SEL+0x10: { + int num = idx&7; + Bitu base = (idx-ARC_WAVE_SEL)&0xff; + if ((num<6) && (base<22)) { +#if defined(OPLTYPE_IS_OPL3) + Bits wselbase = second_set?(base+22):base; // for easier mapping onto wave_sel[] + // change waveform + if (adlibreg[0x105]&1) wave_sel[wselbase] = val&7; // opl3 mode enabled, all waveforms accessible + else wave_sel[wselbase] = val&3; + op_type* op_ptr = &op[regbase2modop[wselbase]+((num<3) ? 0 : 9)]; + change_waveform(wselbase,op_ptr); +#else + if (adlibreg[0x01]&0x20) { + // wave selection enabled, change waveform + wave_sel[base] = val&3; + op_type* op_ptr = &op[regbase2modop[base]+((num<3) ? 0 : 9)]; + change_waveform(base,op_ptr); + } +#endif + } + } + break; + default: + break; + } +} + + +Bitu adlib_reg_read(Bitu port) { +#if defined(OPLTYPE_IS_OPL3) + // opl3-detection routines require ret&6 to be zero + if ((port&1)==0) { + return status; + } + return 0x00; +#else + // opl2-detection routines require ret&6 to be 6 + if ((port&1)==0) { + return status|6; + } + return 0xff; +#endif +} + +void adlib_write_index(Bitu port, Bit8u val) { + index = val; +#if defined(OPLTYPE_IS_OPL3) + if ((port&3)!=0) { + // possibly second set + if (((adlibreg[0x105]&1)!=0) || (index==5)) index |= ARC_SECONDSET; + } +#endif +} + +static inline void clipit16(Bit32s ival, Bit16s* outval) { + if (ival<32768) { + if (ival>-32769) { + *outval=(Bit16s)ival; + } else { + *outval = -32768; + } + } else { + *outval = 32767; + } +} + + + +// be careful with this +// uses cptr and chanval, outputs into outbufl(/outbufr) +// for opl3 check if opl3-mode is enabled (which uses stereo panning) +#undef CHANVAL_OUT +#if defined(OPLTYPE_IS_OPL3) +#define CHANVAL_OUT \ + if (adlibreg[0x105]&1) { \ + outbufl[i] += chanval*cptr[0].left_pan; \ + outbufr[i] += chanval*cptr[0].right_pan; \ + } else { \ + outbufl[i] += chanval; \ + } +#else +#define CHANVAL_OUT \ + outbufl[i] += chanval; +#endif + +void adlib_getsample(Bit16s* sndptr, Bits numsamples) { + Bits i, endsamples; + op_type* cptr; + + Bit32s outbufl[BLOCKBUF_SIZE]; +#if defined(OPLTYPE_IS_OPL3) + // second output buffer (right channel for opl3 stereo) + Bit32s outbufr[BLOCKBUF_SIZE]; +#endif + + // vibrato/tremolo lookup tables (global, to possibly be used by all operators) + Bit32s vib_lut[BLOCKBUF_SIZE]; + Bit32s trem_lut[BLOCKBUF_SIZE]; + + Bits samples_to_process = numsamples; + + for (Bits cursmp=0; cursmpBLOCKBUF_SIZE) endsamples = BLOCKBUF_SIZE; + + memset((void*)&outbufl,0,endsamples*sizeof(Bit32s)); +#if defined(OPLTYPE_IS_OPL3) + // clear second output buffer (opl3 stereo) + if (adlibreg[0x105]&1) memset((void*)&outbufr,0,endsamples*sizeof(Bit32s)); +#endif + + // calculate vibrato/tremolo lookup tables + Bit32s vib_tshift = ((adlibreg[ARC_PERC_MODE]&0x40)==0) ? 1 : 0; // 14cents/7cents switching + for (i=0;i=VIBTAB_SIZE) vibtab_pos-=VIBTAB_SIZE*FIXEDPT_LFO; + vib_lut[i] = vib_table[vibtab_pos/FIXEDPT_LFO]>>vib_tshift; // 14cents (14/100 of a semitone) or 7cents + + // cycle through tremolo table + tremtab_pos += tremtab_add; + if (tremtab_pos/FIXEDPT_LFO>=TREMTAB_SIZE) tremtab_pos-=TREMTAB_SIZE*FIXEDPT_LFO; + if (adlibreg[ARC_PERC_MODE]&0x80) trem_lut[i] = trem_table[tremtab_pos/FIXEDPT_LFO]; + else trem_lut[i] = trem_table[TREMTAB_SIZE+tremtab_pos/FIXEDPT_LFO]; + } + + if (adlibreg[ARC_PERC_MODE]&0x20) { + //BassDrum + cptr = &op[6]; + if (adlibreg[ARC_FEEDBACK+6]&1) { + // additive synthesis + if (cptr[9].op_state != OF_TYPE_OFF) { + if (cptr[9].vibrato) { + vibval1 = vibval_var1; + for (i=0;i=0; cur_ch--) { + // skip drum/percussion operators + if ((adlibreg[ARC_PERC_MODE]&0x20) && (cur_ch >= 6) && (cur_ch < 9)) continue; + + Bitu k = cur_ch; +#if defined(OPLTYPE_IS_OPL3) + if (cur_ch < 9) { + cptr = &op[cur_ch]; + } else { + cptr = &op[cur_ch+9]; // second set is operator18-operator35 + k += (-9+256); // second set uses registers 0x100 onwards + } + // check if this operator is part of a 4-op + if ((adlibreg[0x105]&1) && cptr->is_4op_attached) continue; +#else + cptr = &op[cur_ch]; +#endif + + // check for FM/AM + if (adlibreg[ARC_FEEDBACK+k]&1) { +#if defined(OPLTYPE_IS_OPL3) + if ((adlibreg[0x105]&1) && cptr->is_4op) { + if (adlibreg[ARC_FEEDBACK+k+3]&1) { + // AM-AM-style synthesis (op1[fb] + (op2 * op3) + op4) + if (cptr[0].op_state != OF_TYPE_OFF) { + if (cptr[0].vibrato) { + vibval1 = vibval_var1; + for (i=0;iis_4op) { + if (adlibreg[ARC_FEEDBACK+k+3]&1) { + // FM-AM-style synthesis ((op1[fb] * op2) + (op3 * op4)) + if ((cptr[0].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF)) { + if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) { + vibval1 = vibval_var1; + for (i=0;i