/* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009 Dean Beeler, Jerome Fisher
* Copyright (C) 2011-2016 Dean Beeler, Jerome Fisher, Sergey V. Mikayev
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*/
#ifndef MT32EMU_SYNTH_H
#define MT32EMU_SYNTH_H
#include
#include
#include
#include "globals.h"
#include "Types.h"
#include "Enumerations.h"
namespace MT32Emu {
class Analog;
class BReverbModel;
class MemoryRegion;
class MidiEventQueue;
class Part;
class Poly;
class Partial;
class PartialManager;
class Renderer;
class ROMImage;
class PatchTempMemoryRegion;
class RhythmTempMemoryRegion;
class TimbreTempMemoryRegion;
class PatchesMemoryRegion;
class TimbresMemoryRegion;
class SystemMemoryRegion;
class DisplayMemoryRegion;
class ResetMemoryRegion;
struct ControlROMFeatureSet;
struct ControlROMMap;
struct PCMWaveEntry;
struct MemParams;
const Bit8u SYSEX_MANUFACTURER_ROLAND = 0x41;
const Bit8u SYSEX_MDL_MT32 = 0x16;
const Bit8u SYSEX_MDL_D50 = 0x14;
const Bit8u SYSEX_CMD_RQ1 = 0x11; // Request data #1
const Bit8u SYSEX_CMD_DT1 = 0x12; // Data set 1
const Bit8u SYSEX_CMD_WSD = 0x40; // Want to send data
const Bit8u SYSEX_CMD_RQD = 0x41; // Request data
const Bit8u SYSEX_CMD_DAT = 0x42; // Data set
const Bit8u SYSEX_CMD_ACK = 0x43; // Acknowledge
const Bit8u SYSEX_CMD_EOD = 0x45; // End of data
const Bit8u SYSEX_CMD_ERR = 0x4E; // Communications error
const Bit8u SYSEX_CMD_RJC = 0x4F; // Rejection
const Bit32u CONTROL_ROM_SIZE = 64 * 1024;
// Set of multiplexed output streams appeared at the DAC entrance.
template
struct DACOutputStreams {
T *nonReverbLeft;
T *nonReverbRight;
T *reverbDryLeft;
T *reverbDryRight;
T *reverbWetLeft;
T *reverbWetRight;
};
// Class for the client to supply callbacks for reporting various errors and information
class MT32EMU_EXPORT ReportHandler {
public:
virtual ~ReportHandler() {}
// Callback for debug messages, in vprintf() format
virtual void printDebug(const char *fmt, va_list list);
// Callbacks for reporting errors
virtual void onErrorControlROM() {}
virtual void onErrorPCMROM() {}
// Callback for reporting about displaying a new custom message on LCD
virtual void showLCDMessage(const char *message);
// Callback for reporting actual processing of a MIDI message
virtual void onMIDIMessagePlayed() {}
// Callback for reporting an overflow of the input MIDI queue.
// Returns true if a recovery action was taken and yet another attempt to enqueue the MIDI event is desired.
virtual bool onMIDIQueueOverflow() { return false; }
// Callback invoked when a System Realtime MIDI message is detected at the input.
