/* ScummVM - Scumm Interpreter * Copyright (C) 2005 The ScummVM project * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $Header$ * */ #include "Gs2dScreen.h" #include #include #include #include #include #include #include "DmaPipe.h" #include "GsDefs.h" #include "graphics/surface.h" enum Buffers { SCREEN = 0, MOUSE, TEXT, PRINTF }; #define ANIM_STACK_SIZE (1024 * 32) #define DEFAULT_PAL_X 175 #define DEFAULT_PAL_Y 60 #define DEFAULT_NTSC_X 165 #define DEFAULT_NTSC_Y 45 #define ORG_X 256 #define ORG_Y 256 #define ORIGIN_X (ORG_X << 4) #define ORIGIN_Y (ORG_Y << 4) #define TEX_POW 10 #define SCALE(x) ((x) << 4) #define M_SIZE 128 #define M_POW 7 static volatile uint32 g_VblankCmd = 0, g_DmacCmd = 0; static int g_VblankSema, g_DmacSema, g_AnimSema; static bool g_RunAnim = false; static GsVertex kFullScreen[2]; static TexVertex kMouseTex[2] = { { SCALE(1), SCALE(1) }, { SCALE(M_SIZE), SCALE(M_SIZE) } }; static TexVertex kPrintTex[2] = { { SCALE(1), SCALE(1) }, { SCALE(320), SCALE(200) } }; void sioprintf(const char *zFormat, ...); void runAnimThread(Gs2dScreen *param); int vblankStartHandler(int cause) { // start of VBlank period if (g_VblankCmd) { // is there a new image waiting? GS_DISPFB1 = g_VblankCmd; // show it. g_VblankCmd = 0; iSignalSema(g_VblankSema); } return 0; } int dmacHandler(int channel) { if (g_DmacCmd && (channel == 2)) { // GS DMA transfer finished, g_VblankCmd = g_DmacCmd; // we want to show the image g_DmacCmd = 0; // when the next vblank occurs iSignalSema(g_DmacSema); } return 0; } int vblankEndHandler(int cause) { if (g_RunAnim) iSignalSema(g_AnimSema); return 0; } void createAnimThread(Gs2dScreen *screen); Gs2dScreen::Gs2dScreen(uint16 width, uint16 height, TVMode tvMode) { _systemQuit = false; ee_sema_t newSema; newSema.init_count = 1; newSema.max_count = 1; g_VblankSema = CreateSema(&newSema); g_DmacSema = CreateSema(&newSema); _screenSema = CreateSema(&newSema); newSema.init_count = 0; newSema.max_count = 255; g_AnimSema = CreateSema(&newSema); assert((g_VblankSema >= 0) && (g_DmacSema >= 0) && (_screenSema >= 0) && (g_AnimSema >= 0)); _vblankStartId = AddIntcHandler(INT_VBLANK_START, vblankStartHandler, 0); _vblankEndId = AddIntcHandler(INT_VBLANK_END, vblankEndHandler, 0); _dmacId = AddDmacHandler(2, dmacHandler, 0); _dmaPipe = new DmaPipe(0x2000); EnableIntc(INT_VBLANK_START); EnableIntc(INT_VBLANK_END); EnableDmac(2); _width = width; _height = height; _pitch = (width + 127) & ~127; _screenBuf = (uint8*)memalign(64, _width * _height); _overlayBuf = (uint16*)memalign(64, _width * _height * 2); _clut = (uint32*)memalign(64, 256 * 4); memset(_screenBuf, 0, _width * _height); memset(_clut, 0, 256 * sizeof(uint32)); _clut[1] = GS_RGBA(0xC0, 0xC0, 0xC0, 0); clearOverlay(); if (tvMode == TV_DONT_CARE) { if (PAL_NTSC_FLAG == 'E') _videoMode = TV_NTSC; else _videoMode = TV_PAL; } else _videoMode = tvMode; printf("Setting up %s mode\n", (_videoMode == TV_PAL) ? "PAL" : "NTSC"); // set screen size, 640x544 for pal, 640x448 for ntsc _tvWidth = 640; _tvHeight = ((_videoMode == TV_PAL) ? 