/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #ifndef TOWNS_PC98_FMSYNTH_H #define TOWNS_PC98_FMSYNTH_H #include "audio/audiostream.h" #include "audio/mixer.h" #include "common/mutex.h" #include "common/func.h" #include "common/array.h" #ifdef __DS__ /* This disables the rhythm channel when emulating the PC-98 type 86 sound card. * The only purpose is code size reduction for certain backends. * At the moment the only games which make use of the rhythm channel are the * (very rare) PC-98 versions of Legend of Kyrandia 2 and Lands of Lore. Music will * still be okay, just missing a couple of rhythm instruments. */ #define DISABLE_PC98_RHYTHM_CHANNEL #endif /* Experimental code for emulation of the chip's busy flag wait cycle. * Explanation: * Before attempting a port write a client application would usually read the chip's * busy flag and remain in a loop until the flag is cleared. This does not work with * an emulator that is on the same thread as the client code (the busy flag will never * clear). Instead, I emulate a wait cycle by withholding (enqueueing) incoming register * writes for the duration of the wait cycle. * For now I have disabled this with an #ifdef since I haven't seen any impact on the * sound. */ //#define ENABLE_SNDTOWNS98_WAITCYCLES class TownsPC98_FmSynthOperator; class TownsPC98_FmSynthSquareWaveSource; #ifndef DISABLE_PC98_RHYTHM_CHANNEL class TownsPC98_FmSynthPercussionSource; #endif enum EnvelopeState { kEnvReady = 0, kEnvAttacking, kEnvDecaying, kEnvSustaining, kEnvReleasing }; class TownsPC98_FmSynth : public Audio::AudioStream { public: enum EmuType { kTypeTowns = 0, kType26 = 1, kType86 = 2 }; TownsPC98_FmSynth(Audio::Mixer *mixer, EmuType type); virtual ~TownsPC98_FmSynth(); virtual bool init(); virtual void reset(); void writeReg(uint8 part, uint8 regAddress, uint8 value); uint8 readReg(uint8 part, uint8 regAddress); // AudioStream interface int readBuffer(int16 *buffer, const int numSamples); bool isStereo() const; bool endOfData() const; int getRate() const; protected: void deinit(); // Implement this in your inherited class if your driver generates // additional output that has to be inserted into the buffer. virtual void nextTickEx(int32 *buffer, uint32 bufferSize) {} virtual void timerCallbackA() = 0; virtual void timerCallbackB() = 0; // The audio driver can store and apply two different volume settings // (usually for music and sound effects). The channel mask will determine // which channels get effected by which setting. The first bits will be // the normal fm channels, the next bits the ssg channels and the final // bit the rhythm channel. void setVolumeIntern(int volA, int volB); void setVolumeChannelMasks(int channelMaskA, int channelMaskB); // This allows to balance out the fm/ssg levels. void setLevelSSG(int vol); const int _numChan; const int _numSSG; const bool _hasPercussion; Common::Mutex _mutex; int _mixerThreadLockCounter; private: void generateTables(); void writeRegInternal(uint8 part, uint8 regAddress, uint8 value); void nextTick(int32 *buffer, uint32 bufferSize); #ifdef ENABLE_SNDTOWNS98_WAITCYCLES void startWaitCycle(); #endif struct ChanInternal { ChanInternal(); ~ChanInternal(); void ampModSensitivity(uint32 value) { ampModSvty = (1 << (3 - value)) - (((value >> 1) & 1) | (value & 1)); } void frqModSensitivity(uint32 value) { frqModSvty = value << 5; } void fbClear() { feedbuf[0] = feedbuf[1] = feedbuf[2] = 0; } bool enableLeft; bool enableRight; bool updateEnvelopeParameters; int32 feedbuf[3]; uint8 algorithm; uint32 ampModSvty; uint32 frqModSvty; TownsPC98_FmSynthOperator *opr[4]; }; TownsPC98_FmSynthSquareWaveSource *_ssg; #ifndef DISABLE_PC98_RHYTHM_CHANNEL TownsPC98_FmSynthPercussionSource *_prc; #endif ChanInternal *_chanInternal; uint8 *_oprRates; uint8 *_oprRateshift; uint8 *_oprAttackDecay; uint32 *_oprFrq; uint32 *_oprSinTbl; int32 *_oprLevelOut; int32 *_oprDetune; typedef Common::Functor0Mem ChipTimerProc; ChipTimerProc *_timerProcIdle; ChipTimerProc *_timerProcA; ChipTimerProc *_timerProcB; void idleTimerCallback() {} struct ChipTimer { bool enabled; uint16 value; int32 smpTillCb; uint32 smpTillCbRem; int32 smpPerCb; uint32 smpPerCbRem; ChipTimerProc *cb; }; ChipTimer _timers[2]; int _volMaskA, _volMaskB; uint16 _volumeA, _volumeB; int32 *_renderBuffer; int _renderBufferSize; int _numPending; int _offsPending; int _rateScale; int _outRateMult; int _rateConvCnt; float _predSmpCount; const int _internalRate; const int _outputRate; #ifdef ENABLE_SNDTOWNS98_WAITCYCLES int _waitCycleRemainder; const int _samplesPerWaitCycle; struct RegEntry { RegEntry(uint8 p, uint8 r, uint8 v) : part(p), reg(r), val(v) {} uint8 part; uint8 reg; uint8 val; }; Common::Array _waitCycleElapsedWrites; #endif uint8 _registers[255][2]; Audio::Mixer *_mixer; Audio::SoundHandle _soundHandle; #ifndef DISABLE_PC98_RHYTHM_CHANNEL static const uint8 _percussionData[]; #endif static const uint32 _adtStat[]; static const uint8 _detSrc[]; static const int _ssgTables[]; bool _ready; }; #endif