virtual void onMIDISystemRealtime(Bit8u /* systemRealtime */) {}
// Callbacks for reporting system events
virtual void onDeviceReset() {}
virtual void onDeviceReconfig() {}
// Callbacks for reporting changes of reverb settings
virtual void onNewReverbMode(Bit8u /* mode */) {}
virtual void onNewReverbTime(Bit8u /* time */) {}
virtual void onNewReverbLevel(Bit8u /* level */) {}
// Callbacks for reporting various information
virtual void onPolyStateChanged(Bit8u /* partNum */) {}
virtual void onProgramChanged(Bit8u /* partNum */, const char * /* soundGroupName */, const char * /* patchName */) {}
};
class Synth {
friend class DefaultMidiStreamParser;
friend class Part;
friend class Partial;
friend class PartialManager;
friend class Poly;
friend class Renderer;
friend class RhythmPart;
friend class SamplerateAdapter;
friend class SoxrAdapter;
friend class TVA;
friend class TVP;
private:
// **************************** Implementation fields **************************
PatchTempMemoryRegion *patchTempMemoryRegion;
RhythmTempMemoryRegion *rhythmTempMemoryRegion;
TimbreTempMemoryRegion *timbreTempMemoryRegion;
PatchesMemoryRegion *patchesMemoryRegion;
TimbresMemoryRegion *timbresMemoryRegion;
SystemMemoryRegion *systemMemoryRegion;
DisplayMemoryRegion *displayMemoryRegion;
ResetMemoryRegion *resetMemoryRegion;
Bit8u *paddedTimbreMaxTable;
PCMWaveEntry *pcmWaves; // Array
const ControlROMFeatureSet *controlROMFeatures;
const ControlROMMap *controlROMMap;
Bit8u controlROMData[CONTROL_ROM_SIZE];
Bit16s *pcmROMData;
size_t pcmROMSize; // This is in 16-bit samples, therefore half the number of bytes in the ROM
Bit8u soundGroupIx[128]; // For each standard timbre
const char (*soundGroupNames)[9]; // Array
Bit32u partialCount;
Bit8u chantable[16]; // NOTE: value above 8 means that the channel is not assigned
MidiEventQueue *midiQueue;
volatile Bit32u lastReceivedMIDIEventTimestamp;
volatile Bit32u renderedSampleCount;
MemParams &mt32ram, &mt32default;
BReverbModel *reverbModels[4];
BReverbModel *reverbModel;
bool reverbOverridden;
MIDIDelayMode midiDelayMode;
DACInputMode dacInputMode;
float outputGain;
float reverbOutputGain;
bool reversedStereoEnabled;
bool opened;
bool activated;
bool isDefaultReportHandler;
ReportHandler *reportHandler;
PartialManager *partialManager;
Part *parts[9];
// When a partial needs to be aborted to free it up for use by a new Poly,
// the controller will busy-loop waiting for the sound to finish.
// We emulate this by delaying new MIDI events processing until abortion finishes.
Poly *abortingPoly;
Analog *analog;
Renderer &renderer;
// Binary compatibility helper.
void *reserved;
// **************************** Implementation methods **************************
Bit32u addMIDIInterfaceDelay(Bit32u len, Bit32u timestamp);
bool isAbortingPoly() const { return abortingPoly != NULL; }
void readSysex(Bit8u channel, const Bit8u *sysex, Bit32u len) const;
void initMemoryRegions();
void deleteMemoryRegions();
MemoryRegion *findMemoryRegion(Bit32u addr);
void writeMemoryRegion(const MemoryRegion *region, Bit32u addr, Bit32u len, const Bit8u *data);
void readMemoryRegion(const MemoryRegion *region, Bit32u addr, Bit32u len, Bit8u *data);
bool loadControlROM(const ROMImage &controlROMImage);
bool loadPCMROM(const ROMImage &pcmROMImage);
bool initPCMList(Bit16u mapAddress, Bit16u count);
bool initTimbres(Bit16u mapAddress, Bit16u offset, Bit16u timbreCount, Bit16u startTimbre, bool compressed);
bool initCompressedTimbre(Bit16u drumNum, const Bit8u *mem, Bit32u memLen);
void initReverbModels(bool mt32CompatibleMode);
void initSoundGroups(char newSoundGroupNames[][9]);
void refreshSystemMasterTune();
void refreshSystemReverbParameters();
void refreshSystemReserveSettings();
void refreshSystemChanAssign(Bit8u firstPart, Bit8u lastPart);
void refreshSystemMasterVol();
void refreshSystem();
void reset();
void dispose();
void printPartialUsage(Bit32u sampleOffset = 0);
void newTimbreSet(Bit8u partNum, Bit8u timbreGroup, Bit8u timbreNumber, const char patchName[]);
void printDebug(const char *fmt, ...);
// partNum should be 0..7 for Part 1..8, or 8 for Rhythm
const Part *getPart(Bit8u partNum) const;
public:
static inline Bit16s clipSampleEx(Bit32s sampleEx) {
// Clamp values above 32767 to 32767, and values below -32768 to -32768
// FIXME: Do we really need this stuff? I think these branches are very well predicted. Instead, this introduces a chain.