544 : 448); // PAL => 512? kFullScreen[0].z = kFullScreen[1].z = 0; kFullScreen[0].x = ORIGIN_X; kFullScreen[0].y = ORIGIN_Y; kFullScreen[1].x = SCALE(_tvWidth) + ORIGIN_X; kFullScreen[1].y = SCALE(_tvHeight) + ORIGIN_Y; _blitCoords[0] = kFullScreen[0]; _blitCoords[1] = kFullScreen[1]; _texCoords[0].u = SCALE(1); _texCoords[0].v = SCALE(1); _texCoords[1].u = SCALE(_width); _texCoords[1].v = SCALE(_height); uint32 tvFrameSize = _tvWidth * _tvHeight * 4; // 32 bits per pixel // setup frame buffer pointers _frameBufPtr[0] = 0; _frameBufPtr[1] = tvFrameSize; _clutPtrs[SCREEN] = tvFrameSize * 2; _clutPtrs[MOUSE] = _clutPtrs[SCREEN] + 0x1000; // the cluts in PSMCT32 take up half a memory page each _clutPtrs[TEXT] = _clutPtrs[SCREEN] + 0x2000; _texPtrs[SCREEN] = _clutPtrs[SCREEN] + 0x3000; _texPtrs[TEXT] = 0; // these buffers are stored in the alpha gaps of the frame buffers _texPtrs[MOUSE] = 128 * 256 * 4; _texPtrs[PRINTF] = _texPtrs[MOUSE] + M_SIZE * M_SIZE * 4; _showOverlay = false; _showMouse = false; _mouseScaleX = (_tvWidth << 8) / _width; _mouseScaleY = (_tvHeight << 8) / _height; setMouseXy(_width / 2, _height / 2); _mTraCol = 255; _shakePos = 0; // setup hardware now. GS_CSR = CSR_RESET; // Reset GS asm ("sync.p"); GS_CSR = 0; GsPutIMR(0x7F00); uint16 dispPosX, dispPosY; if (_videoMode == TV_PAL) { SetGsCrt(GS_INTERLACED, 3, 0); dispPosX = DEFAULT_PAL_X; dispPosY = DEFAULT_PAL_Y; } else { SetGsCrt(GS_INTERLACED, 2, 0); dispPosX = DEFAULT_NTSC_X; dispPosY = DEFAULT_NTSC_Y; } asm("di"); GS_PMODE = GS_SET_PMODE(1, 0, 1, 1, 0, 255); GS_BGCOLOUR = GS_RGBA(0, 0, 0, 0); GS_DISPLAY1 = GS_SET_DISPLAY(_tvWidth, _tvHeight, dispPosX, dispPosY); asm("ei"); _curDrawBuf = 0; _dmaPipe->setOrigin(ORIGIN_X, ORIGIN_Y); _dmaPipe->setConfig(1, 0, 1); _dmaPipe->setScissorRect(0, 0, _tvWidth - 1, _tvHeight - 1); _dmaPipe->setDrawBuffer(_frameBufPtr[_curDrawBuf], _tvWidth, GS_PSMCT24, 0); _dmaPipe->flush(); _clutChanged = _screenChanged = _overlayChanged = true; clearPrintfOverlay(); updateScreen(); createAnimTextures(); // create anim thread ee_thread_t animThread, thisThread; ReferThreadStatus(GetThreadId(), &thisThread); _animStack = malloc(ANIM_STACK_SIZE); animThread.initial_priority = thisThread.current_priority - 3; animThread.stack = _animStack; animThread.stack_size = ANIM_STACK_SIZE; animThread.func = (void *)runAnimThread; asm("move %0, $gp\n": "=r"(animThread.gp_reg)); _animTid = CreateThread(&animThread); assert(_animTid >= 0); StartThread(_animTid, this); } void Gs2dScreen::quit(void) { _systemQuit = true; ee_thread_t statAnim; do { // wait until thread called ExitThread() SignalSema(g_AnimSema); ReferThreadStatus(_animTid, &statAnim); } while (statAnim.status != 0x10); DeleteThread(_animTid); free(_animStack); _dmaPipe->waitForDma(); // wait for dmac and vblank for the last time while (g_DmacCmd || g_VblankCmd); sioprintf("kill handlers"); DisableIntc(INT_VBLANK_START); DisableIntc(INT_VBLANK_END); DisableDmac(2); RemoveIntcHandler(INT_VBLANK_START, _vblankStartId); RemoveIntcHandler(INT_VBLANK_END, _vblankEndId); RemoveDmacHandler(2, _dmacId); DeleteSema(g_VblankSema); DeleteSema(g_DmacSema); DeleteSema(g_AnimSema); } void Gs2dScreen::createAnimTextures(void) { uint8 *buf = (uint8*)memalign(64, 16 * 64); memset(buf, 0, 16 * 64); uint32 vramDest = _texPtrs[TEXT]; for (int i = 0; i < 16; i++) { uint32 *destPos = (uint32*)buf; for (int ch = 15; ch >= 0; ch--) { uint32 *src = (uint32*)(_binaryData + ((_binaryPattern[i] >> ch) & 1) * 4 * 14); for (int line = 0; line < 14; line++) destPos[line << 4] = src[line]; destPos++; } if (!(i & 1)) _dmaPipe->uploadTex( vramDest, 128, 0, 0, GS_PSMT4HH, buf, 128, 16); else { _dmaPipe->uploadTex( vramDest, 128, 0, 0, GS_PSMT4HL, buf, 128, 16); vramDest += 128 * 16 * 4; } _dmaPipe->flush(); _dmaPipe->waitForDma(); } _dmaPipe->uploadTex(_clutPtrs[TEXT], 64, 0, 0, GS_PSMCT32, _binaryClut, 8, 2); _dmaPipe->flush(); free(buf); } void Gs2dScreen::newScreenSize(uint16 width, uint16 height) { if ((width == _width) && (height == _height)) return; WaitSema(g_DmacSema); WaitSema(g_VblankSema); _dmaPipe->flush(); _width = width; _height = height; _pitch = (width + 127) & ~127; // malloc new buffers free(_screenBuf); free(_overlayBuf); _screenBuf = (uint8*)memalign(64, _width * _height); _overlayBuf = (uint16*)memalign(64, _width * _height * 2); memset(_screenBuf, 0, _width * height); memset(_overlayBuf, 0, _width * height * 2); memset(_clut, 0, 256 * sizeof(uint32)); // clear video ram _dmaPipe->uploadTex(_clutPtrs[MOUSE], 64, 0, 0, GS_PSMCT32, _clut, 16, 16); _dmaPipe->uploadTex(_clutPtrs[SCREEN], 64, 0, 0, GS_PSMCT32, _clut, 16, 16); _dmaPipe->uploadTex(_texPtrs[SCREEN], _width, 0, 0, GS_PSMCT16, _overlayBuf, _width, _height); _dmaPipe->flush(); _dmaPipe->waitForDma(); _clutChanged = _screenChanged = _overlayChanged = false; _texCoords[1].u = SCALE(_width); _texCoords[1].v = SCALE(_height); _mouseScaleX = (_tvWidth << 8) / _width; _mouseScaleY = (_tvHeight << 8) / _height; setMouseXy(_width / 