/* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009 Dean Beeler, Jerome Fisher
* Copyright (C) 2011-2017 Dean Beeler, Jerome Fisher, Sergey V. Mikayev
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*/
#include
#include "internals.h"
#include "LA32FloatWaveGenerator.h"
#include "mmath.h"
#include "Tables.h"
namespace MT32Emu {
static const float MIDDLE_CUTOFF_VALUE = 128.0f;
static const float RESONANCE_DECAY_THRESHOLD_CUTOFF_VALUE = 144.0f;
static const float MAX_CUTOFF_VALUE = 240.0f;
float LA32FloatWaveGenerator::getPCMSample(unsigned int position) {
if (position >= pcmWaveLength) {
if (!pcmWaveLooped) {
return 0;
}
position = position % pcmWaveLength;
}
Bit16s pcmSample = pcmWaveAddress[position];
float sampleValue = EXP2F(((pcmSample & 32767) - 32787.0f) / 2048.0f);
return ((pcmSample & 32768) == 0) ? sampleValue : -sampleValue;
}
void LA32FloatWaveGenerator::initSynth(const bool useSawtoothWaveform, const Bit8u usePulseWidth, const Bit8u useResonance) {
sawtoothWaveform = useSawtoothWaveform;
pulseWidth = usePulseWidth;
resonance = useResonance;
wavePos = 0.0f;
lastFreq = 0.0f;
pcmWaveAddress = NULL;
active = true;
}
void LA32FloatWaveGenerator::initPCM(const Bit16s * const usePCMWaveAddress, const Bit32u usePCMWaveLength, const bool usePCMWaveLooped, const bool usePCMWaveInterpolated) {
pcmWaveAddress = usePCMWaveAddress;
pcmWaveLength = usePCMWaveLength;
pcmWaveLooped = usePCMWaveLooped;
pcmWaveInterpolated = usePCMWaveInterpolated;
pcmPosition = 0.0f;
active = true;
}
// ampVal - Logarithmic amp of the wave generator
// pitch - Logarithmic frequency of the resulting wave
// cutoffRampVal - Composed of the base cutoff in range [78..178] left-shifted by 18 bits and the TVF modifier
float LA32FloatWaveGenerator::generateNextSample(const Bit32u ampVal, const Bit16u pitch, const Bit32u cutoffRampVal) {
if (!active) {
return 0.0f;
}
float sample = 0.0f;
// SEMI-CONFIRMED: From sample analysis:
// (1) Tested with a single partial playing PCM wave 77 with pitchCoarse 36 and no keyfollow, velocity follow, etc.
// This gives results within +/- 2 at the output (before any DAC bitshifting)
// when sustaining at levels 156 - 255 with no modifiers.
// (2) Tested with a special square wave partial (internal capture ID tva5) at TVA envelope levels 155-255.
// This gives deltas between -1 and 0 compared to the real output. Note that this special partial only produces
// positive amps, so negative still needs to be explored, as well as lower levels.
//
// Also still partially unconfirmed is the behaviour when ramping between levels, as well as the timing.
float amp = EXP2F(ampVal / -1024.0f / 4096.0f);
float freq = EXP2F(pitch / 4096.0f - 16.0f) * SAMPLE_RATE;
if (isPCMWave()) {
// Render PCM waveform
int len = pcmWaveLength;
int intPCMPosition = int(pcmPosition);
if (intPCMPosition >= len && !pcmWaveLooped) {
// We're now past the end of a non-looping PCM waveform so it's time to die.
deactivate();
return 0.0f;
}
float positionDelta = freq * 2048.0f / SAMPLE_RATE;
// Linear interpolation
float firstSample = getPCMSample(intPCMPosition);
// We observe that for partial structures with ring modulation the interpolation is not applied to the slave PCM partial.
// It's assumed that the multiplication circuitry intended to perform the interpolation on the slave PCM partial
// is borrowed by the ring modulation circuit (or the LA32 chip has a similar lack of resources assigned to each partial pair).
if (pcmWaveInterpolated) {
sample = firstSample + (getPCMSample(intPCMPosition + 1) - firstSample) * (pcmPosition - intPCMPosition);
} else {
sample = firstSample;
}
float newPCMPosition = pcmPosition + positionDelta;
if (pcmWaveLooped) {
newPCMPosition = fmod(newPCMPosition, float(pcmWaveLength));
}
pcmPosition = newPCMPosition;
} else {
// Render synthesised waveform
wavePos *= lastFreq / freq;
lastFreq = freq;
float resAmp = EXP2F(1.0f - (32 - resonance) / 4.0f);
{
//static const float resAmpFactor = EXP2F(-7);
//resAmp = EXP2I(resonance << 10) * resAmpFactor;
}
// The cutoffModifier may not be supposed to be directly added to the cutoff -
// it may for example need to be multiplied in some way.
