/* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009 Dean Beeler, Jerome Fisher
* Copyright (C) 2011-2017 Dean Beeler, Jerome Fisher, Sergey V. Mikayev
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*/
#include
#include "internals.h"
#include "Synth.h"
#include "Analog.h"
#include "BReverbModel.h"
#include "File.h"
#include "MemoryRegion.h"
#include "MidiEventQueue.h"
#include "Part.h"
#include "Partial.h"
#include "PartialManager.h"
#include "Poly.h"
#include "ROMInfo.h"
#include "TVA.h"
#if MT32EMU_MONITOR_SYSEX > 0
#include "mmath.h"
#endif
namespace MT32Emu {
// MIDI interface data transfer rate in samples. Used to simulate the transfer delay.
static const double MIDI_DATA_TRANSFER_RATE = double(SAMPLE_RATE) / 31250.0 * 8.0;
// FIXME: there should be more specific feature sets for various MT-32 control ROM versions
static const ControlROMFeatureSet OLD_MT32_COMPATIBLE = {
true, // quirkBasePitchOverflow
true, // quirkPitchEnvelopeOverflow
true, // quirkRingModulationNoMix
true, // quirkTVAZeroEnvLevels
true, // quirkPanMult
true, // quirkKeyShift
true, // quirkTVFBaseCutoffLimit
true, // defaultReverbMT32Compatible
true // oldMT32AnalogLPF
};
static const ControlROMFeatureSet CM32L_COMPATIBLE = {
false, // quirkBasePitchOverflow
false, // quirkPitchEnvelopeOverflow
false, // quirkRingModulationNoMix
false, // quirkTVAZeroEnvLevels
false, // quirkPanMult
false, // quirkKeyShift
false, // quirkTVFBaseCutoffLimit
false, // defaultReverbMT32Compatible
false // oldMT32AnalogLPF
};
static const ControlROMMap ControlROMMaps[8] = {
// ID Features PCMmap PCMc tmbrA tmbrAO, tmbrAC tmbrB tmbrBO tmbrBC tmbrR trC rhythm rhyC rsrv panpot prog rhyMax patMax sysMax timMax sndGrp sGC
{ "ctrl_mt32_1_04", OLD_MT32_COMPATIBLE, 0x3000, 128, 0x8000, 0x0000, false, 0xC000, 0x4000, false, 0x3200, 30, 0x73A6, 85, 0x57C7, 0x57E2, 0x57D0, 0x5252, 0x525E, 0x526E, 0x520A, 0x7064, 19 },
{ "ctrl_mt32_1_05", OLD_MT32_COMPATIBLE, 0x3000, 128, 0x8000, 0x0000, false, 0xC000, 0x4000, false, 0x3200, 30, 0x7414, 85, 0x57C7, 0x57E2, 0x57D0, 0x5252, 0x525E, 0x526E, 0x520A, 0x70CA, 19 },
{ "ctrl_mt32_1_06", OLD_MT32_COMPATIBLE, 0x3000, 128, 0x8000, 0x0000, false, 0xC000, 0x4000, false, 0x3200, 30, 0x7414, 85, 0x57D9, 0x57F4, 0x57E2, 0x5264, 0x5270, 0x5280, 0x521C, 0x70CA, 19 },
{ "ctrl_mt32_1_07", OLD_MT32_COMPATIBLE, 0x3000, 128, 0x8000, 0x0000, false, 0xC000, 0x4000, false, 0x3200, 30, 0x73fe, 85, 0x57B1, 0x57CC, 0x57BA, 0x523C, 0x5248, 0x5258, 0x51F4, 0x70B0, 19 }, // MT-32 revision 1
{"ctrl_mt32_bluer", OLD_MT32_COMPATIBLE, 0x3000, 128, 0x8000, 0x0000, false, 0xC000, 0x4000, false, 0x3200, 30, 0x741C, 85, 0x57E5, 0x5800, 0x57EE, 0x5270, 0x527C, 0x528C, 0x5228, 0x70CE, 19 }, // MT-32 Blue Ridge mod
{"ctrl_mt32_2_04", CM32L_COMPATIBLE, 0x8100, 128, 0x8000, 0x8000, true, 0x8080, 0x8000, true, 0x8500, 30, 0x8580, 85, 0x4F5D, 0x4F78, 0x4F66, 0x4899, 0x489D, 0x48B6, 0x48CD, 0x5A58, 19 },
{"ctrl_cm32l_1_00", CM32L_COMPATIBLE, 0x8100, 256, 0x8000, 0x8000, true, 0x8080, 0x8000, true, 0x8500, 64, 0x8580, 85, 0x4F65, 0x4F80, 0x4F6E, 0x48A1, 0x48A5, 0x48BE, 0x48D5, 0x5A6C, 19 },
{"ctrl_cm32l_1_02", CM32L_COMPATIBLE, 0x8100, 256, 0x8000, 0x8000, true, 0x8080, 0x8000, true, 0x8500, 64, 0x8580, 85, 0x4F93, 0x4FAE, 0x4F9C, 0x48CB, 0x48CF, 0x48E8, 0x48FF, 0x5A96, 19 } // CM-32L
// (Note that old MT-32 ROMs actually have 86 entries for rhythmTemp)
};
static const PartialState PARTIAL_PHASE_TO_STATE[8] = {
PartialState_ATTACK, PartialState_ATTACK, PartialState_ATTACK, PartialState_ATTACK,
PartialState_SUSTAIN, PartialState_SUSTAIN, PartialState_RELEASE, PartialState_INACTIVE
};
static inline PartialState getPartialState(PartialManager *partialManager, unsigned int partialNum) {
const Partial *partial = partialManager->getPartial(partialNum);
return partial->isActive() ? PARTIAL_PHASE_TO_STATE[partial->getTVA()->getPhase()] : PartialState_INACTIVE;
}
template
static inline void convertSampleFormat(const I *inBuffer, O *outBuffer, const Bit32u len) {
if (inBuffer == NULL || outBuffer == NULL) return;
const I *inBufferEnd = inBuffer + len;
while (inBuffer < inBufferEnd) {
*(outBuffer++) = Synth::convertSample(*(inBuffer++));
}
}
class Renderer {
protected:
Synth &synth;
void printDebug(const char *msg) const {
synth.printDebug("%s", msg);
}
bool isActivated() const {
return synth.activated;
}
bool isAbortingPoly() const {
return synth.isAbortingPoly();
}
Analog &getAnalog() const {
return *synth.analog;
}
MidiEventQueue &getMidiQueue() {
return *synth.midiQueue;
}
PartialManager &getPartialManager() {
return *synth.partialManager;
}
BReverbModel &getReverbModel() {
return *synth.reverbModel;
}
Bit32u getRenderedSampleCount() {
return synth.renderedSampleCount;
}
void incRenderedSampleCount(const Bit32u count) {
synth.renderedSampleCount += count;
}
public:
Renderer(Synth &useSynth) : synth(useSynth) {}
virtual ~Renderer() {}
virtual void render(IntSample *stereoStream, Bit32u len) = 0;
virtual void render(FloatSample *stereoStream, Bit32u len) = 0;
virtual void renderStreams(const DACOutputStreams &streams, Bit32u len) = 0;
virtual void renderStreams(const DACOutputStreams &streams, Bit32u len) = 0;
};
template
class RendererImpl : public Renderer {
// These buffers are used for building the output streams as they are found at the DAC entrance.
// The output is mixed down to stereo interleaved further in the analog circuitry emulation.
Sample tmpNonReverbLeft[MAX_SAMPLES_PER_RUN], tmpNonReverbRight[MAX_SAMPLES_PER_RUN];
Sample tmpReverbDryLeft[MAX_SAMPLES_PER_RUN], tmpReverbDryRight[MAX_SAMPLES_PER_RUN];
Sample tmpReverbWetLeft[MAX_SAMPLES_PER_RUN], tmpReverbWetRight[MAX_SAMPLES_PER_RUN];
const DACOutputStreams tmpBuffers;
DACOutputStreams createTmpBuffers() {
DACOutputStreams buffers = {
tmpNonReverbLeft, tmpNonReverbRight,
tmpReverbDryLeft, tmpReverbDryRight,
tmpReverbWetLeft, tmpReverbWetRight
};
return buffers;
}
public:
RendererImpl(Synth &useSynth) :
Renderer(useSynth),
tmpBuffers(createTmpBuffers())
{}
void render(IntSample *stereoStream, Bit32u len);
void render(FloatSample *stereoStream, Bit32u len);
void renderStreams(const DACOutputStreams &streams, Bit32u len);
void renderStreams(const DACOutputStreams &streams, Bit32u len);
template
void doRenderAndConvert(O *stereoStream, Bit32u len);
void doRender(Sample *stereoStream, Bit32u len);
template
void doRenderAndConvertStreams(const DACOutputStreams &streams, Bit32u len);
void doRenderStreams(const DACOutputStreams &streams, Bit32u len);
void produceLA32Output(Sample *buffer, Bit32u len);
void convertSamplesToOutput(Sample *buffer, Bit32u len);
void produceStreams(const DACOutputStreams &streams, Bit32u len);
};
class Extensions {
public:
RendererType selectedRendererType;
Bit32s masterTunePitchDelta;
bool niceAmpRamp;
// Here we keep the reverse mapping of assigned parts per MIDI channel.
// NOTE: value above 8 means that the channel is not assigned
Bit8u chantable[16][9];
// This stores the index of Part in chantable that failed to play and required partial abortion.
