/* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009 Dean Beeler, Jerome Fisher
* Copyright (C) 2011, 2012, 2013 Dean Beeler, Jerome Fisher, Sergey V. Mikayev
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*/
//#include
#include "mt32emu.h"
#include "BReverbModel.h"
// Analysing of state of reverb RAM address lines gives exact sizes of the buffers of filters used. This also indicates that
// the reverb model implemented in the real devices consists of three series allpass filters preceded by a non-feedback comb (or a delay with a LPF)
// and followed by three parallel comb filters
namespace MT32Emu {
// Because LA-32 chip makes it's output available to process by the Boss chip with a significant delay,
// the Boss chip puts to the buffer the LA32 dry output when it is ready and performs processing of the _previously_ latched data.
// Of course, the right way would be to use a dedicated variable for this, but our reverb model is way higher level,
// so we can simply increase the input buffer size.
static const Bit32u PROCESS_DELAY = 1;
static const Bit32u MODE_3_ADDITIONAL_DELAY = 1;
static const Bit32u MODE_3_FEEDBACK_DELAY = 1;
// Default reverb settings for modes 0-2. These correspond to CM-32L / LAPC-I "new" reverb settings. MT-32 reverb is a bit different.
// Found by tracing reverb RAM data lines (thanks go to Lord_Nightmare & balrog).
static const Bit32u MODE_0_NUMBER_OF_ALLPASSES = 3;
static const Bit32u MODE_0_ALLPASSES[] = {994, 729, 78};
static const Bit32u MODE_0_NUMBER_OF_COMBS = 4; // Well, actually there are 3 comb filters, but the entrance LPF + delay can be processed via a hacked comb.
static const Bit32u MODE_0_COMBS[] = {705 + PROCESS_DELAY, 2349, 2839, 3632};
static const Bit32u MODE_0_OUTL[] = {2349, 141, 1960};
static const Bit32u MODE_0_OUTR[] = {1174, 1570, 145};
static const Bit32u MODE_0_COMB_FACTOR[] = {0xA0, 0x60, 0x60, 0x60};
static const Bit32u MODE_0_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98};
static const Bit32u MODE_0_DRY_AMP[] = {0xA0, 0xA0, 0xA0, 0xA0, 0xB0, 0xB0, 0xB0, 0xD0};
static const Bit32u MODE_0_WET_AMP[] = {0x10, 0x30, 0x50, 0x70, 0x90, 0xC0, 0xF0, 0xF0};
static const Bit32u MODE_0_LPF_AMP = 0x60;
static const Bit32u MODE_1_NUMBER_OF_ALLPASSES = 3;
static const Bit32u MODE_1_ALLPASSES[] = {1324, 809, 176};
static const Bit32u MODE_1_NUMBER_OF_COMBS = 4; // Same as for mode 0 above
static const Bit32u MODE_1_COMBS[] = {961 + PROCESS_DELAY, 2619, 3545, 4519};
static const Bit32u MODE_1_OUTL[] = {2618, 1760, 4518};
static const Bit32u MODE_1_OUTR[] = {1300, 3532, 2274};
static const Bit32u MODE_1_COMB_FACTOR[] = {0x80, 0x60, 0x60, 0x60};
static const Bit32u MODE_1_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x28, 0x48, 0x60, 0x70, 0x78, 0x80, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98};
static const Bit32u MODE_1_DRY_AMP[] = {0xA0, 0xA0, 0xB0, 0xB0, 0xB0, 0xB0, 0xB0, 0xE0};
