/* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009 Dean Beeler, Jerome Fisher * Copyright (C) 2011, 2012, 2013 Dean Beeler, Jerome Fisher, Sergey V. Mikayev * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program. If not, see . */ #include "mt32emu.h" #if MT32EMU_USE_REVERBMODEL == 2 #include "BReverbModel.h" // Analysing of state of reverb RAM address lines gives exact sizes of the buffers of filters used. This also indicates that // the reverb model implemented in the real devices consists of three series allpass filters preceded by a non-feedback comb (or a delay with a LPF) // and followed by three parallel comb filters namespace MT32Emu { // Because LA-32 chip makes it's output available to process by the Boss chip with a significant delay, // the Boss chip puts to the buffer the LA32 dry output when it is ready and performs processing of the _previously_ latched data. // Of course, the right way would be to use a dedicated variable for this, but our reverb model is way higher level, // so we can simply increase the input buffer size. static const Bit32u PROCESS_DELAY = 1; static const Bit32u MODE_3_ADDITIONAL_DELAY = 1; static const Bit32u MODE_3_FEEDBACK_DELAY = 1; // Default reverb settings for modes 0-2. These correspond to CM-32L / LAPC-I "new" reverb settings. MT-32 reverb is a bit different. // Found by tracing reverb RAM data lines (thanks go to Lord_Nightmare & balrog). static const Bit32u MODE_0_NUMBER_OF_ALLPASSES = 3; static const Bit32u MODE_0_ALLPASSES[] = {994, 729, 78}; static const Bit32u MODE_0_NUMBER_OF_COMBS = 4; // Well, actually there are 3 comb filters, but the entrance LPF + delay can be processed via a hacked comb. static const Bit32u MODE_0_COMBS[] = {705 + PROCESS_DELAY, 2349, 2839, 3632}; static const Bit32u MODE_0_OUTL[] = {2349, 141, 1960}; static const Bit32u MODE_0_OUTR[] = {1174, 1570, 145}; static const Bit32u MODE_0_COMB_FACTOR[] = {0xA0, 0x60, 0x60, 0x60}; static const Bit32u MODE_0_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98, 0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98, 0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98}; static const Bit32u MODE_0_DRY_AMP[] = {0xA0, 0xA0, 0xA0, 0xA0, 0xB0, 0xB0, 0xB0, 0xD0}; static const Bit32u MODE_0_WET_AMP[] = {0x10, 0x30, 0x50, 0x70, 0x90, 0xC0, 0xF0, 0xF0}; static const Bit32u MODE_0_LPF_AMP = 0x60; static const Bit32u MODE_1_NUMBER_OF_ALLPASSES = 3; static const Bit32u MODE_1_ALLPASSES[] = {1324, 809, 176}; static const Bit32u MODE_1_NUMBER_OF_COMBS = 4; // Same as for mode 0 above static const Bit32u MODE_1_COMBS[] = {961 + PROCESS_DELAY, 2619, 3545, 4519}; static const Bit32u MODE_1_OUTL[] = {2618, 1760, 4518}; static const Bit32u MODE_1_OUTR[] = {1300, 3532, 2274}; static const Bit32u MODE_1_COMB_FACTOR[] = {0x80, 0x60, 0x60, 0x60}; static const Bit32u MODE_1_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28, 0x48, 0x60, 0x70, 0x78, 0x80, 0x90, 0x98, 0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98, 0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98}; static const Bit32u MODE_1_DRY_AMP[] = {0xA0, 0xA0, 0xB0, 0xB0, 0xB0, 0xB0, 0xB0, 0xE0}; static const Bit32u MODE_1_WET_AMP[] = {0x10, 0x30, 0x50, 0x70, 0x90, 0xC0, 0xF0, 0xF0}; static const Bit32u MODE_1_LPF_AMP = 0x60; static const Bit32u MODE_2_NUMBER_OF_ALLPASSES = 3; static const Bit32u MODE_2_ALLPASSES[] = {969, 644, 157}; static const Bit32u MODE_2_NUMBER_OF_COMBS = 4; // Same as for mode 0 above static const Bit32u MODE_2_COMBS[] = {116 + PROCESS_DELAY, 2259, 2839, 3539}; static const Bit32u MODE_2_OUTL[] = {2259, 718, 