Bit32u abortingPartIx;
};
Bit32u Synth::getLibraryVersionInt() {
return (MT32EMU_VERSION_MAJOR << 16) | (MT32EMU_VERSION_MINOR << 8) | (MT32EMU_VERSION_PATCH);
}
const char *Synth::getLibraryVersionString() {
return MT32EMU_VERSION;
}
Bit8u Synth::calcSysexChecksum(const Bit8u *data, const Bit32u len, const Bit8u initChecksum) {
unsigned int checksum = -initChecksum;
for (unsigned int i = 0; i < len; i++) {
checksum -= data[i];
}
return Bit8u(checksum & 0x7f);
}
Bit32u Synth::getStereoOutputSampleRate(AnalogOutputMode analogOutputMode) {
static const unsigned int SAMPLE_RATES[] = {SAMPLE_RATE, SAMPLE_RATE, SAMPLE_RATE * 3 / 2, SAMPLE_RATE * 3};
return SAMPLE_RATES[analogOutputMode];
}
Synth::Synth(ReportHandler *useReportHandler) :
mt32ram(*new MemParams),
mt32default(*new MemParams),
extensions(*new Extensions)
{
opened = false;
reverbOverridden = false;
partialCount = DEFAULT_MAX_PARTIALS;
controlROMMap = NULL;
controlROMFeatures = NULL;
if (useReportHandler == NULL) {
reportHandler = new ReportHandler;
isDefaultReportHandler = true;
} else {
reportHandler = useReportHandler;
isDefaultReportHandler = false;
}
for (int i = 0; i < 4; i++) {
reverbModels[i] = NULL;
}
reverbModel = NULL;
analog = NULL;
renderer = NULL;
setDACInputMode(DACInputMode_NICE);
setMIDIDelayMode(MIDIDelayMode_DELAY_SHORT_MESSAGES_ONLY);
setOutputGain(1.0f);
setReverbOutputGain(1.0f);
setReversedStereoEnabled(false);
setNiceAmpRampEnabled(true);
selectRendererType(RendererType_BIT16S);
patchTempMemoryRegion = NULL;
rhythmTempMemoryRegion = NULL;
timbreTempMemoryRegion = NULL;
patchesMemoryRegion = NULL;
timbresMemoryRegion = NULL;
systemMemoryRegion = NULL;
displayMemoryRegion = NULL;
resetMemoryRegion = NULL;
paddedTimbreMaxTable = NULL;
partialManager = NULL;
pcmWaves = NULL;
pcmROMData = NULL;
soundGroupNames = NULL;
midiQueue = NULL;
lastReceivedMIDIEventTimestamp = 0;
memset(parts, 0, sizeof(parts));
renderedSampleCount = 0;
}
Synth::~Synth() {
close(); // Make sure we're closed and everything is freed
if (isDefaultReportHandler) {
delete reportHandler;
}
delete &mt32ram;
delete &mt32default;
delete &extensions;
}
void ReportHandler::showLCDMessage(const char *data) {
printf("WRITE-LCD: %s\n", data);
}
void ReportHandler::printDebug(const char *fmt, va_list list) {
vprintf(fmt, list);
printf("\n");
}
void Synth::newTimbreSet(Bit8u partNum, Bit8u timbreGroup, Bit8u timbreNumber, const char patchName[]) {
const char *soundGroupName;
switch (timbreGroup) {
case 1:
timbreNumber += 64;
// Fall-through
case 0:
soundGroupName = soundGroupNames[soundGroupIx[timbreNumber]];
break;
case 2:
soundGroupName = soundGroupNames[controlROMMap->soundGroupsCount - 2];
break;
case 3:
soundGroupName = soundGroupNames[controlROMMap->soundGroupsCount - 1];
break;
default:
soundGroupName = NULL;
break;
}
reportHandler->onProgramChanged(partNum, soundGroupName, patchName);
}
void Synth::printDebug(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
#if MT32EMU_DEBUG_SAMPLESTAMPS > 0
reportHandler->printDebug("[%u]", (va_list)&renderedSampleCount);
#endif
reportHandler->printDebug(fmt, ap);
va_end(ap);
}
void Synth::setReverbEnabled(bool newReverbEnabled) {
if (!opened) return;
if (isReverbEnabled() == newReverbEnabled) return;
if (newReverbEnabled) {
bool oldReverbOverridden = reverbOverridden;
reverbOverridden = false;
refreshSystemReverbParameters();
reverbOverridden = oldReverbOverridden;
} else {
#if MT32EMU_REDUCE_REVERB_MEMORY
reverbModel->close();
#endif
reverbModel = NULL;
}
}
bool Synth::isReverbEnabled() const {
return reverbModel != NULL;
}
void Synth::setReverbOverridden(bool newReverbOverridden) {
reverbOverridden = newReverbOverridden;
}
bool Synth::isReverbOverridden() const {
return reverbOverridden;
}
void Synth::setReverbCompatibilityMode(bool mt32CompatibleMode) {
if (!opened || (isMT32ReverbCompatibilityMode() == mt32CompatibleMode)) return;
bool oldReverbEnabled = isReverbEnabled();
setReverbEnabled(false);
for (int i = 0; i < 4; i++) {
delete reverbModels[i];
}
initReverbModels(mt32CompatibleMode);
setReverbEnabled(oldReverbEnabled);
setReverbOutputGain(reverbOutputGain);
}
bool Synth::isMT32ReverbCompatibilityMode() const {
return opened && (reverbModels[REVERB_MODE_ROOM]->isMT32Compatible(REVERB_MODE_ROOM));
}
bool Synth::isDefaultReverbMT32Compatible() const {
return opened && controlROMFeatures->defaultReverbMT32Compatible;
}
void Synth::setDACInputMode(DACInputMode mode) {
dacInputMode = mode;
}
DACInputMode Synth::getDACInputMode() const {
return dacInputMode;
}
void Synth::setMIDIDelayMode(MIDIDelayMode mode) {
midiDelayMode = mode;
}
MIDIDelayMode Synth::getMIDIDelayMode() const {
return midiDelayMode;
}
void Synth::setOutputGain(float newOutputGain) {
if (newOutputGain < 0.0f) newOutputGain = -newOutputGain;
outputGain = newOutputGain;
if (analog != NULL) analog->setSynthOutputGain(newOutputGain);
}
float Synth::getOutputGain() const {
return outputGain;
}
void Synth::setReverbOutputGain(float newReverbOutputGain) {
if (newReverbOutputGain < 0.0f) newReverbOutputGain = -newReverbOutputGain;
reverbOutputGain = newReverbOutputGain;
if (analog != NULL) analog->setReverbOutputGain(newReverbOutputGain, isMT32ReverbCompatibilityMode());
}
float Synth::getReverbOutputGain() const {
return reverbOutputGain;
}
void Synth::setReversedStereoEnabled(bool enabled) {
reversedStereoEnabled = enabled;
}
bool Synth::isReversedStereoEnabled() const {
return reversedStereoEnabled;
}
void Synth::setNiceAmpRampEnabled(bool enabled) {
extensions.niceAmpRamp = enabled;
}
bool Synth::isNiceAmpRampEnabled() const {
return extensions.niceAmpRamp;
}
bool Synth::loadControlROM(const ROMImage &controlROMImage) {
File *file = controlROMImage.getFile();
const ROMInfo *controlROMInfo = controlROMImage.getROMInfo();
if ((controlROMInfo == NULL)
|| (controlROMInfo->type != ROMInfo::Control)
|| (controlROMInfo->pairType != ROMInfo::Full)) {
#if MT32EMU_MONITOR_INIT
printDebug("Invalid Control ROM Info provided");
#endif
return false;
}
#if MT32EMU_MONITOR_INIT
printDebug("Found Control ROM: %s, %s", controlROMInfo->shortName, controlROMInfo->description);
#endif
const Bit8u *fileData = file->getData();
memcpy(controlROMData, fileData, CONTROL_ROM_SIZE);
// Control ROM successfully loaded, now check whether it's a known type
controlROMMap = NULL;
controlROMFeatures = NULL;
for (unsigned int i = 0; i < sizeof(ControlROMMaps) / sizeof(ControlROMMaps[0]); i++) {
if (strcmp(controlROMInfo->shortName, ControlROMMaps[i].shortName) == 0) {
controlROMMap = &ControlROMMaps[i];
controlROMFeatures = &controlROMMap->featureSet;
return true;
}
}
#if MT32EMU_MONITOR_INIT
printDebug("Control ROM failed to load");
#endif
return false;
}
bool Synth::loadPCMROM(const ROMImage &pcmROMImage) {
File *file = pcmROMImage.getFile();
const ROMInfo *pcmROMInfo = pcmROMImage.getROMInfo();
if ((pcmROMInfo == NULL)
|| (pcmROMInfo->type != ROMInfo::PCM)
|| (pcmROMInfo->pairType != ROMInfo::Full)) {
return false;
}
#if MT32EMU_MONITOR_INIT
printDebug("Found PCM ROM: %s, %s", pcmROMInfo->shortName, pcmROMInfo->description);
#endif
size_t fileSize = file->getSize();
if (fileSize != (2 * pcmROMSize)) {
#if MT32EMU_MONITOR_INIT
printDebug("PCM ROM file has wrong size (expected %d, got %d)", 2 * pcmROMSize, fileSize);
#endif
return false;
}
const Bit8u *fileData = file->getData();
for (size_t i = 0; i < pcmROMSize; i++) {
Bit8u s = *(fileData++);
Bit8u c = *(fileData++);
int order[16] = {0, 9, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 8};
Bit16s log = 0;
for (int u = 0; u < 15; u++) {
int bit;
if (order[u] < 8) {
bit = (s >> (7 - order[u])) & 0x1;
} else {
bit = (c >> (7 - (order[u] - 8))) & 0x1;
}
log = log | Bit16s(bit << (15 - u));
}
pcmROMData[i] = log;
}
return true;
}
bool Synth::initPCMList(Bit16u mapAddress, Bit16u count) {
ControlROMPCMStruct *tps = reinterpret_cast(&controlROMData[mapAddress]);
for (int i = 0; i < count; i++) {
Bit32u rAddr = tps[i].pos * 0x800;
Bit32u rLenExp = (tps[i].len & 0x70) >> 4;
Bit32u rLen = 0x800 << rLenExp;
if (rAddr + rLen > pcmROMSize) {
printDebug("Control ROM error: Wave map entry %d points to invalid PCM address 0x%04X, length 0x%04X", i, rAddr, rLen);
return false;
}
pcmWaves[i].addr = rAddr;
pcmWaves[i].len = rLen;
pcmWaves[i].loop = (tps[i].len & 0x80) != 0;
pcmWaves[i].controlROMPCMStruct = &tps[i];
//int pitch = (tps[i].pitchMSB << 8) | tps[i].pitchLSB;
//bool unaffectedByMasterTune = (tps[i].len & 0x01) == 0;
//printDebug("PCM %d: pos=%d, len=%d, pitch=%d, loop=%s, unaffectedByMasterTune=%s", i, rAddr, rLen, pitch, pcmWaves[i].loop ? "YES" : "NO", unaffectedByMasterTune ? "YES" : "NO");
}
return false;
}
bool Synth::initCompressedTimbre(Bit16u timbreNum, const Bit8u *src, Bit32u srcLen) {
// "Compressed" here means that muted partials aren't present in ROM (except in the case of partial 0 being muted).
// Instead the data from the previous unmuted partial is used.
if (srcLen < sizeof(TimbreParam::CommonParam)) {
return false;
}
TimbreParam *timbre = &mt32ram.timbres[timbreNum].timbre;
timbresMemoryRegion->write(timbreNum, 0, src, sizeof(TimbreParam::CommonParam), true);
unsigned int srcPos = sizeof(TimbreParam::CommonParam);
unsigned int memPos = sizeof(TimbreParam::CommonParam);
for (int t = 0; t < 4; t++) {
if (t != 0 && ((timbre->common.partialMute >> t) & 0x1) == 0x00) {
// This partial is muted - we'll copy the previously copied partial, then
srcPos -= sizeof(TimbreParam::PartialParam);
} else if (srcPos + sizeof(TimbreParam::PartialParam) >= srcLen) {
return false;
}
timbresMemoryRegion->write(timbreNum, memPos, src + srcPos, sizeof(TimbreParam::PartialParam));
srcPos += sizeof(TimbreParam::PartialParam);
memPos += sizeof(TimbreParam::PartialParam);
}
return true;
}
bool Synth::initTimbres(Bit16u mapAddress, Bit16u offset, Bit16u count, Bit16u startTimbre, bool compressed) {
const Bit8u *timbreMap = &controlROMData[mapAddress];
for (Bit16u i = 0; i < count * 2; i += 2) {
Bit16u address = (timbreMap[i + 1] << 8) | timbreMap[i];
if (!compressed && (address + offset + sizeof(TimbreParam) > CONTROL_ROM_SIZE)) {
printDebug("Control ROM error: Timbre map entry 0x%04x for timbre %d points to invalid timbre address 0x%04x", i, startTimbre, address);
return false;
}
address += offset;
if (compressed) {
if (!initCompressedTimbre(startTimbre, &controlROMData[address], CONTROL_ROM_SIZE - address)) {
printDebug("Control ROM error: Timbre map entry 0x%04x for timbre %d points to invalid timbre at 0x%04x", i, startTimbre, address);
return false;
}
} else {
timbresMemoryRegion->write(startTimbre, 0, &controlROMData[address], sizeof(TimbreParam), true);
}
startTimbre++;
}
return true;
}
void Synth::initReverbModels(bool mt32CompatibleMode) {
reverbModels[REVERB_MODE_ROOM] = BReverbModel::createBReverbModel(REVERB_MODE_ROOM, mt32CompatibleMode, getSelectedRendererType());
reverbModels[REVERB_MODE_HALL] = BReverbModel::createBReverbModel(REVERB_MODE_HALL, mt32CompatibleMode, getSelectedRendererType());
reverbModels[REVERB_MODE_PLATE] = BReverbModel::createBReverbModel(REVERB_MODE_PLATE, mt32CompatibleMode, getSelectedRendererType());
reverbModels[REVERB_MODE_TAP_DELAY] = BReverbModel::createBReverbModel(REVERB_MODE_TAP_DELAY, mt32CompatibleMode, getSelectedRendererType());
#if !MT32EMU_REDUCE_REVERB_MEMORY
for (int i = REVERB_MODE_ROOM; i <= REVERB_MODE_TAP_DELAY; i++) {
reverbModels[i]->open();
}
#endif
}
void Synth::initSoundGroups(char newSoundGroupNames[][9]) {
memcpy(soundGroupIx, &controlROMData[controlROMMap->soundGroupsTable - sizeof(soundGroupIx)], sizeof(soundGroupIx));
const SoundGroup *table = reinterpret_cast(&controlROMData[controlROMMap->soundGroupsTable]);
for (unsigned int i = 0; i < controlROMMap->soundGroupsCount; i++) {
memcpy(&newSoundGroupNames[i][0], table[i].name, sizeof(table[i].name));
}
}
bool Synth::open(const ROMImage &controlROMImage, const ROMImage &pcmROMImage, AnalogOutputMode analogOutputMode) {
return open(controlROMImage, pcmROMImage, DEFAULT_MAX_PARTIALS, analogOutputMode);
}
bool Synth::open(const ROMImage &controlROMImage, const ROMImage &pcmROMImage, Bit32u usePartialCount, AnalogOutputMode analogOutputMode) {
if (opened) {
return false;
}
partialCount = usePartialCount;
abortingPoly = NULL;
extensions.abortingPartIx = 0;
// This is to help detect bugs
memset(&mt32ram, '?', sizeof(mt32ram));
#if MT32EMU_MONITOR_INIT
printDebug("Loading Control ROM");
#endif
if (!loadControlROM(controlROMImage)) {
printDebug("Init Error - Missing or invalid Control ROM image");
reportHandler->onErrorControlROM();
dispose();
return false;
}
initMemoryRegions();
// 512KB PCM ROM for MT-32, etc.