static const Bit32u MODE_1_WET_AMP[] = {0x10, 0x30, 0x50, 0x70, 0x90, 0xC0, 0xF0, 0xF0};
static const Bit32u MODE_1_LPF_AMP = 0x60;
static const Bit32u MODE_2_NUMBER_OF_ALLPASSES = 3;
static const Bit32u MODE_2_ALLPASSES[] = {969, 644, 157};
static const Bit32u MODE_2_NUMBER_OF_COMBS = 4; // Same as for mode 0 above
static const Bit32u MODE_2_COMBS[] = {116 + PROCESS_DELAY, 2259, 2839, 3539};
static const Bit32u MODE_2_OUTL[] = {2259, 718, 1769};
static const Bit32u MODE_2_OUTR[] = {1136, 2128, 1};
static const Bit32u MODE_2_COMB_FACTOR[] = {0, 0x20, 0x20, 0x20};
static const Bit32u MODE_2_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x30, 0x58, 0x78, 0x88, 0xA0, 0xB8, 0xC0, 0xD0,
0x30, 0x58, 0x78, 0x88, 0xA0, 0xB8, 0xC0, 0xD0,
0x30, 0x58, 0x78, 0x88, 0xA0, 0xB8, 0xC0, 0xD0};
static const Bit32u MODE_2_DRY_AMP[] = {0xA0, 0xA0, 0xB0, 0xB0, 0xB0, 0xB0, 0xC0, 0xE0};
static const Bit32u MODE_2_WET_AMP[] = {0x10, 0x30, 0x50, 0x70, 0x90, 0xC0, 0xF0, 0xF0};
static const Bit32u MODE_2_LPF_AMP = 0x80;
static const Bit32u MODE_3_NUMBER_OF_ALLPASSES = 0;
static const Bit32u MODE_3_NUMBER_OF_COMBS = 1;
static const Bit32u MODE_3_DELAY[] = {16000 + MODE_3_FEEDBACK_DELAY + PROCESS_DELAY + MODE_3_ADDITIONAL_DELAY};
static const Bit32u MODE_3_OUTL[] = {400, 624, 960, 1488, 2256, 3472, 5280, 8000};
static const Bit32u MODE_3_OUTR[] = {800, 1248, 1920, 2976, 4512, 6944, 10560, 16000};
static const Bit32u MODE_3_COMB_FACTOR[] = {0x68};
static const Bit32u MODE_3_COMB_FEEDBACK[] = {0x68, 0x60};
static const Bit32u MODE_3_DRY_AMP[] = {0x20, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50};
static const Bit32u MODE_3_WET_AMP[] = {0x18, 0x18, 0x28, 0x40, 0x60, 0x80, 0xA8, 0xF8};
static const BReverbSettings REVERB_MODE_0_SETTINGS = {MODE_0_NUMBER_OF_ALLPASSES, MODE_0_ALLPASSES, MODE_0_NUMBER_OF_COMBS, MODE_0_COMBS, MODE_0_OUTL, MODE_0_OUTR, MODE_0_COMB_FACTOR, MODE_0_COMB_FEEDBACK, MODE_0_DRY_AMP, MODE_0_WET_AMP, MODE_0_LPF_AMP};
static const BReverbSettings REVERB_MODE_1_SETTINGS = {MODE_1_NUMBER_OF_ALLPASSES, MODE_1_ALLPASSES, MODE_1_NUMBER_OF_COMBS, MODE_1_COMBS, MODE_1_OUTL, MODE_1_OUTR, MODE_1_COMB_FACTOR, MODE_1_COMB_FEEDBACK, MODE_1_DRY_AMP, MODE_1_WET_AMP, MODE_1_LPF_AMP};
static const BReverbSettings REVERB_MODE_2_SETTINGS = {MODE_2_NUMBER_OF_ALLPASSES, MODE_2_ALLPASSES, MODE_2_NUMBER_OF_COMBS, MODE_2_COMBS, MODE_2_OUTL, MODE_2_OUTR, MODE_2_COMB_FACTOR, MODE_2_COMB_FEEDBACK, MODE_2_DRY_AMP, MODE_2_WET_AMP, MODE_2_LPF_AMP};
static const BReverbSettings REVERB_MODE_3_SETTINGS = {MODE_3_NUMBER_OF_ALLPASSES, NULL, MODE_3_NUMBER_OF_COMBS, MODE_3_DELAY, MODE_3_OUTL, MODE_3_OUTR, MODE_3_COMB_FACTOR, MODE_3_COMB_FEEDBACK, MODE_3_DRY_AMP, MODE_3_WET_AMP, 0};
static const BReverbSettings * const REVERB_SETTINGS[] = {&REVERB_MODE_0_SETTINGS, &REVERB_MODE_1_SETTINGS, &REVERB_MODE_2_SETTINGS, &REVERB_MODE_3_SETTINGS};
// This algorithm tries to emulate exactly Boss multiplication operation (at least this is what we see on reverb RAM data lines).
