/* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009 Dean Beeler, Jerome Fisher * Copyright (C) 2011, 2012, 2013 Dean Beeler, Jerome Fisher, Sergey V. Mikayev * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . */ #include "mt32emu.h" #if MT32EMU_USE_REVERBMODEL == 1 #include "AReverbModel.h" // Analysing of state of reverb RAM address lines gives exact sizes of the buffers of filters used. This also indicates that // the reverb model implemented in the real devices consists of three series allpass filters preceded by a non-feedback comb (or a delay with a LPF) // and followed by three parallel comb filters namespace MT32Emu { // Because LA-32 chip makes it's output available to process by the Boss chip with a significant delay, // the Boss chip puts to the buffer the LA32 dry output when it is ready and performs processing of the _previously_ latched data. // Of course, the right way would be to use a dedicated variable for this, but our reverb model is way higher level, // so we can simply increase the input buffer size. static const Bit32u PROCESS_DELAY = 1; // Default reverb settings for modes 0-2. These correspond to CM-32L / LAPC-I "new" reverb settings. MT-32 reverb is a bit different. // Found by tracing reverb RAM data lines (thanks go to Lord_Nightmare & balrog). static const Bit32u NUM_ALLPASSES = 3; static const Bit32u NUM_COMBS = 4; // Well, actually there are 3 comb filters, but the entrance LPF + delay can be perfectly processed via a comb here. static const Bit32u MODE_0_ALLPASSES[] = {994, 729, 78}; static const Bit32u MODE_0_COMBS[] = {705 + PROCESS_DELAY, 2349, 2839, 3632}; static const Bit32u MODE_0_OUTL[] = {2349, 141, 1960}; static const Bit32u MODE_0_OUTR[] = {1174, 1570, 145}; static const Bit32u MODE_0_COMB_FACTOR[] = {0x3C, 0x60, 0x60, 0x60}; static const Bit32u MODE_0_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98, 0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98, 0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98}; static const Bit32u MODE_0_LEVELS[] = {10*1, 10*3, 10*5, 10*7, 11*9, 11*12, 11*15, 13*15}; static const Bit32u MODE_0_LPF_AMP = 6; static const Bit32u MODE_1_ALLPASSES[] = {1324, 809, 176}; static const Bit32u MODE_1_COMBS[] = {961 + PROCESS_DELAY, 2619, 3545, 4519}; static const Bit32u MODE_1_OUTL[] = {2618, 1760, 4518}; static const Bit32u MODE_1_OUTR[] = {1300, 3532, 2274}; static const Bit32u MODE_1_COMB_FACTOR[] = {0x30, 0x60, 0x60, 0x60}; static const Bit32u MODE_1_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28, 0x48, 0x60, 0x70, 0x78, 0x80, 0x90, 0x98, 0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98, 0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98}; static const Bit32u MODE_1_LEVELS[] = {10*1, 10*3, 11*5, 11*7, 11*9, 11*12, 11*15, 14*15}; static const Bit32u MODE_1_LPF_AMP = 6; static const Bit32u MODE_2_ALLPASSES[] = {969, 644, 157}; static const Bit32u MODE_2_COMBS[] = {116 + PROCESS_DELAY, 2259, 2839, 3539}; static const Bit32u MODE_2_OUTL[] = {2259, 718, 1769}; static const Bit32u MODE_2_OUTR[] = {1136, 2128, 1}; static const Bit32u MODE_2_COMB_FACTOR[] = {0, 0x20, 0x20, 0x20}; static const Bit32u MODE_2_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x58, 0x78, 0x88, 0xA0, 0xB8, 0xC0, 0xD0, 0x30, 0x58, 0x78, 0x88, 0xA0, 0xB8, 0xC0, 0xD0, 0x30, 0x58, 0x78, 0x88, 0xA0, 0xB8, 0xC0, 0xD0}; static const Bit32u MODE_2_LEVELS[] = {10*1, 10*3, 11*5, 11*7, 11*9, 11*12, 12*15, 14*15}; static const Bit32u MODE_2_LPF_AMP = 8; static const AReverbSettings REVERB_MODE_0_SETTINGS = {MODE_0_ALLPASSES, MODE_0_COMBS, MODE_0_OUTL, MODE_0_OUTR, MODE_0_COMB_FACTOR, MODE_0_COMB_FEEDBACK, MODE_0_LEVELS, MODE_0_LPF_AMP}; static const AReverbSettings REVERB_MODE_1_SETTINGS = {MODE_1_ALLPASSES, MODE_1_COMBS, MODE_1_OUTL, MODE_1_OUTR, MODE_1_COMB_FACTOR, MODE_1_COMB_FEEDBACK, MODE_1_LEVELS, MODE_1_LPF_AMP}; static const AReverbSettings REVERB_MODE_2_SETTINGS = {MODE_2_ALLPASSES, MODE_2_COMBS, MODE_2_OUTL, MODE_2_OUTR, MODE_2_COMB_FACTOR, MODE_2_COMB_FEEDBACK, MODE_2_LEVELS, MODE_2_LPF_AMP}; static const AReverbSettings * const REVERB_SETTINGS[] = {&REVERB_MODE_0_SETTINGS, &REVERB_MODE_1_SETTINGS, &REVERB_MODE_2_SETTINGS, &REVERB_MODE_0_SETTINGS}; RingBuffer::RingBuffer(const Bit32u newsize) : size(newsize), index(0) { buffer = new float[size]; } RingBuffer::~RingBuffer() { delete[] buffer; buffer = NULL; } float RingBuffer::next() { if (++index >= size) { index = 0; } return buffer[index]; } bool RingBuffer::isEmpty() const { if (buffer == NULL) return true; float *buf = buffer; float max = 0.001f; for (Bit32u i = 0; i < size; i++) { if ((*buf < -max) || (*buf > max)) return false; buf++; } return true; } void RingBuffer::mute() { float *buf = buffer; for (Bit32u i = 0; i < size; i++) { *buf++ = 0; } } AllpassFilter::AllpassFilter(const Bit32u useSize) : RingBuffer(useSize) {} float AllpassFilter::process(const float in) { // This model corresponds to the allpass filter implementation of the real CM-32L device // found from sample analysis const float bufferOut = next(); // store input - feedback / 2 buffer[index] = in - 0.5f * bufferOut; // return buffer output + feedforward / 2 return bufferOut + 0.5f * buffer[index]; } CombFilter::CombFilter(const Bit32u useSize) : RingBuffer(useSize) {} void CombFilter::process(const float in) { // This model corresponds to the comb filter implementation of the real CM-32L device // found from sample analysis // the previously stored value float last = buffer[index]; // prepare input + feedback float filterIn = in + next() * feedbackFactor; // store input + feedback processed by a low-pass filter buffer[index] = filterFactor * last - filterIn; } float CombFilter::getOutputAt(const Bit32u outIndex) const { return buffer[(size + index - outIndex) % size]; } void CombFilter::setFeedbackFactor(const float useFeedbackFactor) { feedbackFactor = useFeedbackFactor; } void CombFilter::setFilterFactor(const float useFilterFactor) { filterFactor = useFilterFactor; } AReverbModel::AReverbModel(const ReverbMode mode) : allpasses(NULL), combs(NULL), currentSettings(*REVERB_SETTINGS[mode]) {} AReverbModel::~AReverbModel() { close(); } void AReverbModel::open() { allpasses = new AllpassFilter*[NUM_ALLPASSES]; for (Bit32u i = 0; i < NUM_ALLPASSES; i++) { allpasses[i] = new AllpassFilter(currentSettings.allpassSizes[i]); } combs = new CombFilter*[NUM_COMBS]; for (Bit32u i = 0; i < NUM_COMBS; i++) { combs[i] = new CombFilter(currentSettings.combSizes[i]); combs[i]->setFilterFactor(currentSettings.filterFactor[i] / 256.0f); } lpfAmp = currentSettings.lpfAmp / 16.0f; mute(); } void AReverbModel::close() { if (allpasses != NULL) { for (Bit32u i = 0; i < NUM_ALLPASSES; i++) { if (allpasses[i] != NULL) { delete allpasses[i]; allpasses[i] = NULL; } } delete[] allpasses; allpasses = NULL; } if (combs != NULL) { for (Bit32u i = 0; i < NUM_COMBS; i++) { if (combs[i] != NULL) { delete combs[i]; combs[i] = NULL; } } delete[] combs; combs = NULL; } } void AReverbModel::mute() { if (allpasses == NULL || combs == NULL) return; for (Bit32u i = 0; i < NUM_ALLPASSES; i++) { allpasses[i]->mute(); } for (Bit32u i = 0; i < NUM_COMBS; i++) { combs[i]->mute(); } } void AReverbModel::setParameters(Bit8u time, Bit8u level) { // FIXME: wetLevel definitely needs ramping when changed // Although, most games don't set reverb level during MIDI playback if (combs == NULL) return; level &= 7; time &= 7; for (Bit32u i = 0; i < NUM_COMBS; i++) { combs[i]->setFeedbackFactor(currentSettings.decayTimes[(i << 3) + time] / 256.0f); } wetLevel = (level == 0 && time == 0) ? 0.0f : 0.5f * lpfAmp * currentSettings.wetLevels[level] / 256.0f; } bool AReverbModel::isActive() const { for (Bit32u i = 0; i < NUM_ALLPASSES; i++) { if (!allpasses[i]->isEmpty()) return true; } for (Bit32u i = 0; i < NUM_COMBS; i++) { if (!combs[i]->isEmpty()) return true; } return false; } void AReverbModel::process(const float *inLeft, const float *inRight, float *outLeft, float *outRight, unsigned long numSamples) { float dry, link, outL1; for (unsigned long i = 0; i < numSamples; i++) { dry = wetLevel * (*inLeft + *inRight); // Get the last stored sample before processing in order not to loose it link = combs[0]->getOutputAt(currentSettings.combSizes[0] - 1); combs[0]->process(-dry); link = allpasses[0]->process(link); link = allpasses[1]->process(link); link = allpasses[2]->process(link); // If the output position is equal to the comb size, get it now in order not to loose it outL1 = 1.5f * combs[1]->getOutputAt(currentSettings.outLPositions[0] - 1); combs[1]->process(link); combs[2]->process(link); combs[3]->process(link); link = outL1 + 1.5f * combs[2]->getOutputAt(currentSettings.outLPositions[1]); link += combs[3]->getOutputAt(currentSettings.outLPositions[2]); *outLeft = link; link = 1.5f * combs[1]->getOutputAt(currentSettings.outRPositions[0]); link += 1.5f * combs[2]->getOutputAt(currentSettings.outRPositions[1]); link += combs[3]->getOutputAt(currentSettings.outRPositions[2]); *outRight = link; inLeft++; inRight++; outLeft++; outRight++; } } } #endif