// 1MB PCM ROM for CM-32L, LAPC-I, CM-64, CM-500
// Note that the size below is given in samples (16-bit), not bytes
pcmROMSize = controlROMMap->pcmCount == 256 ? 512 * 1024 : 256 * 1024;
pcmROMData = new Bit16s[pcmROMSize];
#if MT32EMU_MONITOR_INIT
printDebug("Loading PCM ROM");
#endif
if (!loadPCMROM(pcmROMImage)) {
printDebug("Init Error - Missing PCM ROM image");
reportHandler->onErrorPCMROM();
dispose();
return false;
}
#if MT32EMU_MONITOR_INIT
printDebug("Initialising Reverb Models");
#endif
bool mt32CompatibleReverb = controlROMFeatures->defaultReverbMT32Compatible;
#if MT32EMU_MONITOR_INIT
printDebug("Using %s Compatible Reverb Models", mt32CompatibleReverb ? "MT-32" : "CM-32L");
#endif
initReverbModels(mt32CompatibleReverb);
#if MT32EMU_MONITOR_INIT
printDebug("Initialising Timbre Bank A");
#endif
if (!initTimbres(controlROMMap->timbreAMap, controlROMMap->timbreAOffset, 0x40, 0, controlROMMap->timbreACompressed)) {
dispose();
return false;
}
#if MT32EMU_MONITOR_INIT
printDebug("Initialising Timbre Bank B");
#endif
if (!initTimbres(controlROMMap->timbreBMap, controlROMMap->timbreBOffset, 0x40, 64, controlROMMap->timbreBCompressed)) {
dispose();
return false;
}
#if MT32EMU_MONITOR_INIT
printDebug("Initialising Timbre Bank R");
#endif
if (!initTimbres(controlROMMap->timbreRMap, 0, controlROMMap->timbreRCount, 192, true)) {
dispose();
return false;
}
#if MT32EMU_MONITOR_INIT
printDebug("Initialising Timbre Bank M");
#endif
// CM-64 seems to initialise all bytes in this bank to 0.
memset(&mt32ram.timbres[128], 0, sizeof(mt32ram.timbres[128]) * 64);
partialManager = new PartialManager(this, parts);
pcmWaves = new PCMWaveEntry[controlROMMap->pcmCount];
#if MT32EMU_MONITOR_INIT
printDebug("Initialising PCM List");
#endif
initPCMList(controlROMMap->pcmTable, controlROMMap->pcmCount);
#if MT32EMU_MONITOR_INIT
printDebug("Initialising Rhythm Temp");
#endif
memcpy(mt32ram.rhythmTemp, &controlROMData[controlROMMap->rhythmSettings], controlROMMap->rhythmSettingsCount * 4);
#if MT32EMU_MONITOR_INIT
printDebug("Initialising Patches");
#endif
for (Bit8u i = 0; i < 128; i++) {
PatchParam *patch = &mt32ram.patches[i];
patch->timbreGroup = i / 64;
patch->timbreNum = i % 64;
patch->keyShift = 24;
patch->fineTune = 50;
patch->benderRange = 12;
patch->assignMode = 0;
patch->reverbSwitch = 1;
patch->dummy = 0;
}
#if MT32EMU_MONITOR_INIT
printDebug("Initialising System");
#endif
// The MT-32 manual claims that "Standard pitch" is 442Hz.
mt32ram.system.masterTune = 0x4A; // Confirmed on CM-64
mt32ram.system.reverbMode = 0; // Confirmed
mt32ram.system.reverbTime = 5; // Confirmed
mt32ram.system.reverbLevel = 3; // Confirmed
memcpy(mt32ram.system.reserveSettings, &controlROMData[controlROMMap->reserveSettings], 9); // Confirmed
for (Bit8u i = 0; i < 9; i++) {
// This is the default: {1, 2, 3, 4, 5, 6, 7, 8, 9}
// An alternative configuration can be selected by holding "Master Volume"
// and pressing "PART button 1" on the real MT-32's frontpanel.
// The channel assignment is then {0, 1, 2, 3, 4, 5, 6, 7, 9}
mt32ram.system.chanAssign[i] = i + 1;
}
mt32ram.system.masterVol = 100; // Confirmed
bool oldReverbOverridden = reverbOverridden;
reverbOverridden = false;
refreshSystem();
resetMasterTunePitchDelta();
reverbOverridden = oldReverbOverridden;
char(*writableSoundGroupNames)[9] = new char[controlROMMap->soundGroupsCount][9];
soundGroupNames = writableSoundGroupNames;
initSoundGroups(writableSoundGroupNames);
for (int i = 0; i < 9; i++) {
MemParams::PatchTemp *patchTemp = &mt32ram.patchTemp[i];
// Note that except for the rhythm part, these patch fields will be set in setProgram() below anyway.
patchTemp->patch.timbreGroup = 0;
patchTemp->patch.timbreNum = 0;
patchTemp->patch.keyShift = 24;
patchTemp->patch.fineTune = 50;
patchTemp->patch.benderRange = 12;
patchTemp->patch.assignMode = 0;
patchTemp->patch.reverbSwitch = 1;
patchTemp->patch.dummy = 0;
patchTemp->outputLevel = 80;
patchTemp->panpot = controlROMData[controlROMMap->panSettings + i];
memset(patchTemp->dummyv, 0, sizeof(patchTemp->dummyv));
patchTemp->dummyv[1] = 127;
if (i < 8) {
parts[i] = new Part(this, i);
parts[i]->setProgram(controlROMData[controlROMMap->programSettings + i]);
} else {
parts[i] = new RhythmPart(this, i);
}
}
// For resetting mt32 mid-execution
mt32default = mt32ram;
midiQueue = new MidiEventQueue();
analog = Analog::createAnalog(analogOutputMode, controlROMFeatures->oldMT32AnalogLPF, getSelectedRendererType());
#if MT32EMU_MONITOR_INIT
static const char *ANALOG_OUTPUT_MODES[] = { "Digital only", "Coarse", "Accurate", "Oversampled2x" };
printDebug("Using Analog output mode %s", ANALOG_OUTPUT_MODES[analogOutputMode]);
#endif
setOutputGain(outputGain);
setReverbOutputGain(reverbOutputGain);
switch (getSelectedRendererType()) {
case RendererType_BIT16S:
renderer = new RendererImpl(*this);
#if MT32EMU_MONITOR_INIT
printDebug("Using integer 16-bit samples in renderer and wave generator");
#endif
break;
case RendererType_FLOAT:
renderer = new RendererImpl(*this);
#if MT32EMU_MONITOR_INIT
printDebug("Using float 32-bit samples in renderer and wave generator");
#endif
break;
default:
printDebug("Synth: Unknown renderer type %i\n", getSelectedRendererType());
dispose();
return false;
}
opened = true;
activated = false;
#if MT32EMU_MONITOR_INIT
printDebug("*** Initialisation complete ***");
#endif
return true;
}
void Synth::dispose() {
opened = false;
delete midiQueue;
midiQueue = NULL;
delete renderer;
renderer = NULL;
delete analog;
analog = NULL;
delete partialManager;
partialManager = NULL;
for (int i = 0; i < 9; i++) {
delete parts[i];
parts[i] = NULL;
}
delete[] soundGroupNames;
soundGroupNames = NULL;
delete[] pcmWaves;
pcmWaves = NULL;
delete[] pcmROMData;
pcmROMData = NULL;
deleteMemoryRegions();
for (int i = 0; i < 4; i++) {
delete reverbModels[i];
reverbModels[i] = NULL;
}
reverbModel = NULL;
controlROMFeatures = NULL;
controlROMMap = NULL;
}
void Synth::close() {
if (opened) {
dispose();
}
}
bool Synth::isOpen() const {
return opened;
}
void Synth::flushMIDIQueue() {
if (midiQueue != NULL) {
for (;;) {
const MidiEvent *midiEvent = midiQueue->peekMidiEvent();
if (midiEvent == NULL) break;
if (midiEvent->sysexData == NULL) {
playMsgNow(midiEvent->shortMessageData);
} else {
playSysexNow(midiEvent->sysexData, midiEvent->sysexLength);
}
midiQueue->dropMidiEvent();
}
lastReceivedMIDIEventTimestamp = renderedSampleCount;
}
}
Bit32u Synth::setMIDIEventQueueSize(Bit32u useSize) {
static const Bit32u MAX_QUEUE_SIZE = (1 << 24); // This results in about 256 Mb - much greater than any reasonable value
if (midiQueue == NULL) return 0;
flushMIDIQueue();
// Find a power of 2 that is >= useSize
Bit32u binarySize = 1;
if (useSize < MAX_QUEUE_SIZE) {
// Using simple linear search as this isn't time critical
while (binarySize < useSize) binarySize <<= 1;
} else {
binarySize = MAX_QUEUE_SIZE;
}
delete midiQueue;
midiQueue = new MidiEventQueue(binarySize);
return binarySize;
}
Bit32u Synth::getShortMessageLength(Bit32u msg) {
if ((msg & 0xF0) == 0xF0) {
switch (msg & 0xFF) {
case 0xF1:
case 0xF3:
return 2;
case 0xF2:
return 3;
default:
return 1;
}
}
// NOTE: This calculation isn't quite correct
// as it doesn't consider the running status byte
return ((msg & 0xE0) == 0xC0) ? 2 : 3;
}
Bit32u Synth::addMIDIInterfaceDelay(Bit32u len, Bit32u timestamp) {
Bit32u transferTime = Bit32u(double(len) * MIDI_DATA_TRANSFER_RATE);
// Dealing with wrapping
if (Bit32s(timestamp - lastReceivedMIDIEventTimestamp) < 0) {
timestamp = lastReceivedMIDIEventTimestamp;
}
timestamp += transferTime;
lastReceivedMIDIEventTimestamp = timestamp;
return timestamp;
}
Bit32u Synth::getInternalRenderedSampleCount() const {
return renderedSampleCount;
}
bool Synth::playMsg(Bit32u msg) {
return playMsg(msg, renderedSampleCount);
}
bool Synth::playMsg(Bit32u msg, Bit32u timestamp) {
if ((msg & 0xF8) == 0xF8) {
reportHandler->onMIDISystemRealtime(Bit8u(msg & 0xFF));
return true;
}
if (midiQueue == NULL) return false;
if (midiDelayMode != MIDIDelayMode_IMMEDIATE) {
timestamp = addMIDIInterfaceDelay(getShortMessageLength(msg), timestamp);
}
if (!activated) activated = true;
do {
if (midiQueue->pushShortMessage(msg, timestamp)) return true;
} while (reportHandler->onMIDIQueueOverflow());
return false;
}
bool Synth::playSysex(const Bit8u *sysex, Bit32u len) {
return playSysex(sysex, len, renderedSampleCount);
}
bool Synth::playSysex(const Bit8u *sysex, Bit32u len, Bit32u timestamp) {
if (midiQueue == NULL) return false;
if (midiDelayMode == MIDIDelayMode_DELAY_ALL) {
timestamp = addMIDIInterfaceDelay(len, timestamp);
}
if (!activated) activated = true;
do {
if (midiQueue->pushSysex(sysex, len, timestamp)) return true;
} while (reportHandler->onMIDIQueueOverflow());
return false;
}
void Synth::playMsgNow(Bit32u msg) {
if (!opened) return;
// NOTE: Active sense IS implemented in real hardware. However, realtime processing is clearly out of the library scope.