// Also LA32 is suspected to use the similar one to perform PCM interpolation and ring modulation.
static Sample weirdMul(Sample a, Bit8u addMask, Bit8u carryMask) {
(void)carryMask;
#if MT32EMU_USE_FLOAT_SAMPLES
return a * addMask / 256.0f;
#elif MT32EMU_BOSS_REVERB_PRECISE_MODE
Bit8u mask = 0x80;
Bit32s res = 0;
for (int i = 0; i < 8; i++) {
Bit32s carry = (a < 0) && (mask & carryMask) > 0 ? a & 1 : 0;
a >>= 1;
res += (mask & addMask) > 0 ? a + carry : 0;
mask >>= 1;
}
return res;
#else
return Sample(((Bit32s)a * addMask) >> 8);
#endif
}
RingBuffer::RingBuffer(Bit32u newsize) : size(newsize), index(0) {
buffer = new Sample[size];
}
RingBuffer::~RingBuffer() {
delete[] buffer;
buffer = NULL;
}
Sample RingBuffer::next() {
if (++index >= size) {
index = 0;
}
return buffer[index];
}
bool RingBuffer::isEmpty() const {
if (buffer == NULL) return true;
#if MT32EMU_USE_FLOAT_SAMPLES
Sample max = 0.001f;
#else
Sample max = 8;
#endif
Sample *buf = buffer;
for (Bit32u i = 0; i < size; i++) {
if (*buf < -max || *buf > max) return false;
buf++;
}
return true;
}
void RingBuffer::mute() {
#if MT32EMU_USE_FLOAT_SAMPLES
Sample *buf = buffer;
for (Bit32u i = 0; i < size; i++) {
*buf++ = 0;
}
#else
memset(buffer, 0, size * sizeof(Sample));
#endif
}
AllpassFilter::AllpassFilter(const Bit32u useSize) : RingBuffer(useSize) {}
Sample AllpassFilter::process(const Sample in) {
// This model corresponds to the allpass filter implementation of the real CM-32L device
// found from sample analysis
const Sample bufferOut = next();
#if MT32EMU_USE_FLOAT_SAMPLES
// store input - feedback / 2
buffer[index] = in - 0.5f * bufferOut;
// return buffer output + feedforward / 2
return bufferOut + 0.5f * buffer[index];
#else
// store input - feedback / 2
buffer[index] = in - (bufferOut >> 1);
// return buffer output + feedforward / 2
return bufferOut + (buffer[index] >> 1);
#endif
}
CombFilter::CombFilter(const Bit32u useSize, const Bit32u useFilterFactor) : RingBuffer(useSize), filterFactor(useFilterFactor) {}
void CombFilter::process(const Sample in) {
// This model corresponds to the comb filter implementation of the real CM-32L device
// the previously stored value
const Sample last = buffer[index];
// prepare input + feedback
const Sample filterIn = in + weirdMul(next(), feedbackFactor, 0xF0 /* Maybe 0x80 ? */);
// store input + feedback processed by a low-pass filter
buffer[index] = weirdMul(last, filterFactor, 0x40) - filterIn;
}
Sample CombFilter::getOutputAt(const Bit32u outIndex) const {
return buffer[(size + index - outIndex) % size];
}
void CombFilter::setFeedbackFactor(const Bit32u useFeedbackFactor) {
feedbackFactor = useFeedbackFactor;
}
DelayWithLowPassFilter::DelayWithLowPassFilter(const Bit32u useSize, const Bit32u useFilterFactor, const Bit32u useAmp)
: CombFilter(useSize, useFilterFactor), amp(useAmp) {}
void DelayWithLowPassFilter::process(const Sample in) {
// the previously stored value
const Sample last = buffer[index];
// move to the next index