2, _height / 2); SignalSema(g_VblankSema); SignalSema(g_DmacSema); } void Gs2dScreen::copyScreenRect(const uint8 *buf, int pitch, int x, int y, int w, int h) { if (x < 0) { w += x; buf -= x; x = 0; } if (y < 0) { h += y; buf -= y * pitch; y = 0; } if (x + w > _width) w = (int)_width - x; if (y + h > _height) h = (int)_height - y; if ((w > 0) && (h > 0)) { WaitSema(g_DmacSema); uint8 *dest = _screenBuf + y * _width + x; if ((w == pitch) && (pitch == _width)) memcpy(dest, buf, w * h); else for (int cnt = 0; cnt < h; cnt++) { memcpy(dest, buf, w); buf += pitch; dest += _width; } _screenChanged = true; SignalSema(g_DmacSema); } } void Gs2dScreen::clearScreen(void) { WaitSema(g_DmacSema); memset(_screenBuf, 0, _width * _height); _screenChanged = true; SignalSema(g_DmacSema); } void Gs2dScreen::setPalette(const uint32 *pal, uint8 start, uint16 num) { assert(start + num <= 256); WaitSema(g_DmacSema); for (uint16 cnt = 0; cnt < num; cnt++) { uint16 dest = start + cnt; dest = (dest & 0xE7) | ((dest & 0x8) << 1) | ((dest & 0x10) >> 1); // rearrange like the GS expects it _clut[dest] = pal[cnt] & 0xFFFFFF; } _clutChanged = true; SignalSema(g_DmacSema); } void Gs2dScreen::grabPalette(uint32 *pal, uint8 start, uint16 num) { assert(start + num <= 256); for (uint16 cnt = 0; cnt < num; cnt++) { uint16 src = start + cnt; src = (src & 0xE7) | ((src & 0x8) << 1) | ((src & 0x10) >> 1); pal[cnt] = _clut[src]; } } void Gs2dScreen::grabScreen(Graphics::Surface *surf) { assert(surf); WaitSema(g_DmacSema); surf->create(_width, _height, 1); memcpy(surf->pixels, _screenBuf, _width * _height); SignalSema(g_DmacSema); } void Gs2dScreen::uploadToVram(void) { if (_clutChanged) { _clutChanged = false; uint32 tmp = _clut[_mTraCol]; _clut[_mTraCol] = GS_RGBA(0, 0, 0, 0x80); // this mouse color is transparent _dmaPipe->uploadTex(_clutPtrs[MOUSE], 64, 0, 0, GS_PSMCT32, _clut, 16, 16); _dmaPipe->flush(); _dmaPipe->waitForDma(); _clut[_mTraCol] = tmp; _dmaPipe->uploadTex(_clutPtrs[SCREEN], 64, 0, 0, GS_PSMCT32, _clut, 16, 16); } if (_showOverlay) { if (_overlayChanged) { _dmaPipe->uploadTex(_texPtrs[SCREEN], _width, 0, 0, GS_PSMCT16, _overlayBuf, _width, _height); _overlayChanged = false; } } else { if (_screenChanged) { _dmaPipe->uploadTex(_texPtrs[SCREEN], _pitch, 0, 0, GS_PSMT8, _screenBuf, _width, _height); _screenChanged = false; } } } extern "C" void _ps2sdk_alloc_lock(void); extern "C" void _ps2sdk_alloc_unlock(void); void Gs2dScreen::updateScreen(void) { WaitSema(_screenSema); uploadToVram(); if (!g_RunAnim) { _dmaPipe->flatRect(kFullScreen + 0, kFullScreen + 1, GS_RGBA(0, 0, 0, 0)); // clear screen if (_showOverlay) { _dmaPipe->setTex(_texPtrs[SCREEN], _width, TEX_POW, TEX_POW, GS_PSMCT16, 