// It is assumed that realtime consumers of the library respond to these MIDI events as appropriate.
Bit8u code = Bit8u((msg & 0x0000F0) >> 4);
Bit8u chan = Bit8u(msg & 0x00000F);
Bit8u note = Bit8u((msg & 0x007F00) >> 8);
Bit8u velocity = Bit8u((msg & 0x7F0000) >> 16);
//printDebug("Playing chan %d, code 0x%01x note: 0x%02x", chan, code, note);
Bit8u *chanParts = extensions.chantable[chan];
if (*chanParts > 8) {
#if MT32EMU_MONITOR_MIDI > 0
printDebug("Play msg on unreg chan %d (%d): code=0x%01x, vel=%d", chan, part, code, velocity);
#endif
return;
}
for (Bit32u i = extensions.abortingPartIx; i <= 8; i++) {
const Bit32u partNum = chanParts[i];
if (partNum > 8) break;
playMsgOnPart(partNum, code, note, velocity);
if (isAbortingPoly()) {
extensions.abortingPartIx = i;
break;
} else if (extensions.abortingPartIx) {
extensions.abortingPartIx = 0;
}
}
}
void Synth::playMsgOnPart(Bit8u part, Bit8u code, Bit8u note, Bit8u velocity) {
if (!opened) return;
Bit32u bend;
if (!activated) activated = true;
//printDebug("Synth::playMsgOnPart(%02x, %02x, %02x, %02x)", part, code, note, velocity);
switch (code) {
case 0x8:
//printDebug("Note OFF - Part %d", part);
// The MT-32 ignores velocity for note off
parts[part]->noteOff(note);
break;
case 0x9:
//printDebug("Note ON - Part %d, Note %d Vel %d", part, note, velocity);
if (velocity == 0) {
// MIDI defines note-on with velocity 0 as being the same as note-off with velocity 40
parts[part]->noteOff(note);
} else {
parts[part]->noteOn(note, velocity);
}
break;
case 0xB: // Control change
switch (note) {
case 0x01: // Modulation
//printDebug("Modulation: %d", velocity);
parts[part]->setModulation(velocity);
break;
case 0x06:
parts[part]->setDataEntryMSB(velocity);
break;
case 0x07: // Set volume
//printDebug("Volume set: %d", velocity);
parts[part]->setVolume(velocity);
break;
case 0x0A: // Pan
//printDebug("Pan set: %d", velocity);
parts[part]->setPan(velocity);
break;
case 0x0B:
//printDebug("Expression set: %d", velocity);
parts[part]->setExpression(velocity);
break;
case 0x40: // Hold (sustain) pedal
//printDebug("Hold pedal set: %d", velocity);
parts[part]->setHoldPedal(velocity >= 64);
break;
case 0x62:
case 0x63:
parts[part]->setNRPN();
break;
case 0x64:
parts[part]->setRPNLSB(velocity);
break;
case 0x65:
parts[part]->setRPNMSB(velocity);
break;
case 0x79: // Reset all controllers
//printDebug("Reset all controllers");
parts[part]->resetAllControllers();
break;
case 0x7B: // All notes off
//printDebug("All notes off");
parts[part]->allNotesOff();
break;
case 0x7C:
case 0x7D:
case 0x7E:
case 0x7F:
// CONFIRMED:Mok: A real LAPC-I responds to these controllers as follows:
parts[part]->setHoldPedal(false);
parts[part]->allNotesOff();
break;
default:
#if MT32EMU_MONITOR_MIDI > 0
printDebug("Unknown MIDI Control code: 0x%02x - vel 0x%02x", note, velocity);
#endif
return;
}
break;
case 0xC: // Program change
//printDebug("Program change %01x", note);
parts[part]->setProgram(note);
break;
case 0xE: // Pitch bender
bend = (velocity << 7) | (note);
//printDebug("Pitch bender %02x", bend);
parts[part]->setBend(bend);
break;
default:
#if MT32EMU_MONITOR_MIDI > 0
printDebug("Unknown Midi code: 0x%01x - %02x - %02x", code, note, velocity);
#endif
return;
}
reportHandler->onMIDIMessagePlayed();
}
void Synth::playSysexNow(const Bit8u *sysex, Bit32u len) {
if (len < 2) {
printDebug("playSysex: Message is too short for sysex (%d bytes)", len);
}
if (sysex[0] != 0xF0) {
printDebug("playSysex: Message lacks start-of-sysex (0xF0)");
return;
}
// Due to some programs (e.g. Java) sending buffers with junk at the end, we have to go through and find the end marker rather than relying on len.
Bit32u endPos;
for (endPos = 1; endPos < len; endPos++) {
if (sysex[endPos] == 0xF7) {
break;
}
}
if (endPos == len) {
printDebug("playSysex: Message lacks end-of-sysex (0xf7)");
return;
}
playSysexWithoutFraming(sysex + 1, endPos - 1);
}
void Synth::playSysexWithoutFraming(const Bit8u *sysex, Bit32u len) {
if (len < 4) {
printDebug("playSysexWithoutFraming: Message is too short (%d bytes)!", len);
return;
}
if (sysex[0] != SYSEX_MANUFACTURER_ROLAND) {
printDebug("playSysexWithoutFraming: Header not intended for this device manufacturer: %02x %02x %02x %02x", int(sysex[0]), int(sysex[1]), int(sysex[2]), int(sysex[3]));
return;
}
if (sysex[2] == SYSEX_MDL_D50) {
printDebug("playSysexWithoutFraming: Header is intended for model D-50 (not yet supported): %02x %02x %02x %02x", int(sysex[0]), int(sysex[1]), int(sysex[2]), int(sysex[3]));
return;
} else if (sysex[2] != SYSEX_MDL_MT32) {
printDebug("playSysexWithoutFraming: Header not intended for model MT-32: %02x %02x %02x %02x", int(sysex[0]), int(sysex[1]), int(sysex[2]), int(sysex[3]));
return;
}
playSysexWithoutHeader(sysex[1], sysex[3], sysex + 4, len - 4);
}
void Synth::playSysexWithoutHeader(Bit8u device, Bit8u command, const Bit8u *sysex, Bit32u len) {
if (device > 0x10) {
// We have device ID 0x10 (default, but changeable, on real MT-32), < 0x10 is for channels
printDebug("playSysexWithoutHeader: Message is not intended for this device ID (provided: %02x, expected: 0x10 or channel)", int(device));
return;
}
// This is checked early in the real devices (before any sysex length checks or further processing)
// FIXME: Response to SYSEX_CMD_DAT reset with partials active (and in general) is untested.
if ((command == SYSEX_CMD_DT1 || command == SYSEX_CMD_DAT) && sysex[0] == 0x7F) {
reset();
return;
}
if (command == SYSEX_CMD_EOD) {
#if MT32EMU_MONITOR_SYSEX > 0
printDebug("playSysexWithoutHeader: Ignored unsupported command %02x", command);
#endif
return;
}
if (len < 4) {
printDebug("playSysexWithoutHeader: Message is too short (%d bytes)!", len);
return;
}
Bit8u checksum = calcSysexChecksum(sysex, len - 1);
if (checksum != sysex[len - 1]) {
printDebug("playSysexWithoutHeader: Message checksum is incorrect (provided: %02x, expected: %02x)!", sysex[len - 1], checksum);
return;
}
len -= 1; // Exclude checksum
switch (command) {
case SYSEX_CMD_WSD:
#if MT32EMU_MONITOR_SYSEX > 0
printDebug("playSysexWithoutHeader: Ignored unsupported command %02x", command);
#endif
break;
case SYSEX_CMD_DAT:
/* Outcommented until we (ever) actually implement handshake communication
if (hasActivePartials()) {
printDebug("playSysexWithoutHeader: Got SYSEX_CMD_DAT but partials are active - ignoring");
// FIXME: We should send SYSEX_CMD_RJC in this case
break;
}
*/
// Fall-through
case SYSEX_CMD_DT1:
writeSysex(device, sysex, len);
break;
case SYSEX_CMD_RQD:
if (hasActivePartials()) {
printDebug("playSysexWithoutHeader: Got SYSEX_CMD_RQD but partials are active - ignoring");
// FIXME: We should send SYSEX_CMD_RJC in this case
break;
}
// Fall-through
case SYSEX_CMD_RQ1:
readSysex(device, sysex, len);
break;
default:
printDebug("playSysexWithoutHeader: Unsupported command %02x", command);
return;
}
}
void Synth::readSysex(Bit8u /*device*/, const Bit8u * /*sysex*/, Bit32u /*len*/) const {
// NYI
}
void Synth::writeSysex(Bit8u device, const Bit8u *sysex, Bit32u len) {
if (!opened) return;
reportHandler->onMIDIMessagePlayed();
Bit32u addr = (sysex[0] << 16) | (sysex[1] << 8) | (sysex[2]);
addr = MT32EMU_MEMADDR(addr);
sysex += 3;
len -= 3;
//printDebug("Sysex addr: 0x%06x", MT32EMU_SYSEXMEMADDR(addr));
// NOTE: Please keep both lower and upper bounds in each check, for ease of reading
// Process channel-specific sysex by converting it to device-global
if (device < 0x10) {
#if MT32EMU_MONITOR_SYSEX > 0
printDebug("WRITE-CHANNEL: Channel %d temp area 0x%06x", device, MT32EMU_SYSEXMEMADDR(addr));
#endif
if (/*addr >= MT32EMU_MEMADDR(0x000000) && */addr < MT32EMU_MEMADDR(0x010000)) {
addr += MT32EMU_MEMADDR(0x030000);
Bit8u *chanParts = extensions.chantable[device];
if (*chanParts > 8) {
#if MT32EMU_MONITOR_SYSEX > 0
printDebug(" (Channel not mapped to a part... 0 offset)");
#endif
} else {
for (Bit32u partIx = 0; partIx <= 8; partIx++) {
if (chanParts[partIx] > 8) break;
int offset;
if (chanParts[partIx] == 8) {
#if MT32EMU_MONITOR_SYSEX > 0
printDebug(" (Channel mapped to rhythm... 0 offset)");
#endif
offset = 0;
} else {
offset = chanParts[partIx] * sizeof(MemParams::PatchTemp);
#if MT32EMU_MONITOR_SYSEX > 0
printDebug(" (Setting extra offset to %d)", offset);
#endif
}
writeSysexGlobal(addr + offset, sysex, len);
}
return;
}
} else if (/*addr >= MT32EMU_MEMADDR(0x010000) && */ addr < MT32EMU_MEMADDR(0x020000)) {
addr += MT32EMU_MEMADDR(0x030110) - MT32EMU_MEMADDR(0x010000);
} else if (/*addr >= MT32EMU_MEMADDR(0x020000) && */ addr < MT32EMU_MEMADDR(0x030000)) {
addr += MT32EMU_MEMADDR(0x040000) - MT32EMU_MEMADDR(0x020000);
Bit8u *chanParts = extensions.chantable[device];
if (*chanParts > 8) {
#if MT32EMU_MONITOR_SYSEX > 0
printDebug(" (Channel not mapped to a part... 0 offset)");
#endif
} else {
for (Bit32u partIx = 0; partIx <= 8; partIx++) {
if (chanParts[partIx] > 8) break;
int offset;
if (chanParts[partIx] == 8) {
#if MT32EMU_MONITOR_SYSEX > 0
printDebug(" (Channel mapped to rhythm... 0 offset)");
#endif
offset = 0;
} else {
offset = chanParts[partIx] * sizeof(TimbreParam);
#if MT32EMU_MONITOR_SYSEX > 0
printDebug(" (Setting extra offset to %d)", offset);
#endif
}
writeSysexGlobal(addr + offset, sysex, len);
}
return;
}
} else {
#if MT32EMU_MONITOR_SYSEX > 0
printDebug(" Invalid channel");
#endif
return;
}
}
writeSysexGlobal(addr, sysex, len);
}
// Process device-global sysex (possibly converted from channel-specific sysex above)
void Synth::writeSysexGlobal(Bit32u addr, const Bit8u *sysex, Bit32u len) {
for (;;) {
// Find the appropriate memory region
const MemoryRegion *region = findMemoryRegion(addr);
if (region == NULL) {
printDebug("Sysex write to unrecognised address %06x, len %d", MT32EMU_SYSEXMEMADDR(addr), len);
break;
}
writeMemoryRegion(region, addr, region->getClampedLen(addr, len), sysex);
Bit32u next = region->next(addr, len);
if (next == 0) {
break;
}
addr += next;
sysex += next;
len -= next;
}
}
void Synth::readMemory(Bit32u addr, Bit32u len, Bit8u *data) {
if (!opened) return;
const MemoryRegion *region = findMemoryRegion(addr);
if (region != NULL) {
readMemoryRegion(region, addr, len, data);
}
}
void Synth::initMemoryRegions() {
// Timbre max tables are slightly more complicated than the others, which are used directly from the ROM.