next();
// low-pass filter process
Sample lpfOut = weirdMul(last, filterFactor, 0xFF) + in;
// store lpfOut multiplied by LPF amp factor
buffer[index] = weirdMul(lpfOut, amp, 0xFF);
}
TapDelayCombFilter::TapDelayCombFilter(const Bit32u useSize, const Bit32u useFilterFactor) : CombFilter(useSize, useFilterFactor) {}
void TapDelayCombFilter::process(const Sample in) {
// the previously stored value
const Sample last = buffer[index];
// move to the next index
next();
// prepare input + feedback
// Actually, the size of the filter varies with the TIME parameter, the feedback sample is taken from the position just below the right output
const Sample filterIn = in + weirdMul(getOutputAt(outR + MODE_3_FEEDBACK_DELAY), feedbackFactor, 0xF0);
// store input + feedback processed by a low-pass filter
buffer[index] = weirdMul(last, filterFactor, 0xF0) - filterIn;
}
Sample TapDelayCombFilter::getLeftOutput() const {
return getOutputAt(outL + PROCESS_DELAY + MODE_3_ADDITIONAL_DELAY);
}
Sample TapDelayCombFilter::getRightOutput() const {
return getOutputAt(outR + PROCESS_DELAY + MODE_3_ADDITIONAL_DELAY);
}
void TapDelayCombFilter::setOutputPositions(const Bit32u useOutL, const Bit32u useOutR) {
outL = useOutL;
outR = useOutR;
}
BReverbModel::BReverbModel(const ReverbMode mode)
: allpasses(NULL), combs(NULL), currentSettings(*REVERB_SETTINGS[mode]), tapDelayMode(mode == REVERB_MODE_TAP_DELAY) {}
BReverbModel::~BReverbModel() {
close();
}
void BReverbModel::open() {
if (currentSettings.numberOfAllpasses > 0) {
allpasses = new AllpassFilter*[currentSettings.numberOfAllpasses];
for (Bit32u i = 0; i < currentSettings.numberOfAllpasses; i++) {
allpasses[i] = new AllpassFilter(currentSettings.allpassSizes[i]);
}
}
combs = new CombFilter*[currentSettings.numberOfCombs];
if (tapDelayMode) {
*combs = new TapDelayCombFilter(*currentSettings.combSizes, *currentSettings.filterFactors);
} else {
combs[0] = new DelayWithLowPassFilter(currentSettings.combSizes[0], currentSettings.filterFactors[0], currentSettings.lpfAmp);
for (Bit32u i = 1; i < currentSettings.numberOfCombs; i++) {
combs[i] = new CombFilter(currentSettings.combSizes[i], currentSettings.filterFactors[i]);
}
}
mute();
}
void BReverbModel::close() {
if (allpasses != NULL) {
for (Bit32u i = 0; i < currentSettings.numberOfAllpasses; i++) {
if (allpasses[i] != NULL) {
delete allpasses[i];
allpasses[i] = NULL;
}
}
delete[] allpasses;
allpasses = NULL;
}
if (combs != NULL) {
for (Bit32u i = 0; i < currentSettings.numberOfCombs; i++) {
if (combs[i] != NULL) {
delete combs[i];
combs[i] = NULL;
}
}
delete[] combs;
combs = NULL;
}
}
void BReverbModel::mute() {
if (allpasses != NULL) {
for (Bit32u i = 0; i < currentSettings.numberOfAllpasses; i++) {
allpasses[i]->mute();
}
}
if (combs != NULL) {
for (Bit32u i = 0; i < currentSettings.numberOfCombs; i++) {
combs[i]->mute();
}
}
}
void BReverbModel::setParameters(Bit8u time, Bit8u level) {
if (combs == NULL) return;
level &= 7;
time &= 7;