1769}; static const Bit32u MODE_2_OUTR[] = {1136, 2128, 1}; static const Bit32u MODE_2_COMB_FACTOR[] = {0, 0x20, 0x20, 0x20}; static const Bit32u MODE_2_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x58, 0x78, 0x88, 0xA0, 0xB8, 0xC0, 0xD0, 0x30, 0x58, 0x78, 0x88, 0xA0, 0xB8, 0xC0, 0xD0, 0x30, 0x58, 0x78, 0x88, 0xA0, 0xB8, 0xC0, 0xD0}; static const Bit32u MODE_2_DRY_AMP[] = {0xA0, 0xA0, 0xB0, 0xB0, 0xB0, 0xB0, 0xC0, 0xE0}; static const Bit32u MODE_2_WET_AMP[] = {0x10, 0x30, 0x50, 0x70, 0x90, 0xC0, 0xF0, 0xF0}; static const Bit32u MODE_2_LPF_AMP = 0x80; static const Bit32u MODE_3_NUMBER_OF_ALLPASSES = 0; static const Bit32u MODE_3_NUMBER_OF_COMBS = 1; static const Bit32u MODE_3_DELAY[] = {16000 + MODE_3_FEEDBACK_DELAY + PROCESS_DELAY + MODE_3_ADDITIONAL_DELAY}; static const Bit32u MODE_3_OUTL[] = {400, 624, 960, 1488, 2256, 3472, 5280, 8000}; static const Bit32u MODE_3_OUTR[] = {800, 1248, 1920, 2976, 4512, 6944, 10560, 16000}; static const Bit32u MODE_3_COMB_FACTOR[] = {0x68}; static const Bit32u MODE_3_COMB_FEEDBACK[] = {0x68, 0x60}; static const Bit32u MODE_3_DRY_AMP[] = {0x20, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50}; static const Bit32u MODE_3_WET_AMP[] = {0x18, 0x18, 0x28, 0x40, 0x60, 0x80, 0xA8, 0xF8}; static const BReverbSettings REVERB_MODE_0_SETTINGS = {MODE_0_NUMBER_OF_ALLPASSES, MODE_0_ALLPASSES, MODE_0_NUMBER_OF_COMBS, MODE_0_COMBS, MODE_0_OUTL, MODE_0_OUTR, MODE_0_COMB_FACTOR, MODE_0_COMB_FEEDBACK, MODE_0_DRY_AMP, MODE_0_WET_AMP, MODE_0_LPF_AMP}; static const BReverbSettings REVERB_MODE_1_SETTINGS = {MODE_1_NUMBER_OF_ALLPASSES, MODE_1_ALLPASSES, MODE_1_NUMBER_OF_COMBS, MODE_1_COMBS, MODE_1_OUTL, MODE_1_OUTR, MODE_1_COMB_FACTOR, MODE_1_COMB_FEEDBACK, MODE_1_DRY_AMP, MODE_1_WET_AMP, MODE_1_LPF_AMP}; static const BReverbSettings REVERB_MODE_2_SETTINGS = {MODE_2_NUMBER_OF_ALLPASSES, MODE_2_ALLPASSES, MODE_2_NUMBER_OF_COMBS, MODE_2_COMBS, MODE_2_OUTL, MODE_2_OUTR, MODE_2_COMB_FACTOR, MODE_2_COMB_FEEDBACK, MODE_2_DRY_AMP, MODE_2_WET_AMP, MODE_2_LPF_AMP}; static const BReverbSettings REVERB_MODE_3_SETTINGS = {MODE_3_NUMBER_OF_ALLPASSES, NULL, MODE_3_NUMBER_OF_COMBS, MODE_3_DELAY, MODE_3_OUTL, MODE_3_OUTR, MODE_3_COMB_FACTOR, MODE_3_COMB_FEEDBACK, MODE_3_DRY_AMP, MODE_3_WET_AMP, 0}; static const BReverbSettings * const REVERB_SETTINGS[] = {&REVERB_MODE_0_SETTINGS, &REVERB_MODE_1_SETTINGS, &REVERB_MODE_2_SETTINGS, &REVERB_MODE_3_SETTINGS}; // This algorithm tries to emulate exactly Boss multiplication operation (at least this is what we see on reverb RAM data lines). // Also LA32 is suspected to use the similar one to perform PCM interpolation and ring modulation. static Bit32s weirdMul(Bit32s a, Bit8u addMask, Bit8u carryMask) { Bit8u mask = 0x80; Bit32s res = 0; for (int i = 0; i < 8; i++) { Bit32s carry = (a < 0) && (mask & carryMask) > 0 ? a & 1 : 0; a >>= 1; res += (mask & addMask) > 0 ? a + carry : 0; mask >>= 1; } return res; } RingBuffer::RingBuffer(Bit32u newsize) : size(newsize), index(0) { buffer = new Bit16s[size]; } RingBuffer::~RingBuffer() { delete[] buffer; buffer = NULL; } Bit32s RingBuffer::next() { if (++index >= size) { index = 0; } return buffer[index]; } bool RingBuffer::isEmpty() const { if (buffer == NULL) return true; Bit16s *buf = buffer; for (Bit32u i = 0; i < size; i++) { if (*buf < -8 || *buf > 8) return false; buf++; } return true; } void RingBuffer::mute() { Bit16s *buf = buffer; for (Bit32u i = 0; i < size; i++) { *buf++ = 0; } } AllpassFilter::AllpassFilter(const Bit32u useSize) : RingBuffer(useSize) {} Bit32s AllpassFilter::process(const Bit32s in) { // This