// The version below is actually a bit faster on my system...
//return ((sampleEx + 0x8000) & ~0xFFFF) ? Bit16s((sampleEx >> 31) ^ 0x7FFF) : (Bit16s)sampleEx;
return ((-0x8000 <= sampleEx) && (sampleEx <= 0x7FFF)) ? Bit16s(sampleEx) : Bit16s((sampleEx >> 31) ^ 0x7FFF);
}
static inline float clipSampleEx(float sampleEx) {
return sampleEx;
}
template
static inline void muteSampleBuffer(S *buffer, Bit32u len) {
if (buffer == NULL) return;
memset(buffer, 0, len * sizeof(S));
}
static inline void muteSampleBuffer(float *buffer, Bit32u len) {
if (buffer == NULL) return;
// FIXME: Use memset() where compatibility is guaranteed (if this turns out to be a win)
while (len--) {
*(buffer++) = 0.0f;
}
}
static inline Bit16s convertSample(float sample) {
return Synth::clipSampleEx(Bit32s(sample * 16384.0f)); // This multiplier takes into account the DAC bit shift
}
static inline float convertSample(Bit16s sample) {
return float(sample) / 16384.0f; // This multiplier takes into account the DAC bit shift
}
// Returns library version as an integer in format: 0x00MMmmpp, where:
// MM - major version number
// mm - minor version number
// pp - patch number
MT32EMU_EXPORT static Bit32u getLibraryVersionInt();
// Returns library version as a C-string in format: "MAJOR.MINOR.PATCH"
MT32EMU_EXPORT static const char *getLibraryVersionString();
MT32EMU_EXPORT static Bit32u getShortMessageLength(Bit32u msg);
MT32EMU_EXPORT static Bit8u calcSysexChecksum(const Bit8u *data, const Bit32u len, const Bit8u initChecksum = 0);
// Returns output sample rate used in emulation of stereo analog circuitry of hardware units.
// See comment for AnalogOutputMode.
MT32EMU_EXPORT static Bit32u getStereoOutputSampleRate(AnalogOutputMode analogOutputMode);
// Optionally sets callbacks for reporting various errors, information and debug messages
MT32EMU_EXPORT explicit Synth(ReportHandler *useReportHandler = NULL);
MT32EMU_EXPORT ~Synth();
// Used to initialise the MT-32. Must be called before any other function.
// Returns true if initialization was sucessful, otherwise returns false.
// controlROMImage and pcmROMImage represent Control and PCM ROM images for use by synth.
// usePartialCount sets the maximum number of partials playing simultaneously for this session (optional).
// analogOutputMode sets the mode for emulation of analogue circuitry of the hardware units (optional).
MT32EMU_EXPORT bool open(const ROMImage &controlROMImage, const ROMImage &pcmROMImage, Bit32u usePartialCount = DEFAULT_MAX_PARTIALS, AnalogOutputMode analogOutputMode = AnalogOutputMode_COARSE);
// Overloaded method which opens the synth with default partial count.
MT32EMU_EXPORT bool open(const ROMImage &controlROMImage, const ROMImage &pcmROMImage, AnalogOutputMode analogOutputMode);
// Closes the MT-32 and deallocates any memory used by the synthesizer
MT32EMU_EXPORT void close();
// Returns true if the synth is in completely initialized state, otherwise returns false.
MT32EMU_EXPORT bool isOpen() const;
// All the enqueued events are processed by the synth immediately.