// The ROM (sensibly) just has maximums for TimbreParam.commonParam followed by just one TimbreParam.partialParam,
// so we produce a table with all partialParams filled out, as well as padding for PaddedTimbre, for quick lookup.
paddedTimbreMaxTable = new Bit8u[sizeof(MemParams::PaddedTimbre)];
memcpy(&paddedTimbreMaxTable[0], &controlROMData[controlROMMap->timbreMaxTable], sizeof(TimbreParam::CommonParam) + sizeof(TimbreParam::PartialParam)); // commonParam and one partialParam
int pos = sizeof(TimbreParam::CommonParam) + sizeof(TimbreParam::PartialParam);
for (int i = 0; i < 3; i++) {
memcpy(&paddedTimbreMaxTable[pos], &controlROMData[controlROMMap->timbreMaxTable + sizeof(TimbreParam::CommonParam)], sizeof(TimbreParam::PartialParam));
pos += sizeof(TimbreParam::PartialParam);
}
memset(&paddedTimbreMaxTable[pos], 0, 10); // Padding
patchTempMemoryRegion = new PatchTempMemoryRegion(this, reinterpret_cast(&mt32ram.patchTemp[0]), &controlROMData[controlROMMap->patchMaxTable]);
rhythmTempMemoryRegion = new RhythmTempMemoryRegion(this, reinterpret_cast(&mt32ram.rhythmTemp[0]), &controlROMData[controlROMMap->rhythmMaxTable]);
timbreTempMemoryRegion = new TimbreTempMemoryRegion(this, reinterpret_cast(&mt32ram.timbreTemp[0]), paddedTimbreMaxTable);
patchesMemoryRegion = new PatchesMemoryRegion(this, reinterpret_cast(&mt32ram.patches[0]), &controlROMData[controlROMMap->patchMaxTable]);
timbresMemoryRegion = new TimbresMemoryRegion(this, reinterpret_cast(&mt32ram.timbres[0]), paddedTimbreMaxTable);
systemMemoryRegion = new SystemMemoryRegion(this, reinterpret_cast(&mt32ram.system), &controlROMData[controlROMMap->systemMaxTable]);
displayMemoryRegion = new DisplayMemoryRegion(this);
resetMemoryRegion = new ResetMemoryRegion(this);
}
void Synth::deleteMemoryRegions() {
delete patchTempMemoryRegion;
patchTempMemoryRegion = NULL;
delete rhythmTempMemoryRegion;
rhythmTempMemoryRegion = NULL;
delete timbreTempMemoryRegion;
timbreTempMemoryRegion = NULL;
delete patchesMemoryRegion;
patchesMemoryRegion = NULL;
delete timbresMemoryRegion;
timbresMemoryRegion = NULL;
delete systemMemoryRegion;
systemMemoryRegion = NULL;
delete displayMemoryRegion;
displayMemoryRegion = NULL;
delete resetMemoryRegion;
resetMemoryRegion = NULL;
delete[] paddedTimbreMaxTable;
paddedTimbreMaxTable = NULL;
}
MemoryRegion *Synth::findMemoryRegion(Bit32u addr) {
MemoryRegion *regions[] = {
patchTempMemoryRegion,
rhythmTempMemoryRegion,
timbreTempMemoryRegion,
patchesMemoryRegion,
timbresMemoryRegion,
systemMemoryRegion,
displayMemoryRegion,
resetMemoryRegion,
NULL
};
for (int pos = 0; regions[pos] != NULL; pos++) {
if (regions[pos]->contains(addr)) {
return regions[pos];
}
}
return NULL;
}
void Synth::readMemoryRegion(const MemoryRegion *region, Bit32u addr, Bit32u len, Bit8u *data) {
unsigned int first = region->firstTouched(addr);
//unsigned int last = region->lastTouched(addr, len);
unsigned int off = region->firstTouchedOffset(addr);
len = region->getClampedLen(addr, len);
unsigned int m;
if (region->isReadable()) {
region->read(first, off, data, len);
} else {
// FIXME: We might want to do these properly in future
for (m = 0; m < len; m += 2) {
data[m] = 0xff;
if (m + 1 < len) {
data[m+1] = Bit8u(region->type);
}
}
}
}
void Synth::writeMemoryRegion(const MemoryRegion *region, Bit32u addr, Bit32u len, const Bit8u *data) {
unsigned int first = region->firstTouched(addr);
unsigned int last = region->lastTouched(addr, len);
unsigned int off = region->firstTouchedOffset(addr);
switch (region->type) {
case MR_PatchTemp:
region->write(first, off, data, len);
//printDebug("Patch temp: Patch %d, offset %x, len %d", off/16, off % 16, len);
for (unsigned int i = first; i <= last; i++) {
int absTimbreNum = mt32ram.patchTemp[i].patch.timbreGroup * 64 + mt32ram.patchTemp[i].patch.timbreNum;
char timbreName[11];
memcpy(timbreName, mt32ram.timbres[absTimbreNum].timbre.common.name, 10);
timbreName[10] = 0;
#if MT32EMU_MONITOR_SYSEX > 0
printDebug("WRITE-PARTPATCH (%d-%d@%d..%d): %d; timbre=%d (%s), outlevel=%d", first, last, off, off + len, i, absTimbreNum, timbreName, mt32ram.patchTemp[i].outputLevel);
#endif
if (parts[i] != NULL) {
if (i != 8) {
// Note: Confirmed on CM-64 that we definitely *should* update the timbre here,
// but only in the case that the sysex actually writes to those values
if (i == first && off > 2) {
#if MT32EMU_MONITOR_SYSEX > 0
printDebug(" (Not updating timbre, since those values weren't touched)");
#endif
} else {
parts[i]->setTimbre(&mt32ram.timbres[parts[i]->getAbsTimbreNum()].timbre);
}
}
parts[i]->refresh();
}
}
break;
case MR_RhythmTemp:
region->write(first, off, data, len);
for (unsigned int i = first; i <= last; i++) {
int timbreNum = mt32ram.rhythmTemp[i].timbre;
char timbreName[11];
if (timbreNum < 94) {
memcpy(timbreName, mt32ram.timbres[128 + timbreNum].timbre.common.name, 10);
timbreName[10] = 0;
} else {
strcpy(timbreName, "[None]");
}
#if MT32EMU_MONITOR_SYSEX > 0
printDebug("WRITE-RHYTHM (%d-%d@%d..%d): %d; level=%02x, panpot=%02x, reverb=%02x, timbre=%d (%s)", first, last, off, off + len, i, mt32ram.rhythmTemp[i].outputLevel, mt32ram.rhythmTemp[i].panpot, mt32ram.rhythmTemp[i].reverbSwitch, mt32ram.rhythmTemp[i].timbre, timbreName);
#endif
}
if (parts[8] != NULL) {
parts[8]->refresh();
}
break;
case MR_TimbreTemp:
region->write(first, off, data, len);
for (unsigned int i = first; i <= last; i++) {
char instrumentName[11];
memcpy(instrumentName, mt32ram.timbreTemp[i].common.name, 10);
instrumentName[10] = 0;
#if MT32EMU_MONITOR_SYSEX > 0
printDebug("WRITE-PARTTIMBRE (%d-%d@%d..%d): timbre=%d (%s)", first, last, off, off + len, i, instrumentName);
#endif
if (parts[i] != NULL) {
parts[i]->refresh();
}
}
break;
case MR_Patches:
region->write(first, off, data, len);
#if MT32EMU_MONITOR_SYSEX > 0
for (unsigned int i = first; i <= last; i++) {
PatchParam *patch = &mt32ram.patches[i];
int patchAbsTimbreNum = patch->timbreGroup * 64 + patch->timbreNum;
char instrumentName[11];
memcpy(instrumentName, mt32ram.timbres[patchAbsTimbreNum].timbre.common.name, 10);
instrumentName[10] = 0;
Bit8u *n = (Bit8u *)patch;
printDebug("WRITE-PATCH (%d-%d@%d..%d): %d; timbre=%d (%s) %02X%02X%02X%02X%02X%02X%02X%02X", first, last, off, off + len, i, patchAbsTimbreNum, instrumentName, n[0], n[1], n[2], n[3], n[4], n[5], n[6], n[7]);
}
#endif
break;
case MR_Timbres:
// Timbres
first += 128;
last += 128;
region->write(first, off, data, len);
for (unsigned int i = first; i <= last; i++) {
#if MT32EMU_MONITOR_TIMBRES >= 1
TimbreParam *timbre = &mt32ram.timbres[i].timbre;
char instrumentName[11];
memcpy(instrumentName, timbre->common.name, 10);
instrumentName[10] = 0;
printDebug("WRITE-TIMBRE (%d-%d@%d..%d): %d; name=\"%s\"", first, last, off, off + len, i, instrumentName);
#if MT32EMU_MONITOR_TIMBRES >= 2
#define DT(x) printDebug(" " #x ": %d", timbre->x)
DT(common.partialStructure12);
DT(common.partialStructure34);
DT(common.partialMute);
DT(common.noSustain);
#define DTP(x) \
DT(partial[x].wg.pitchCoarse); \
DT(partial[x].wg.pitchFine); \
DT(partial[x].wg.pitchKeyfollow); \
DT(partial[x].wg.pitchBenderEnabled); \
DT(partial[x].wg.waveform); \
DT(partial[x].wg.pcmWave); \
DT(partial[x].wg.pulseWidth); \
DT(partial[x].wg.pulseWidthVeloSensitivity); \
DT(partial[x].pitchEnv.depth); \
DT(partial[x].pitchEnv.veloSensitivity); \
DT(partial[x].pitchEnv.timeKeyfollow); \
DT(partial[x].pitchEnv.time[0]); \
DT(partial[x].pitchEnv.time[1]); \
DT(partial[x].pitchEnv.time[2]); \
DT(partial[x].pitchEnv.time[3]); \
DT(partial[x].pitchEnv.level[0]); \
DT(partial[x].pitchEnv.level[1]); \
DT(partial[x].pitchEnv.level[2]); \
DT(partial[x].pitchEnv.level[3]); \
DT(partial[x].pitchEnv.level[4]); \
DT(partial[x].pitchLFO.rate); \
DT(partial[x].pitchLFO.depth); \
DT(partial[x].pitchLFO.modSensitivity); \
DT(partial[x].tvf.cutoff); \
DT(partial[x].tvf.resonance); \
DT(partial[x].tvf.keyfollow); \
DT(partial[x].tvf.biasPoint); \
DT(partial[x].tvf.biasLevel); \
DT(partial[x].tvf.envDepth); \
DT(partial[x].tvf.envVeloSensitivity); \
DT(partial[x].tvf.envDepthKeyfollow); \
DT(partial[x].tvf.envTimeKeyfollow); \
DT(partial[x].tvf.envTime[0]); \
DT(partial[x].tvf.envTime[1]); \
DT(partial[x].tvf.envTime[2]); \
DT(partial[x].tvf.envTime[3]); \
DT(partial[x].tvf.envTime[4]); \
DT(partial[x].tvf.envLevel[0]); \
DT(partial[x].tvf.envLevel[1]); \
DT(partial[x].tvf.envLevel[2]); \
DT(partial[x].tvf.envLevel[3]); \
DT(partial[x].tva.level); \
DT(partial[x].tva.veloSensitivity); \
DT(partial[x].tva.biasPoint1); \
DT(partial[x].tva.biasLevel1); \
DT(partial[x].tva.biasPoint2); \
DT(partial[x].tva.biasLevel2); \
DT(partial[x].tva.envTimeKeyfollow); \
DT(partial[x].tva.envTimeVeloSensitivity); \
DT(partial[x].tva.envTime[0]); \
DT(partial[x].tva.envTime[1]); \
DT(partial[x].tva.envTime[2]); \
DT(partial[x].tva.envTime[3]); \
DT(partial[x].tva.envTime[4]); \
DT(partial[x].tva.envLevel[0]); \
DT(partial[x].tva.envLevel[1]); \
DT(partial[x].tva.envLevel[2]); \
DT(partial[x].tva.envLevel[3]);
DTP(0);
DTP(1);
DTP(2);
DTP(3);
#undef DTP
#undef DT
#endif
#endif
// FIXME:KG: Not sure if the stuff below should be done (for rhythm and/or parts)...