model corresponds to the allpass filter implementation of the real CM-32L device // found from sample analysis Bit16s bufferOut = next(); // store input - feedback / 2 buffer[index] = in - (bufferOut >> 1); // return buffer output + feedforward / 2 return bufferOut + (buffer[index] >> 1); } CombFilter::CombFilter(const Bit32u useSize, const Bit32u useFilterFactor) : RingBuffer(useSize), filterFactor(useFilterFactor) {} void CombFilter::process(const Bit32s in) { // This model corresponds to the comb filter implementation of the real CM-32L device // the previously stored value Bit32s last = buffer[index]; // prepare input + feedback Bit32s filterIn = in + weirdMul(next(), feedbackFactor, 0xF0 /* Maybe 0x80 ? */); // store input + feedback processed by a low-pass filter buffer[index] = weirdMul(last, filterFactor, 0x40) - filterIn; } Bit32s CombFilter::getOutputAt(const Bit32u outIndex) const { return buffer[(size + index - outIndex) % size]; } void CombFilter::setFeedbackFactor(const Bit32u useFeedbackFactor) { feedbackFactor = useFeedbackFactor; } DelayWithLowPassFilter::DelayWithLowPassFilter(const Bit32u useSize, const Bit32u useFilterFactor, const Bit32u useAmp) : CombFilter(useSize, useFilterFactor), amp(useAmp) {} void DelayWithLowPassFilter::process(const Bit32s in) { // the previously stored value Bit32s last = buffer[index]; // move to the next index next(); // low-pass filter process Bit32s lpfOut = weirdMul(last, filterFactor, 0xFF) + in; // store lpfOut multiplied by LPF amp factor buffer[index] = weirdMul(lpfOut, amp, 0xFF); } TapDelayCombFilter::TapDelayCombFilter(const Bit32u useSize, const Bit32u useFilterFactor) : CombFilter(useSize, useFilterFactor) {} void TapDelayCombFilter::process(const Bit32s in) { // the previously stored value Bit32s last = buffer[index]; // move to the next index next(); // prepare input + feedback // Actually, the size of the filter varies with the TIME parameter, the feedback sample is taken from the position just below the right output Bit32s filterIn = in + weirdMul(getOutputAt(outR + MODE_3_FEEDBACK_DELAY), feedbackFactor, 0xF0); // store input + feedback processed by a low-pass filter buffer[index] = weirdMul(last, filterFactor, 0xF0) - filterIn; } Bit32s TapDelayCombFilter::getLeftOutput() const { return getOutputAt(outL + PROCESS_DELAY + MODE_3_ADDITIONAL_DELAY); } Bit32s TapDelayCombFilter::getRightOutput() const { return getOutputAt(outR + PROCESS_DELAY + MODE_3_ADDITIONAL_DELAY); } void TapDelayCombFilter::setOutputPositions(const Bit32u useOutL, const Bit32u useOutR) { outL = useOutL; outR = useOutR; } BReverbModel::BReverbModel(const ReverbMode mode) : allpasses(NULL), combs(NULL), currentSettings(*REVERB_SETTINGS[mode]), tapDelayMode(mode == REVERB_MODE_TAP_DELAY) {} BReverbModel::~BReverbModel() { close(); } void BReverbModel::open() { if (currentSettings.numberOfAllpasses > 0) { allpasses = new AllpassFilter*[currentSettings.numberOfAllpasses]; for (Bit32u i = 0; i < currentSettings.numberOfAllpasses; i++) { allpasses[i] = new AllpassFilter(currentSettings.allpassSizes[i]); } } combs = new CombFilter*[currentSettings.numberOfCombs]; if (tapDelayMode) { *combs = new TapDelayCombFilter(*currentSettings.combSizes, *currentSettings.filterFactors); } else { combs[0] = new DelayWithLowPassFilter(currentSettings.combSizes[0], currentSettings.filterFactors[0], currentSettings.lpfAmp); for (Bit32u i = 1; i < currentSettings.numberOfCombs; i++) { combs[i] = new CombFilter(currentSettings.combSizes[i], currentSettings.filterFactors[i]); } } mute(); } void BReverbModel::close() { if (allpasses != NULL) { for (Bit32u i = 0; i < currentSettings.numberOfAllpasses; i++) { if (allpasses[i] != NULL) { delete allpasses[i]; allpasses[i] = NULL; } } delete[] allpasses; allpasses = NULL; } if (combs != NULL) { for (Bit32u i = 0; i < currentSettings.numberOfCombs; i++) { if (combs[i] != NULL) { delete combs[i]; combs[i] = NULL; } } delete[] combs; combs = NULL; } } void BReverbModel::mute() { if (allpasses != NULL) { for (Bit32u i = 0; i < currentSettings.numberOfAllpasses; i++) { allpasses[i]->mute(); } } if (combs != NULL) { for (Bit32u i = 0; i < currentSettings.numberOfCombs; i++) { combs[i]->mute(); } } } void BReverbModel::setParameters(Bit8u time, Bit8u level) { if (combs == NULL) return; level &= 7; time &= 7; if (tapDelayMode) { TapDelayCombFilter *comb = static_cast (*combs); comb->setOutputPositions(currentSettings.outLPositions[time], currentSettings.outRPositions[time & 7]); comb->setFeedbackFactor(currentSettings.feedbackFactors[((level < 3) || (time < 6)) ? 0 : 1]); } else { for (Bit32u i = 0; i < currentSettings.numberOfCombs; i++) { combs[i]->setFeedbackFactor(currentSettings.feedbackFactors[(i << 3) + time]); } } if (time == 0 && level == 0) { dryAmp = wetLevel = 0; } else { dryAmp = currentSettings.dryAmps[level]; wetLevel = currentSettings.wetLevels[level]; } } bool BReverbModel::isActive() const { for (Bit32u i = 0; i < currentSettings.numberOfAllpasses; i++) { if (!allpasses[i]->isEmpty()) return true; } for (Bit32u i = 0; i < currentSettings.numberOfCombs; i++) { if (!combs[i]->isEmpty()) return true; } return false; } void BReverbModel::process(const float *inLeft, const float *inRight, float *outLeft, float *outRight, unsigned long numSamples) { Bit32s dry, link, outL1, outR1; for (unsigned long i = 0; i < numSamples; i++) { if (tapDelayMode) { dry = Bit32s(*inLeft * 8192.0f) + Bit32s(*inRight * 8192.0f); } else { dry = Bit32s(*inLeft * 8192.0f) / 2 + Bit32s(*inRight * 8192.0f) / 2; } // Looks like dryAmp doesn't change in MT-32 but it does in CM-32L / LAPC-I dry = weirdMul(dry, dryAmp, 0xFF); if (tapDelayMode) { TapDelayCombFilter *comb = static_cast (*combs); comb->process(dry); *outLeft = weirdMul(comb->getLeftOutput(), wetLevel, 0xFF) / 8192.0f; *outRight = weirdMul(comb->getRightOutput(), wetLevel, 0xFF) / 8192.0f; } else { // Get the last stored sample before processing in order not to loose it link = combs[0]->getOutputAt(currentSettings.combSizes[0] - 1); // Entrance LPF. Note, comb.process() differs a bit here. combs[0]->process(dry); // This introduces reverb noise which actually makes output from the real Boss chip nondeterministic link = link - 1; link = allpasses[0]->process(link); link = allpasses[1]->process(link); link = allpasses[2]->process(link); // If the output position is equal to the comb size, get it now in order not to loose it outL1 = combs[1]->getOutputAt(currentSettings.outLPositions[0] - 1); outL1 += outL1 >> 1; combs[1]->process(link); combs[2]->process(link); combs[3]->process(link); link = combs[2]->getOutputAt(currentSettings.outLPositions[1]); link += link >> 1; link += outL1; link += combs[3]->getOutputAt(currentSettings.outLPositions[2]); *outLeft = weirdMul(link, wetLevel, 0xFF) / 8192.0f; outR1 = combs[1]->getOutputAt(currentSettings.outRPositions[0]); outR1 += outR1 >> 1; link = combs[2]->getOutputAt(currentSettings.outRPositions[1]); link += link >> 1; link += outR1; link += combs[3]->getOutputAt(currentSettings.outRPositions[2]); *outRight = weirdMul(link, wetLevel, 0xFF) / 8192.0f; } inLeft++; inRight++; outLeft++; outRight++; } } } #endif