MT32EMU_EXPORT void flushMIDIQueue();
// Sets size of the internal MIDI event queue. The queue size is set to the minimum power of 2 that is greater or equal to the size specified.
// The queue is flushed before reallocation.
// Returns the actual queue size being used.
MT32EMU_EXPORT Bit32u setMIDIEventQueueSize(Bit32u);
// Enqueues a MIDI event for subsequent playback.
// The MIDI event will be processed not before the specified timestamp.
// The timestamp is measured as the global rendered sample count since the synth was created (at the native sample rate 32000 Hz).
// The minimum delay involves emulation of the delay introduced while the event is transferred via MIDI interface
// and emulation of the MCU busy-loop while it frees partials for use by a new Poly.
// Calls from multiple threads must be synchronised, although, no synchronisation is required with the rendering thread.
// The methods return false if the MIDI event queue is full and the message cannot be enqueued.
// Enqueues a single short MIDI message to play at specified time. The message must contain a status byte.
MT32EMU_EXPORT bool playMsg(Bit32u msg, Bit32u timestamp);
// Enqueues a single well formed System Exclusive MIDI message to play at specified time.
MT32EMU_EXPORT bool playSysex(const Bit8u *sysex, Bit32u len, Bit32u timestamp);
// Enqueues a single short MIDI message to be processed ASAP. The message must contain a status byte.
MT32EMU_EXPORT bool playMsg(Bit32u msg);
// Enqueues a single well formed System Exclusive MIDI message to be processed ASAP.
MT32EMU_EXPORT bool playSysex(const Bit8u *sysex, Bit32u len);
// WARNING:
// The methods below don't ensure minimum 1-sample delay between sequential MIDI events,
// and a sequence of NoteOn and immediately succeeding NoteOff messages is always silent.
// A thread that invokes these methods must be explicitly synchronised with the thread performing sample rendering.
// Sends a short MIDI message to the synth for immediate playback. The message must contain a status byte.
// See the WARNING above.
MT32EMU_EXPORT void playMsgNow(Bit32u msg);
// Sends unpacked short MIDI message to the synth for immediate playback. The message must contain a status byte.
// See the WARNING above.
MT32EMU_EXPORT void playMsgOnPart(Bit8u part, Bit8u code, Bit8u note, Bit8u velocity);
// Sends a single well formed System Exclusive MIDI message for immediate processing. The length is in bytes.
// See the WARNING above.
MT32EMU_EXPORT void playSysexNow(const Bit8u *sysex, Bit32u len);
// Sends inner body of a System Exclusive MIDI message for direct processing. The length is in bytes.
// See the WARNING above.
MT32EMU_EXPORT void playSysexWithoutFraming(const Bit8u *sysex, Bit32u len);
// Sends inner body of a System Exclusive MIDI message for direct processing. The length is in bytes.
// See the WARNING above.
MT32EMU_EXPORT void playSysexWithoutHeader(Bit8u device, Bit8u command, const Bit8u *sysex, Bit32u len);
// Sends inner body of a System Exclusive MIDI message for direct processing. The length is in bytes.
// See the WARNING above.
MT32EMU_EXPORT void writeSysex(Bit8u channel, const Bit8u *sysex, Bit32u len);
// Allows to disable wet reverb output altogether.
MT32EMU_EXPORT void setReverbEnabled(bool reverbEnabled);
// Returns whether wet reverb output is enabled.
MT32EMU_EXPORT bool isReverbEnabled() const;
// Sets override reverb mode. In this mode, emulation ignores sysexes (or the related part of them) which control the reverb parameters.
// This mode is in effect until it is turned off. When the synth is re-opened, the override mode is unchanged but the state
// of the reverb model is reset to default.
MT32EMU_EXPORT void setReverbOverridden(bool reverbOverridden);
// Returns whether reverb settings are overridden.
MT32EMU_EXPORT bool isReverbOverridden() const;
// Forces reverb model compatibility mode. By default, the compatibility mode corresponds to the used control ROM version.