0, 0, 0, 0); _dmaPipe->textureRect(kFullScreen + 0, kFullScreen + 1, _texCoords + 0, _texCoords + 1); } else { _dmaPipe->setTex(_texPtrs[SCREEN], _pitch, TEX_POW, TEX_POW, GS_PSMT8, _clutPtrs[SCREEN], 0, 64, GS_PSMCT32); _dmaPipe->textureRect(_blitCoords + 0, _blitCoords + 1, _texCoords + 0, _texCoords + 1); } if (_showMouse) { GsVertex mouseCoords[2]; mouseCoords[0].x = (((_mouseX - _hotSpotX) * _mouseScaleX + 8) >> 4) + ORIGIN_X; mouseCoords[0].y = (((_mouseY - _hotSpotY) * _mouseScaleY + 8) >> 4) + ORIGIN_Y; mouseCoords[1].x = mouseCoords[0].x + (((M_SIZE * _mouseScaleX) + 8) >> 4); mouseCoords[1].y = mouseCoords[0].y + (((M_SIZE * _mouseScaleY) + 8) >> 4); mouseCoords[0].z = mouseCoords[1].z = 0; _dmaPipe->setTex(_texPtrs[MOUSE], M_SIZE, M_POW, M_POW, GS_PSMT8H, _clutPtrs[MOUSE], 0, 64, GS_PSMCT32); _dmaPipe->textureRect(mouseCoords + 0, mouseCoords + 1, kMouseTex + 0, kMouseTex + 1); } _dmaPipe->setTex(_texPtrs[PRINTF], 3 * 128, TEX_POW, TEX_POW, GS_PSMT8H, _clutPtrs[TEXT], 0, 64, GS_PSMCT32); _dmaPipe->textureRect(kFullScreen + 0, kFullScreen + 1, kPrintTex + 0, kPrintTex + 1); #if 0 _ps2sdk_alloc_lock(); uint32 heapTop = (uint32)ps2_sbrk(0); _ps2sdk_alloc_unlock(); if (heapTop != (uint32)-1) { float yPos = (((float)heapTop) / (32 * 1024 * 1024)) * _tvHeight; GsVertex bottom = { SCALE(_tvWidth - 40) + ORIGIN_X, SCALE(_tvHeight) + ORIGIN_Y, 0 }; GsVertex top = { SCALE(_tvWidth) + ORIGIN_X, 0, 0 }; top.y = SCALE((uint16)(_tvHeight - yPos)) + ORIGIN_Y; _dmaPipe->flatRect(&bottom, &top, GS_RGBA(0x80, 0, 0, 0x40)); } #endif WaitSema(g_DmacSema); // wait for dma transfer, if there's one running WaitSema(g_VblankSema); // wait if there's already an image waiting for vblank g_DmacCmd = GS_SET_DISPFB(_frameBufPtr[_curDrawBuf], _tvWidth, GS_PSMCT24); // put it here for dmac/vblank handler _dmaPipe->flush(); _curDrawBuf ^= 1; _dmaPipe->setDrawBuffer(_frameBufPtr[_curDrawBuf], _tvWidth, GS_PSMCT24, 0); } else _dmaPipe->flush(); SignalSema(_screenSema); } void Gs2dScreen::showOverlay(void) { _showOverlay = true; clearOverlay(); } void Gs2dScreen::hideOverlay(void) { _screenChanged = true; _showOverlay = false; } void Gs2dScreen::setShakePos(int shake) { _shakePos = (shake * _mouseScaleY) >> 8; _blitCoords[0].y = SCALE(_shakePos) + ORIGIN_Y; _blitCoords[1].y = SCALE(_tvHeight + _shakePos) + ORIGIN_Y; } void Gs2dScreen::copyPrintfOverlay(const uint8 *buf) { assert(!