// The 240 cutoffVal limit was determined via sample analysis (internal Munt capture IDs: glop3, glop4).
// More research is needed to be sure that this is correct, however.
float cutoffVal = cutoffRampVal / 262144.0f;
if (cutoffVal > MAX_CUTOFF_VALUE) {
cutoffVal = MAX_CUTOFF_VALUE;
}
// Wave length in samples
float waveLen = SAMPLE_RATE / freq;
// Init cosineLen
float cosineLen = 0.5f * waveLen;
if (cutoffVal > MIDDLE_CUTOFF_VALUE) {
cosineLen *= EXP2F((cutoffVal - MIDDLE_CUTOFF_VALUE) / -16.0f); // found from sample analysis
}
// Start playing in center of first cosine segment
// relWavePos is shifted by a half of cosineLen
float relWavePos = wavePos + 0.5f * cosineLen;
if (relWavePos > waveLen) {
relWavePos -= waveLen;
}
// Ratio of positive segment to wave length
float pulseLen = 0.5f;
if (pulseWidth > 128) {
pulseLen = EXP2F((64 - pulseWidth) / 64.0f);
//static const float pulseLenFactor = EXP2F(-192 / 64);
//pulseLen = EXP2I((256 - pulseWidthVal) << 6) * pulseLenFactor;
}
pulseLen *= waveLen;
float hLen = pulseLen - cosineLen;
// Ignore pulsewidths too high for given freq
if (hLen < 0.0f) {
hLen = 0.0f;
}
// Correct resAmp for cutoff in range 50..66
if ((cutoffVal >= MIDDLE_CUTOFF_VALUE) && (cutoffVal < RESONANCE_DECAY_THRESHOLD_CUTOFF_VALUE)) {
resAmp *= sin(FLOAT_PI * (cutoffVal - MIDDLE_CUTOFF_VALUE) / 32.0f);
}
// Produce filtered square wave with 2 cosine waves on slopes
// 1st cosine segment
if (relWavePos < cosineLen) {
sample = -cos(FLOAT_PI * relWavePos / cosineLen);
} else
// high linear segment
if (relWavePos < (cosineLen + hLen)) {
sample = 1.f;
} else
// 2nd cosine segment
if (relWavePos < (2 * cosineLen + hLen)) {
sample = cos(FLOAT_PI * (relWavePos - (cosineLen + hLen)) / cosineLen);
} else {
// low linear segment
sample = -1.f;
}
if (cutoffVal < MIDDLE_CUTOFF_VALUE) {
// Attenuate samples below cutoff 50
// Found by sample analysis
sample *= EXP2F(-0.125f * (MIDDLE_CUTOFF_VALUE - cutoffVal));
} else {
// Add resonance sine. Effective for cutoff > 50 only
float resSample = 1.0f;
// Resonance decay speed factor
float resAmpDecayFactor = Tables::getInstance().resAmpDecayFactor[resonance >> 2];
// Now relWavePos counts from the middle of first cosine
relWavePos = wavePos;
// negative segments
if (!(relWavePos < (cosineLen + hLen))) {
resSample = -resSample;
relWavePos -= cosineLen + hLen;
// From the digital captures, the decaying speed of the resonance sine is found a bit different for the positive and the negative segments
resAmpDecayFactor += 0.25f;
}
// Resonance sine WG
resSample *= sin(FLOAT_PI * relWavePos / cosineLen);
// Resonance sine amp
float resAmpFadeLog2 = -0.125f * resAmpDecayFactor * (relWavePos / cosineLen); // seems to be exact
float resAmpFade = EXP2F(resAmpFadeLog2);
// Now relWavePos set negative to the left from center of any cosine
relWavePos = wavePos;
// negative segment
if (!(wavePos < (waveLen - 0.5f * cosineLen))) {
relWavePos -= waveLen;
} else
// positive segment
if (!(wavePos < (hLen + 0.5f * cosineLen))) {
relWavePos -= cosineLen + hLen;
}
// To ensure the output wave has no breaks, two different windows are appied to the beginning and the ending of the resonance sine segment
if (relWavePos < 0.5f * cosineLen) {
float syncSine = sin(FLOAT_PI * relWavePos / cosineLen);
if (relWavePos < 0.0f) {
// The window is synchronous square sine here
resAmpFade *= syncSine * syncSine;
} else {
// The window is synchronous sine here
resAmpFade *= syncSine;
}
}
sample += resSample * resAmp * resAmpFade;
}
// sawtooth waves
if (sawtoothWaveform) {
sample *= cos(FLOAT_2PI * wavePos / waveLen);
}
wavePos++;
// wavePos isn't supposed to be > waveLen