// Invoking this method with the argument set to true forces emulation of old MT-32 reverb circuit.
// When the argument is false, emulation of the reverb circuit used in new generation of MT-32 compatible modules is enforced
// (these include CM-32L and LAPC-I).
MT32EMU_EXPORT void setReverbCompatibilityMode(bool mt32CompatibleMode);
// Returns whether reverb is in old MT-32 compatibility mode.
MT32EMU_EXPORT bool isMT32ReverbCompatibilityMode() const;
// Returns whether default reverb compatibility mode is the old MT-32 compatibility mode.
MT32EMU_EXPORT bool isDefaultReverbMT32Compatible() const;
// Sets new DAC input mode. See DACInputMode for details.
MT32EMU_EXPORT void setDACInputMode(DACInputMode mode);
// Returns current DAC input mode. See DACInputMode for details.
MT32EMU_EXPORT DACInputMode getDACInputMode() const;
// Sets new MIDI delay mode. See MIDIDelayMode for details.
MT32EMU_EXPORT void setMIDIDelayMode(MIDIDelayMode mode);
// Returns current MIDI delay mode. See MIDIDelayMode for details.
MT32EMU_EXPORT MIDIDelayMode getMIDIDelayMode() const;
// Sets output gain factor for synth output channels. Applied to all output samples and unrelated with the synth's Master volume,
// it rather corresponds to the gain of the output analog circuitry of the hardware units. However, together with setReverbOutputGain()
// it offers to the user a capability to control the gain of reverb and non-reverb output channels independently.
// Ignored in DACInputMode_PURE
MT32EMU_EXPORT void setOutputGain(float gain);
// Returns current output gain factor for synth output channels.
MT32EMU_EXPORT float getOutputGain() const;
// Sets output gain factor for the reverb wet output channels. It rather corresponds to the gain of the output
// analog circuitry of the hardware units. However, together with setOutputGain() it offers to the user a capability
// to control the gain of reverb and non-reverb output channels independently.
//
// Note: We're currently emulate CM-32L/CM-64 reverb quite accurately and the reverb output level closely
// corresponds to the level of digital capture. Although, according to the CM-64 PCB schematic,
// there is a difference in the reverb analogue circuit, and the resulting output gain is 0.68
// of that for LA32 analogue output. This factor is applied to the reverb output gain.
// Ignored in DACInputMode_PURE
MT32EMU_EXPORT void setReverbOutputGain(float gain);
// Returns current output gain factor for reverb wet output channels.
MT32EMU_EXPORT float getReverbOutputGain() const;
// Swaps left and right output channels.
MT32EMU_EXPORT void setReversedStereoEnabled(bool enabled);
// Returns whether left and right output channels are swapped.
MT32EMU_EXPORT bool isReversedStereoEnabled() const;
// Returns actual sample rate used in emulation of stereo analog circuitry of hardware units.
// See comment for render() below.
MT32EMU_EXPORT Bit32u getStereoOutputSampleRate() const;
// Renders samples to the specified output stream as if they were sampled at the analog stereo output.
// When AnalogOutputMode is set to ACCURATE (OVERSAMPLED), the output signal is upsampled to 48 (96) kHz in order
// to retain emulation accuracy in whole audible frequency spectra. Otherwise, native digital signal sample rate is retained.
// getStereoOutputSampleRate() can be used to query actual sample rate of the output signal.
// The length is in frames, not bytes (in 16-bit stereo, one frame is 4 bytes). Uses NATIVE byte ordering.
MT32EMU_EXPORT void render(Bit16s *stream, Bit32u len);
// Same as above but outputs to a float stereo stream.
MT32EMU_EXPORT void render(float *stream, Bit32u len);
// Renders samples to the specified output streams as if they appeared at the DAC entrance.
// No further processing performed in analog circuitry emulation is applied to the signal.