if (tapDelayMode) {
TapDelayCombFilter *comb = static_cast (*combs);
comb->setOutputPositions(currentSettings.outLPositions[time], currentSettings.outRPositions[time & 7]);
comb->setFeedbackFactor(currentSettings.feedbackFactors[((level < 3) || (time < 6)) ? 0 : 1]);
} else {
for (Bit32u i = 0; i < currentSettings.numberOfCombs; i++) {
combs[i]->setFeedbackFactor(currentSettings.feedbackFactors[(i << 3) + time]);
}
}
if (time == 0 && level == 0) {
dryAmp = wetLevel = 0;
} else {
dryAmp = currentSettings.dryAmps[level];
wetLevel = currentSettings.wetLevels[level];
}
}
bool BReverbModel::isActive() const {
for (Bit32u i = 0; i < currentSettings.numberOfAllpasses; i++) {
if (!allpasses[i]->isEmpty()) return true;
}
for (Bit32u i = 0; i < currentSettings.numberOfCombs; i++) {
if (!combs[i]->isEmpty()) return true;
}
return false;
}
void BReverbModel::process(const Sample *inLeft, const Sample *inRight, Sample *outLeft, Sample *outRight, unsigned long numSamples) {
Sample dry;
while (numSamples > 0) {
if (tapDelayMode) {
dry = *inLeft + *inRight;
} else {
dry = *inLeft / 2 + *inRight / 2;
}
// Looks like dryAmp doesn't change in MT-32 but it does in CM-32L / LAPC-I
dry = weirdMul(dry, dryAmp, 0xFF);
if (tapDelayMode) {
TapDelayCombFilter *comb = static_cast (*combs);
comb->process(dry);
*outLeft = weirdMul(comb->getLeftOutput(), wetLevel, 0xFF);
*outRight = weirdMul(comb->getRightOutput(), wetLevel, 0xFF);
} else {
// If the output position is equal to the comb size, get it now in order not to loose it
Sample link = combs[0]->getOutputAt(currentSettings.combSizes[0] - 1);
// Entrance LPF. Note, comb.process() differs a bit here.
combs[0]->process(dry);
#if !MT32EMU_USE_FLOAT_SAMPLES
// This introduces reverb noise which actually makes output from the real Boss chip nondeterministic
link = link - 1;
#endif
link = allpasses[0]->process(link);
link = allpasses[1]->process(link);
link = allpasses[2]->process(link);
// If the output position is equal to the comb size, get it now in order not to loose it
Sample outL1 = combs[1]->getOutputAt(currentSettings.outLPositions[0] - 1);
combs[1]->process(link);
combs[2]->process(link);
combs[3]->process(link);
Sample outL2 = combs[2]->getOutputAt(currentSettings.outLPositions[1]);
Sample outL3 = combs[3]->getOutputAt(currentSettings.outLPositions[2]);
Sample outR1 = combs[1]->getOutputAt(currentSettings.outRPositions[0]);
Sample outR2 = combs[2]->getOutputAt(currentSettings.outRPositions[1]);
Sample outR3 = combs[3]->getOutputAt(currentSettings.outRPositions[2]);
#if MT32EMU_USE_FLOAT_SAMPLES
*outLeft = 1.5f * (outL1 + outL2) + outL3;
*outRight = 1.5f * (outR1 + outR2) + outR3;
#else
outL1 += outL1 >> 1;
outL2 += outL2 >> 1;
*outLeft = outL1 + outL2 + outL3;
outR1 += outR1 >> 1;
outR2 += outR2 >> 1;
*outRight = outR1 + outR2 + outR3;
#endif
*outLeft = weirdMul(*outLeft, wetLevel, 0xFF);
*outRight = weirdMul(*outRight, wetLevel, 0xFF);
}
numSamples--;
inLeft++;
inRight++;
outLeft++;
outRight++;
}
}
}