// Does the real MT-32 automatically do this?
for (unsigned int part = 0; part < 9; part++) {
if (parts[part] != NULL) {
parts[part]->refreshTimbre(i);
}
}
}
break;
case MR_System:
region->write(0, off, data, len);
reportHandler->onDeviceReconfig();
// FIXME: We haven't properly confirmed any of this behaviour
// In particular, we tend to reset things such as reverb even if the write contained
// the same parameters as were already set, which may be wrong.
// On the other hand, the real thing could be resetting things even when they aren't touched
// by the write at all.
#if MT32EMU_MONITOR_SYSEX > 0
printDebug("WRITE-SYSTEM:");
#endif
if (off <= SYSTEM_MASTER_TUNE_OFF && off + len > SYSTEM_MASTER_TUNE_OFF) {
refreshSystemMasterTune();
}
if (off <= SYSTEM_REVERB_LEVEL_OFF && off + len > SYSTEM_REVERB_MODE_OFF) {
refreshSystemReverbParameters();
}
if (off <= SYSTEM_RESERVE_SETTINGS_END_OFF && off + len > SYSTEM_RESERVE_SETTINGS_START_OFF) {
refreshSystemReserveSettings();
}
if (off <= SYSTEM_CHAN_ASSIGN_END_OFF && off + len > SYSTEM_CHAN_ASSIGN_START_OFF) {
int firstPart = off - SYSTEM_CHAN_ASSIGN_START_OFF;
if(firstPart < 0)
firstPart = 0;
int lastPart = off + len - SYSTEM_CHAN_ASSIGN_START_OFF;
if(lastPart > 8)
lastPart = 8;
refreshSystemChanAssign(Bit8u(firstPart), Bit8u(lastPart));
}
if (off <= SYSTEM_MASTER_VOL_OFF && off + len > SYSTEM_MASTER_VOL_OFF) {
refreshSystemMasterVol();
}
break;
case MR_Display:
char buf[SYSEX_BUFFER_SIZE];
memcpy(&buf, &data[0], len);
buf[len] = 0;
#if MT32EMU_MONITOR_SYSEX > 0
printDebug("WRITE-LCD: %s", buf);
#endif
reportHandler->showLCDMessage(buf);
break;
case MR_Reset:
reset();
break;
}
}
void Synth::refreshSystemMasterTune() {
// 171 is ~half a semitone.
extensions.masterTunePitchDelta = ((mt32ram.system.masterTune - 64) * 171) >> 6; // PORTABILITY NOTE: Assumes arithmetic shift.
#if MT32EMU_MONITOR_SYSEX > 0
//FIXME:KG: This is just an educated guess.
// The LAPC-I documentation claims a range of 427.5Hz-452.6Hz (similar to what we have here)
// The MT-32 documentation claims a range of 432.1Hz-457.6Hz
float masterTune = 440.0f * EXP2F((mt32ram.system.masterTune - 64.0f) / (128.0f * 12.0f));
printDebug(" Master Tune: %f", masterTune);
#endif
}
void Synth::refreshSystemReverbParameters() {
#if MT32EMU_MONITOR_SYSEX > 0
printDebug(" Reverb: mode=%d, time=%d, level=%d", mt32ram.system.reverbMode, mt32ram.system.reverbTime, mt32ram.system.reverbLevel);
#endif
if (reverbOverridden) {
#if MT32EMU_MONITOR_SYSEX > 0
printDebug(" (Reverb overridden - ignoring)");
#endif
return;
}
reportHandler->onNewReverbMode(mt32ram.system.reverbMode);
reportHandler->onNewReverbTime(mt32ram.system.reverbTime);
reportHandler->onNewReverbLevel(mt32ram.system.reverbLevel);
BReverbModel *oldReverbModel = reverbModel;
if (mt32ram.system.reverbTime == 0 && mt32ram.system.reverbLevel == 0) {
// Setting both time and level to 0 effectively disables wet reverb output on real devices.
// Take a shortcut in this case to reduce CPU load.
reverbModel = NULL;
} else {
reverbModel = reverbModels[mt32ram.system.reverbMode];
}
if (reverbModel != oldReverbModel) {
#if MT32EMU_REDUCE_REVERB_MEMORY
if (oldReverbModel != NULL) {
oldReverbModel->close();
}
if (isReverbEnabled()) {
reverbModel->open();
}
#else
if (isReverbEnabled()) {
reverbModel->mute();
}
#endif
}
if (isReverbEnabled()) {
reverbModel->setParameters(mt32ram.system.reverbTime, mt32ram.system.reverbLevel);
}
}
void Synth::refreshSystemReserveSettings() {
Bit8u *rset = mt32ram.system.reserveSettings;
#if MT32EMU_MONITOR_SYSEX > 0
printDebug(" Partial reserve: 1=%02d 2=%02d 3=%02d 4=%02d 5=%02d 6=%02d 7=%02d 8=%02d Rhythm=%02d", rset[0], rset[1], rset[2], rset[3], rset[4], rset[5], rset[6], rset[7], rset[8]);
#endif
partialManager->setReserve(rset);
}
void Synth::refreshSystemChanAssign(Bit8u firstPart, Bit8u lastPart) {
memset(extensions.chantable, 0xFF, sizeof(extensions.chantable));
// CONFIRMED: In the case of assigning a MIDI channel to multiple parts,
// the messages received on that MIDI channel are handled by all the parts.
for (Bit32u i = 0; i <= 8; i++) {
if (parts[i] != NULL && i >= firstPart && i <= lastPart) {
// CONFIRMED: Decay is started for all polys, and all controllers are reset, for every part whose assignment was touched by the sysex write.
parts[i]->allSoundOff();
parts[i]->resetAllControllers();
}
Bit8u chan = mt32ram.system.chanAssign[i];
if (chan > 15) continue;
Bit8u *chanParts = extensions.chantable[chan];
for (Bit32u j = 0; j <= 8; j++) {
if (chanParts[j] > 8) {
chanParts[j] = Bit8u(i);
break;
}
}
}
#if MT32EMU_MONITOR_SYSEX > 0
Bit8u *rset = mt32ram.system.chanAssign;
printDebug(" Part assign: 1=%02d 2=%02d 3=%02d 4=%02d 5=%02d 6=%02d 7=%02d 8=%02d Rhythm=%02d", rset[0], rset[1], rset[2], rset[3], rset[4], rset[5], rset[6], rset[7], rset[8]);
#endif
}
void Synth::refreshSystemMasterVol() {
#if MT32EMU_MONITOR_SYSEX > 0
printDebug(" Master volume: %d", mt32ram.system.masterVol);
#endif
}
void Synth::refreshSystem() {
refreshSystemMasterTune();
refreshSystemReverbParameters();
refreshSystemReserveSettings();
refreshSystemChanAssign(0, 8);
refreshSystemMasterVol();
}
void Synth::reset() {
if (!opened) return;
#if MT32EMU_MONITOR_SYSEX > 0
printDebug("RESET");
#endif
reportHandler->onDeviceReset();
partialManager->deactivateAll();
mt32ram = mt32default;
for (int i = 0; i < 9; i++) {
parts[i]->reset();
if (i != 8) {
parts[i]->setProgram(controlROMData[controlROMMap->programSettings + i]);
} else {
parts[8]->refresh();
}
}
refreshSystem();
resetMasterTunePitchDelta();
isActive();
}
void Synth::resetMasterTunePitchDelta() {
// This effectively resets master tune to 440.0Hz.
// Despite that the manual claims 442.0Hz is the default setting for master tune,
// it doesn't actually take effect upon a reset due to a bug in the reset routine.