// NULL may be specified in place of any or all of the stream buffers to skip it.
// The length is in samples, not bytes. Uses NATIVE byte ordering.
MT32EMU_EXPORT void renderStreams(Bit16s *nonReverbLeft, Bit16s *nonReverbRight, Bit16s *reverbDryLeft, Bit16s *reverbDryRight, Bit16s *reverbWetLeft, Bit16s *reverbWetRight, Bit32u len);
void renderStreams(const DACOutputStreams &streams, Bit32u len) {
renderStreams(streams.nonReverbLeft, streams.nonReverbRight, streams.reverbDryLeft, streams.reverbDryRight, streams.reverbWetLeft, streams.reverbWetRight, len);
}
// Same as above but outputs to float streams.
MT32EMU_EXPORT void renderStreams(float *nonReverbLeft, float *nonReverbRight, float *reverbDryLeft, float *reverbDryRight, float *reverbWetLeft, float *reverbWetRight, Bit32u len);
void renderStreams(const DACOutputStreams &streams, Bit32u len) {
renderStreams(streams.nonReverbLeft, streams.nonReverbRight, streams.reverbDryLeft, streams.reverbDryRight, streams.reverbWetLeft, streams.reverbWetRight, len);
}
// Returns true when there is at least one active partial, otherwise false.
MT32EMU_EXPORT bool hasActivePartials() const;
// Returns true if the synth is active and subsequent calls to render() may result in non-trivial output (i.e. silence).
// The synth is considered active when either there are pending MIDI events in the queue, there is at least one active partial,
// or the reverb is (somewhat unreliably) detected as being active.
MT32EMU_EXPORT bool isActive();
// Returns the maximum number of partials playing simultaneously.
MT32EMU_EXPORT Bit32u getPartialCount() const;
// Fills in current states of all the parts into the array provided. The array must have at least 9 entries to fit values for all the parts.
// If the value returned for a part is true, there is at least one active non-releasing partial playing on this part.
// This info is useful in emulating behaviour of LCD display of the hardware units.
MT32EMU_EXPORT void getPartStates(bool *partStates) const;
// Returns current states of all the parts as a bit set. The least significant bit corresponds to the state of part 1,
// total of 9 bits hold the states of all the parts. If the returned bit for a part is set, there is at least one active
// non-releasing partial playing on this part. This info is useful in emulating behaviour of LCD display of the hardware units.
MT32EMU_EXPORT Bit32u getPartStates() const;
// Fills in current states of all the partials into the array provided. The array must be large enough to accommodate states of all the partials.
MT32EMU_EXPORT void getPartialStates(PartialState *partialStates) const;
// Fills in current states of all the partials into the array provided. Each byte in the array holds states of 4 partials
// starting from the least significant bits. The state of each partial is packed in a pair of bits.
// The array must be large enough to accommodate states of all the partials (see getPartialCount()).
MT32EMU_EXPORT void getPartialStates(Bit8u *partialStates) const;
// Fills in information about currently playing notes on the specified part into the arrays provided. The arrays must be large enough
// to accommodate data for all the playing notes. The maximum number of simultaneously playing notes cannot exceed the number of partials.
// Argument partNumber should be 0..7 for Part 1..8, or 8 for Rhythm.
// Returns the number of currently playing notes on the specified part.
MT32EMU_EXPORT Bit32u getPlayingNotes(Bit8u partNumber, Bit8u *keys, Bit8u *velocities) const;
// Returns name of the patch set on the specified part.
// Argument partNumber should be 0..7 for Part 1..8, or 8 for Rhythm.
MT32EMU_EXPORT const char *getPatchName(Bit8u partNumber) const;
// Stores internal state of emulated synth into an array provided (as it would be acquired from hardware).
MT32EMU_EXPORT void readMemory(Bit32u addr, Bit32u len, Bit8u *data);
}; // class Synth
} // namespace MT32Emu
#endif // #ifndef MT32EMU_SYNTH_H