if (wavePos > waveLen) {
wavePos -= waveLen;
}
}
// Multiply sample with current TVA value
sample *= amp;
return sample;
}
void LA32FloatWaveGenerator::deactivate() {
active = false;
}
bool LA32FloatWaveGenerator::isActive() const {
return active;
}
bool LA32FloatWaveGenerator::isPCMWave() const {
return pcmWaveAddress != NULL;
}
void LA32FloatPartialPair::init(const bool useRingModulated, const bool useMixed) {
ringModulated = useRingModulated;
mixed = useMixed;
masterOutputSample = 0.0f;
slaveOutputSample = 0.0f;
}
void LA32FloatPartialPair::initSynth(const PairType useMaster, const bool sawtoothWaveform, const Bit8u pulseWidth, const Bit8u resonance) {
if (useMaster == MASTER) {
master.initSynth(sawtoothWaveform, pulseWidth, resonance);
} else {
slave.initSynth(sawtoothWaveform, pulseWidth, resonance);
}
}
void LA32FloatPartialPair::initPCM(const PairType useMaster, const Bit16s *pcmWaveAddress, const Bit32u pcmWaveLength, const bool pcmWaveLooped) {
if (useMaster == MASTER) {
master.initPCM(pcmWaveAddress, pcmWaveLength, pcmWaveLooped, true);
} else {
slave.initPCM(pcmWaveAddress, pcmWaveLength, pcmWaveLooped, !ringModulated);
}
}
void LA32FloatPartialPair::generateNextSample(const PairType useMaster, const Bit32u amp, const Bit16u pitch, const Bit32u cutoff) {
if (useMaster == MASTER) {
masterOutputSample = master.generateNextSample(amp, pitch, cutoff);
} else {
slaveOutputSample = slave.generateNextSample(amp, pitch, cutoff);
}
}
static inline float produceDistortedSample(float sample) {
if (sample < -1.0f) {
return sample + 2.0f;
} else if (1.0f < sample) {
return sample - 2.0f;
}
return sample;
}
float LA32FloatPartialPair::nextOutSample() {
// Note, LA32FloatWaveGenerator produces each sample normalised in terms of a single playing partial,
// so the unity sample corresponds to the internal LA32 logarithmic fixed-point unity sample.
// However, each logarithmic sample is then unlogged to a 14-bit signed integer value, i.e. the max absolute value is 8192.
// Thus, considering that samples are further mapped to a 16-bit signed integer,
// we apply a conversion factor 0.25 to produce properly normalised float samples.
if (!ringModulated) {
return 0.25f * (masterOutputSample + slaveOutputSample);
}
/*
* SEMI-CONFIRMED: Ring modulation model derived from sample analysis of specially constructed patches which exploit distortion.
* LA32 ring modulator found to produce distorted output in case if the absolute value of maximal amplitude of one of the input partials exceeds 8191.
* This is easy to reproduce using synth partials with resonance values close to the maximum. It looks like an integer overflow happens in this case.
* As the distortion is strictly bound to the amplitude of the complete mixed square + resonance wave in the linear space,
* it is reasonable to assume the ring modulation is performed also in the linear space by sample multiplication.
* Most probably the overflow is caused by limited precision of the multiplication circuit as the very similar distortion occurs with panning.
*/
float ringModulatedSample = produceDistortedSample(masterOutputSample) * produceDistortedSample(slaveOutputSample);
return 0.25f * (mixed ? masterOutputSample + ringModulatedSample : ringModulatedSample);
}
void LA32FloatPartialPair::deactivate(const PairType useMaster) {
if (useMaster == MASTER) {
master.deactivate();
masterOutputSample = 0.0f;
} else {
slave.deactivate();
slaveOutputSample = 0.0f;
}
}
bool LA32FloatPartialPair::isActive(const PairType useMaster) const {
return useMaster == MASTER ? master.isActive() : slave.isActive();
}
} // namespace MT32Emu