// CONFIRMED: This bug is present in all supported Control ROMs.
extensions.masterTunePitchDelta = 0;
#if MT32EMU_MONITOR_SYSEX > 0
printDebug(" Actual Master Tune reset to 440.0");
#endif
}
Bit32s Synth::getMasterTunePitchDelta() const {
return extensions.masterTunePitchDelta;
}
MidiEvent::MidiEvent() {
shortMessageData = 0;
sysexData = NULL;
sysexLength = 0;
timestamp = 0;
}
MidiEvent::~MidiEvent() {
if (sysexData != NULL) {
delete[] sysexData;
}
}
void MidiEvent::setShortMessage(Bit32u useShortMessageData, Bit32u useTimestamp) {
if (sysexData != NULL) {
delete[] sysexData;
}
shortMessageData = useShortMessageData;
timestamp = useTimestamp;
sysexData = NULL;
sysexLength = 0;
}
void MidiEvent::setSysex(const Bit8u *useSysexData, Bit32u useSysexLength, Bit32u useTimestamp) {
if (sysexData != NULL) {
delete[] sysexData;
}
shortMessageData = 0;
timestamp = useTimestamp;
sysexLength = useSysexLength;
Bit8u *dstSysexData = new Bit8u[sysexLength];
sysexData = dstSysexData;
memcpy(dstSysexData, useSysexData, sysexLength);
}
MidiEventQueue::MidiEventQueue(Bit32u useRingBufferSize) : ringBuffer(new MidiEvent[useRingBufferSize]), ringBufferMask(useRingBufferSize - 1) {
reset();
}
MidiEventQueue::~MidiEventQueue() {
delete[] ringBuffer;
}
void MidiEventQueue::reset() {
startPosition = 0;
endPosition = 0;
}
bool MidiEventQueue::pushShortMessage(Bit32u shortMessageData, Bit32u timestamp) {
Bit32u newEndPosition = (endPosition + 1) & ringBufferMask;
// Is ring buffer full?
if (startPosition == newEndPosition) return false;
ringBuffer[endPosition].setShortMessage(shortMessageData, timestamp);
endPosition = newEndPosition;
return true;
}
bool MidiEventQueue::pushSysex(const Bit8u *sysexData, Bit32u sysexLength, Bit32u timestamp) {
Bit32u newEndPosition = (endPosition + 1) & ringBufferMask;
// Is ring buffer full?
if (startPosition == newEndPosition) return false;
ringBuffer[endPosition].setSysex(sysexData, sysexLength, timestamp);
endPosition = newEndPosition;
return true;
}
const MidiEvent *MidiEventQueue::peekMidiEvent() {
return isEmpty() ? NULL : &ringBuffer[startPosition];
}
void MidiEventQueue::dropMidiEvent() {
// Is ring buffer empty?
if (startPosition != endPosition) {
startPosition = (startPosition + 1) & ringBufferMask;
}
}
bool MidiEventQueue::isFull() const {
return startPosition == ((endPosition + 1) & ringBufferMask);
}
bool MidiEventQueue::isEmpty() const {
return startPosition == endPosition;
}
void Synth::selectRendererType(RendererType newRendererType) {
extensions.selectedRendererType = newRendererType;
}
RendererType Synth::getSelectedRendererType() const {
return extensions.selectedRendererType;
}
Bit32u Synth::getStereoOutputSampleRate() const {
return (analog == NULL) ? SAMPLE_RATE : analog->getOutputSampleRate();
}
template
void RendererImpl::doRender(Sample *stereoStream, Bit32u len) {
if (!isActivated()) {
incRenderedSampleCount(getAnalog().getDACStreamsLength(len));
if (!getAnalog().process(NULL, NULL, NULL, NULL, NULL, NULL, stereoStream, len)) {
printDebug("RendererImpl: Invalid call to Analog::process()!\n");
}
Synth::muteSampleBuffer(stereoStream, len << 1);
return;
}
while (len > 0) {
// As in AnalogOutputMode_ACCURATE mode output is upsampled, MAX_SAMPLES_PER_RUN is more than enough for the temp buffers.
Bit32u thisPassLen = len > MAX_SAMPLES_PER_RUN ? MAX_SAMPLES_PER_RUN : len;
doRenderStreams(tmpBuffers, getAnalog().getDACStreamsLength(thisPassLen));
if (!getAnalog().process(stereoStream, tmpNonReverbLeft, tmpNonReverbRight, tmpReverbDryLeft, tmpReverbDryRight, tmpReverbWetLeft, tmpReverbWetRight, thisPassLen)) {
printDebug("RendererImpl: Invalid call to Analog::process()!\n");
Synth::muteSampleBuffer(stereoStream, len << 1);
return;
}
stereoStream += thisPassLen << 1;
len -= thisPassLen;
}
}
template
template
void RendererImpl::doRenderAndConvert(O *stereoStream, Bit32u len) {
Sample renderingBuffer[MAX_SAMPLES_PER_RUN << 1];
while (len > 0) {
Bit32u thisPassLen = len > MAX_SAMPLES_PER_RUN ? MAX_SAMPLES_PER_RUN : len;
doRender(renderingBuffer, thisPassLen);
convertSampleFormat(renderingBuffer, stereoStream, thisPassLen << 1);
stereoStream += thisPassLen << 1;
len -= thisPassLen;
}
}
template<>
void RendererImpl::render(IntSample *stereoStream, Bit32u len) {
doRender(stereoStream, len);
}
template<>
void RendererImpl::render(FloatSample *stereoStream, Bit32u len) {
doRenderAndConvert(stereoStream, len);
}
template<>
void RendererImpl::render(IntSample *stereoStream, Bit32u len) {
doRenderAndConvert(stereoStream, len);
}
template<>
void RendererImpl::render(FloatSample *stereoStream, Bit32u len) {
doRender(stereoStream, len);
}
template
static inline void renderStereo(bool opened, Renderer *renderer, S *stream, Bit32u len) {
if (opened) {
renderer->render(stream, len);
} else {
Synth::muteSampleBuffer(stream, len << 1);
}
}
void Synth::render(Bit16s *stream, Bit32u len) {
renderStereo(opened, renderer, stream, len);
}
void Synth::render(float *stream, Bit32u len) {
renderStereo(opened, renderer, stream, len);
}
template
static inline void advanceStream(Sample *&stream, Bit32u len) {
if (stream != NULL) {
stream += len;
}
}
template
static inline void advanceStreams(DACOutputStreams &streams, Bit32u len) {
advanceStream(streams.nonReverbLeft, len);
advanceStream(streams.nonReverbRight, len);
advanceStream(streams.reverbDryLeft, len);
advanceStream(streams.reverbDryRight, len);
advanceStream(streams.reverbWetLeft, len);
advanceStream(streams.reverbWetRight, len);
}
template
static inline void muteStreams(const DACOutputStreams &streams, Bit32u len) {
Synth::muteSampleBuffer(streams.nonReverbLeft, len);
Synth::muteSampleBuffer(streams.nonReverbRight, len);
Synth::muteSampleBuffer(streams.reverbDryLeft, len);
Synth::muteSampleBuffer(streams.reverbDryRight, len);
Synth::muteSampleBuffer(streams.reverbWetLeft, len);
Synth::muteSampleBuffer(streams.reverbWetRight, len);
}
template
static inline void convertStreamsFormat(const DACOutputStreams &inStreams, const DACOutputStreams &outStreams, Bit32u len) {
convertSampleFormat(inStreams.nonReverbLeft, outStreams.nonReverbLeft, len);
convertSampleFormat(inStreams.nonReverbRight, outStreams.nonReverbRight, len);
convertSampleFormat(inStreams.reverbDryLeft, outStreams.reverbDryLeft, len);
convertSampleFormat(inStreams.reverbDryRight, outStreams.reverbDryRight, len);
convertSampleFormat(inStreams.reverbWetLeft, outStreams.reverbWetLeft, len);
convertSampleFormat(inStreams.reverbWetRight, outStreams.reverbWetRight, len);
}
template
void RendererImpl::doRenderStreams(const DACOutputStreams &streams, Bit32u len)
{
DACOutputStreams tmpStreams = streams;
while (len > 0) {
// We need to ensure zero-duration notes will play so add minimum 1-sample delay.
Bit32u thisLen = 1;
if (!isAbortingPoly()) {
const MidiEvent *nextEvent = getMidiQueue().peekMidiEvent();
Bit32s samplesToNextEvent = (nextEvent != NULL) ? Bit32s(nextEvent->timestamp - getRenderedSampleCount()) : MAX_SAMPLES_PER_RUN;
if (samplesToNextEvent > 0) {
thisLen = len > MAX_SAMPLES_PER_RUN ? MAX_SAMPLES_PER_RUN : len;
if (thisLen > Bit32u(samplesToNextEvent)) {
thisLen = samplesToNextEvent;
}
} else {
if (nextEvent->sysexData == NULL) {
synth.playMsgNow(nextEvent->shortMessageData);
// If a poly is aborting we don't drop the event from the queue.
// Instead, we'll return to it again when the abortion is done.
if (!isAbortingPoly()) {
getMidiQueue().dropMidiEvent();
}
} else {
synth.playSysexNow(nextEvent->sysexData, nextEvent->sysexLength);
getMidiQueue().dropMidiEvent();
}
}
}
produceStreams(tmpStreams, thisLen);
advanceStreams(tmpStreams, thisLen);
len -= thisLen;
}
}
template
template
void RendererImpl::doRenderAndConvertStreams(const DACOutputStreams &streams, Bit32u len) {
Sample cnvNonReverbLeft[MAX_SAMPLES_PER_RUN], cnvNonReverbRight[MAX_SAMPLES_PER_RUN];
Sample cnvReverbDryLeft[MAX_SAMPLES_PER_RUN], cnvReverbDryRight[MAX_SAMPLES_PER_RUN];
Sample cnvReverbWetLeft[MAX_SAMPLES_PER_RUN], cnvReverbWetRight[MAX_SAMPLES_PER_RUN];
const DACOutputStreams cnvStreams = {
cnvNonReverbLeft, cnvNonReverbRight,
cnvReverbDryLeft, cnvReverbDryRight,
cnvReverbWetLeft, cnvReverbWetRight
};
DACOutputStreams tmpStreams = streams;
while (len > 0) {
Bit32u thisPassLen = len > MAX_SAMPLES_PER_RUN ? MAX_SAMPLES_PER_RUN : len;
doRenderStreams(cnvStreams, thisPassLen);
convertStreamsFormat(cnvStreams, tmpStreams, thisPassLen);
advanceStreams(tmpStreams, thisPassLen);
len -= thisPassLen;
}
}
template<>
void RendererImpl::renderStreams(const DACOutputStreams &streams, Bit32u len) {
doRenderStreams(streams, len);
}
template<>
void RendererImpl::renderStreams(const DACOutputStreams &streams, Bit32u len) {
doRenderAndConvertStreams(streams, len);
}
template<>
void RendererImpl::renderStreams(const DACOutputStreams &streams, Bit32u len) {
doRenderAndConvertStreams(streams, len);
}
template<>
void RendererImpl::renderStreams(const DACOutputStreams &streams, Bit32u len) {
doRenderStreams(streams, len);
}
template
static inline void renderStreams(bool opened, Renderer *renderer, const DACOutputStreams &streams, Bit32u len) {
if (opened) {
renderer->renderStreams(streams, len);
} else {
muteStreams(streams, len);
}
}
void Synth::renderStreams(const DACOutputStreams &streams, Bit32u len) {
MT32Emu::renderStreams(opened, renderer, streams, len);
}
void Synth::renderStreams(const DACOutputStreams &streams, Bit32u len) {
MT32Emu::renderStreams(opened, renderer, streams, len);
}
void Synth::renderStreams(
Bit16s *nonReverbLeft, Bit16s *nonReverbRight,
Bit16s *reverbDryLeft, Bit16s *reverbDryRight,
Bit16s *reverbWetLeft, Bit16s *reverbWetRight,
Bit32u len)
{
DACOutputStreams streams = {
nonReverbLeft, nonReverbRight,
reverbDryLeft, reverbDryRight,
reverbWetLeft, reverbWetRight
};
renderStreams(streams, len);
}
void Synth::renderStreams(
float *nonReverbLeft, float *nonReverbRight,
float *reverbDryLeft, float *reverbDryRight,
float *reverbWetLeft, float *reverbWetRight,
Bit32u len)
{
DACOutputStreams streams = {
nonReverbLeft, nonReverbRight,
reverbDryLeft, reverbDryRight,
reverbWetLeft, reverbWetRight
};
renderStreams(streams, len);
}
// In GENERATION2 units, the output from LA32 goes to the Boss chip already bit-shifted.
// In NICE mode, it's also better to increase volume before the reverb processing to preserve accuracy.
template <>
void RendererImpl::produceLA32Output(IntSample *buffer, Bit32u len) {
switch (synth.getDACInputMode()) {
case DACInputMode_GENERATION2:
while (len--) {
*buffer = (*buffer & 0x8000) | ((*buffer << 1) & 0x7FFE) | ((*buffer >> 14) & 0x0001);
++buffer;
}
break;
case DACInputMode_NICE:
while (len--) {
*buffer = Synth::clipSampleEx(IntSampleEx(*buffer) << 1);
++buffer;
}
break;
default:
break;
}
}
template <>
void RendererImpl::convertSamplesToOutput(IntSample *buffer, Bit32u len) {
if (synth.getDACInputMode() == DACInputMode_GENERATION1) {
while (len--) {
*buffer = IntSample((*buffer & 0x8000) | ((*buffer << 1) & 0x7FFE));
++buffer;
}
}
}
static inline float produceDistortedSample(float sample) {
// Here we roughly simulate the distortion caused by the DAC bit shift.
if (sample < -1.0f) {
return sample + 2.0f;
} else if (1.0f < sample) {
return sample - 2.0f;
}
return sample;
}
template <>
void RendererImpl::produceLA32Output(FloatSample *buffer, Bit32u len) {
switch (synth.getDACInputMode()) {
case DACInputMode_NICE:
// Note, we do not do any clamping for floats here to avoid introducing distortions.
// This means that the output signal may actually overshoot the unity when the volume is set too high.
// We leave it up to the consumer whether the output is to be clamped or properly normalised further on.
while (len--) {
*buffer *= 2.0f;
buffer++;
}
break;
case DACInputMode_GENERATION2:
while (len--) {
*buffer = produceDistortedSample(2.0f * *buffer);
buffer++;
}
break;
default:
break;
}
}
template <>
void RendererImpl::convertSamplesToOutput(FloatSample *buffer, Bit32u len) {
if (synth.getDACInputMode() == DACInputMode_GENERATION1) {
while (len--) {
*buffer = produceDistortedSample(2.0f * *buffer);
buffer++;
}
}
}
template
void RendererImpl::produceStreams(const DACOutputStreams &streams, Bit32u len) {
if (isActivated()) {
// Even if LA32 output isn't desired, we proceed anyway with temp buffers
Sample *nonReverbLeft = streams.nonReverbLeft == NULL ? tmpNonReverbLeft : streams.nonReverbLeft;
Sample *nonReverbRight = streams.nonReverbRight == NULL ? tmpNonReverbRight : streams.nonReverbRight;
Sample *reverbDryLeft = streams.reverbDryLeft == NULL ? tmpReverbDryLeft : streams.reverbDryLeft;
Sample *reverbDryRight = streams.reverbDryRight == NULL ? tmpReverbDryRight : streams.reverbDryRight;
Synth::muteSampleBuffer(nonReverbLeft, len);
Synth::muteSampleBuffer(nonReverbRight, len);
Synth::muteSampleBuffer(reverbDryLeft, len);
Synth::muteSampleBuffer(reverbDryRight, len);
for (unsigned int i = 0; i < synth.getPartialCount(); i++) {
if (getPartialManager().shouldReverb(i)) {
getPartialManager().produceOutput(i, reverbDryLeft, reverbDryRight, len);
} else {
getPartialManager().produceOutput(i, nonReverbLeft, nonReverbRight, len);
}
}
produceLA32Output(reverbDryLeft, len);
produceLA32Output(reverbDryRight, len);
if (synth.isReverbEnabled()) {
if (!getReverbModel().process(reverbDryLeft, reverbDryRight, streams.reverbWetLeft, streams.reverbWetRight, len)) {
printDebug("RendererImpl: Invalid call to BReverbModel::process()!\n");
}
if (streams.reverbWetLeft != NULL) convertSamplesToOutput(streams.reverbWetLeft, len);
if (streams.reverbWetRight != NULL) convertSamplesToOutput(streams.reverbWetRight, len);
} else {
Synth::muteSampleBuffer(streams.reverbWetLeft, len);
Synth::muteSampleBuffer(streams.reverbWetRight, len);
}
// Don't bother with conversion if the output is going to be unused
if (streams.nonReverbLeft != NULL) {
produceLA32Output(nonReverbLeft, len);
convertSamplesToOutput(nonReverbLeft, len);
}
if (streams.nonReverbRight != NULL) {
produceLA32Output(nonReverbRight, len);
convertSamplesToOutput(nonReverbRight, len);
}
if (streams.reverbDryLeft != NULL) convertSamplesToOutput(reverbDryLeft, len);
if (streams.reverbDryRight != NULL) convertSamplesToOutput(reverbDryRight, len);
} else {
muteStreams(streams, len);
}
getPartialManager().clearAlreadyOutputed();
incRenderedSampleCount(len);
}
void Synth::printPartialUsage(Bit32u sampleOffset) {
unsigned int partialUsage[9];
partialManager->getPerPartPartialUsage(partialUsage);
if (sampleOffset > 0) {
printDebug("[+%u] Partial Usage: 1:%02d 2:%02d 3:%02d 4:%02d 5:%02d 6:%02d 7:%02d 8:%02d R: %02d TOTAL: %02d", sampleOffset, partialUsage[0], partialUsage[1], partialUsage[2], partialUsage[3], partialUsage[4], partialUsage[5], partialUsage[6], partialUsage[7], partialUsage[8], getPartialCount() - partialManager->getFreePartialCount());
} else {
printDebug("Partial Usage: 1:%02d 2:%02d 3:%02d 4:%02d 5:%02d 6:%02d 7:%02d 8:%02d R: %02d TOTAL: %02d", partialUsage[0], partialUsage[1], partialUsage[2], partialUsage[3], partialUsage[4], partialUsage[5], partialUsage[6], partialUsage[7], partialUsage[8], getPartialCount() - partialManager->getFreePartialCount());
}
}
bool Synth::hasActivePartials() const {
if (!opened) {
return false;
}
for (unsigned int partialNum = 0; partialNum < getPartialCount(); partialNum++) {
if (partialManager->getPartial(partialNum)->isActive()) {
return true;
}
}
return false;
}
bool Synth::isActive() {
if (!opened) {
return false;
}
if (!midiQueue->isEmpty() || hasActivePartials()) {
return true;
}
if (isReverbEnabled() && reverbModel->isActive()) {
return true;
}
activated = false;
return false;
}
Bit32u Synth::getPartialCount() const {
return partialCount;
}
void Synth::getPartStates(bool *partStates) const {
if (!opened) {
memset(partStates, 0, 9 * sizeof(bool));
return;
}
for (int partNumber = 0; partNumber < 9; partNumber++) {
const Part *part = parts[partNumber];
partStates[partNumber] = part->getActiveNonReleasingPartialCount() > 0;
}
}
Bit32u Synth::getPartStates() const {
if (!opened) return 0;
bool partStates[9];
getPartStates(partStates);
Bit32u bitSet = 0;
for (int partNumber = 8; partNumber >= 0; partNumber--) {
bitSet = (bitSet << 1) | (partStates[partNumber] ? 1 : 0);
}
return bitSet;
}
void Synth::getPartialStates(PartialState *partialStates) const {
if (!opened) {
memset(partialStates, 0, partialCount * sizeof(PartialState));
return;
}
for (unsigned int partialNum = 0; partialNum < partialCount; partialNum++) {
partialStates[partialNum] = getPartialState(partialManager, partialNum);
}
}
void Synth::getPartialStates(Bit8u *partialStates) const {
if (!opened) {
memset(partialStates, 0, ((partialCount + 3) >> 2));
return;
}
for (unsigned int quartNum = 0; (4 * quartNum) < partialCount; quartNum++) {
Bit8u packedStates = 0;
for (unsigned int i = 0; i < 4; i++) {
unsigned int partialNum = (4 * quartNum) + i;
if (partialCount <= partialNum) break;
PartialState partialState = getPartialState(partialManager, partialNum);
packedStates |= (partialState & 3) << (2 * i);
}
partialStates[quartNum] = packedStates;
}
}
Bit32u Synth::getPlayingNotes(Bit8u partNumber, Bit8u *keys, Bit8u *velocities) const {
Bit32u playingNotes = 0;
if (opened && (partNumber < 9)) {
const Part *part = parts[partNumber];
const Poly *poly = part->getFirstActivePoly();
while (poly != NULL) {
keys[playingNotes] = Bit8u(poly->getKey());
velocities[playingNotes] = Bit8u(poly->getVelocity());
playingNotes++;
poly = poly->getNext();
}
}
return playingNotes;
}
const char *Synth::getPatchName(Bit8u partNumber) const {
return (!opened || partNumber > 8) ? NULL : parts[partNumber]->getCurrentInstr();
}
const Part *Synth::getPart(Bit8u partNum) const {
if (partNum > 8) {
return NULL;
}
return parts[partNum];
}
void MemoryRegion::read(unsigned int entry, unsigned int off, Bit8u *dst, unsigned int len) const {
off += entry * entrySize;
// This method should never be called with out-of-bounds parameters,
// or on an unsupported region - seeing any of this debug output indicates a bug in the emulator
if (off > entrySize * entries - 1) {
#if MT32EMU_MONITOR_SYSEX > 0
synth->printDebug("read[%d]: parameters start out of bounds: entry=%d, off=%d, len=%d", type, entry, off, len);
#endif
return;
}
if (off + len > entrySize * entries) {
#if MT32EMU_MONITOR_SYSEX > 0
synth->printDebug("read[%d]: parameters end out of bounds: entry=%d, off=%d, len=%d", type, entry, off, len);
#endif
len = entrySize * entries - off;
}
Bit8u *src = getRealMemory();
if (src == NULL) {
#if MT32EMU_MONITOR_SYSEX > 0
synth->printDebug("read[%d]: unreadable region: entry=%d, off=%d, len=%d", type, entry, off, len);
#endif
return;
}
memcpy(dst, src + off, len);
}
void MemoryRegion::write(unsigned int entry, unsigned int off, const Bit8u *src, unsigned int len, bool init) const {
unsigned int memOff = entry * entrySize + off;
// This method should never be called with out-of-bounds parameters,
// or on an unsupported region - seeing any of this debug output indicates a bug in the emulator
if (off > entrySize * entries - 1) {
#if MT32EMU_MONITOR_SYSEX > 0
synth->printDebug("write[%d]: parameters start out of bounds: entry=%d, off=%d, len=%d", type, entry, off, len);
#endif
return;
}
if (off + len > entrySize * entries) {
#if MT32EMU_MONITOR_SYSEX > 0
synth->printDebug("write[%d]: parameters end out of bounds: entry=%d, off=%d, len=%d", type, entry, off, len);
#endif
len = entrySize * entries - off;
}
Bit8u *dest = getRealMemory();
if (dest == NULL) {
#if MT32EMU_MONITOR_SYSEX > 0
synth->printDebug("write[%d]: unwritable region: entry=%d, off=%d, len=%d", type, entry, off, len);
#endif
return;
}
for (unsigned int i = 0; i < len; i++) {
Bit8u desiredValue = src[i];
Bit8u maxValue = getMaxValue(memOff);
// maxValue == 0 means write-protected unless called from initialisation code, in which case it really means the maximum value is 0.
if (maxValue != 0 || init) {
if (desiredValue > maxValue) {
#if MT32EMU_MONITOR_SYSEX > 0
synth->printDebug("write[%d]: Wanted 0x%02x at %d, but max 0x%02x", type, desiredValue, memOff, maxValue);
#endif
desiredValue = maxValue;
}
dest[memOff] = desiredValue;
} else if (desiredValue != 0) {
#if MT32EMU_MONITOR_SYSEX > 0
// Only output debug info if they wanted to write non-zero, since a lot of things cause this to spit out a lot of debug info otherwise.
synth->printDebug("write[%d]: Wanted 0x%02x at %d, but write-protected", type, desiredValue, memOff);
#endif
}
memOff++;
}
}
} // namespace MT32Emu