((uint32)buf & 63)); _dmaPipe->uploadTex(_texPtrs[PRINTF], 3 * 128, 0, 0, GS_PSMT8H, buf, 320, 200); _dmaPipe->flush(); _dmaPipe->waitForDma(); } void Gs2dScreen::clearPrintfOverlay(void) { uint8 *tmpBuf = (uint8*)memalign(64, 320 * 200); memset(tmpBuf, 4, 320 * 200); _dmaPipe->uploadTex(_texPtrs[PRINTF], 3 * 128, 0, 0, GS_PSMT8H, tmpBuf, 320, 200); _dmaPipe->flush(); _dmaPipe->waitForDma(); free(tmpBuf); } void Gs2dScreen::copyOverlayRect(const uint16 *buf, uint16 pitch, uint16 x, uint16 y, uint16 w, uint16 h) { WaitSema(g_DmacSema); _overlayChanged = true; uint16 *dest = _overlayBuf + y * _width + x; for (uint32 cnt = 0; cnt < h; cnt++) { memcpy(dest, buf, w * 2); dest += _width; buf += pitch; } SignalSema(g_DmacSema); } void Gs2dScreen::clearOverlay(void) { WaitSema(g_DmacSema); _overlayChanged = true; // first convert our clut to 16 bit RGBA for the overlay... uint16 palette[256]; for (uint32 cnt = 0; cnt < 256; cnt++) { uint32 rgba = _clut[(cnt & 0xE7) | ((cnt & 0x8) << 1) | ((cnt & 0x10) >> 1)]; palette[cnt] = ((rgba >> 3) & 0x1F) | (((rgba >> 11) & 0x1F) << 5) | (((rgba >> 19) & 0x1F) << 10); } // now copy the current screen over for (int cnt = 0; cnt < _width * _height; cnt++) _overlayBuf[cnt] = palette[_screenBuf[cnt]]; SignalSema(g_DmacSema); } void Gs2dScreen::grabOverlay(uint16 *buf, uint16 pitch) { uint16 *src = _overlayBuf; for (uint32 cnt = 0; cnt < _height; cnt++) { memcpy(buf, src, _width * 2); buf += pitch; src += _width; } } void Gs2dScreen::setMouseOverlay(const uint8 *buf, uint16 width, uint16 height, uint16 hotSpotX, uint16 hotSpotY, uint8 transpCol) { assert((width <= M_SIZE) && (height <= M_SIZE)); _hotSpotX = hotSpotX; _hotSpotY = hotSpotY; if (_mTraCol != transpCol) { _mTraCol = transpCol; _clutChanged = true; } uint8 *bufCopy = (uint8*)memalign(64, M_SIZE * M_SIZE); // make a copy to align to 64 bytes memset(bufCopy, _mTraCol, M_SIZE * M_SIZE); for (int cnt = 0; cnt < height; cnt++) memcpy(bufCopy + cnt * M_SIZE, buf + cnt * width, width); _dmaPipe->uploadTex( _texPtrs[MOUSE], M_SIZE, 0, 0, GS_PSMT8H, bufCopy, M_SIZE, M_SIZE); _dmaPipe->flush(); _dmaPipe->waitForDma(); // make sure all data has been transferred when we free bufCopy free(bufCopy); } void Gs2dScreen::showMouse(bool show) { _showMouse = show; } void Gs2dScreen::setMouseXy(int16 x, int16 y) { _mouseX = x; _mouseY = y; } uint8 Gs2dScreen::tvMode(void) { return _videoMode; } uint16 Gs2dScreen::getWidth(void) { return _width; } uint16 Gs2dScreen::getHeight(void) { return _height; } void Gs2dScreen::wantAnim(bool runIt) { g_RunAnim = runIt; } #define LINE_SPACE 20 #define SCRL_TIME 8 #define V 1000 #define Z_TRANSL 65 void Gs2dScreen::animThread(void) { // animate zeros and ones while game accesses memory card, etc. g_RunAnim = false; float yPos = 0.0; uint8 texSta = 0; float scrlSpeed = (_videoMode == TV_PAL) ? (_tvHeight / (SCRL_TIME * 50.0)) : (_tvHeight / (SCRL_TIME * 60.0)); uint8 texMax = (_tvHeight / LINE_SPACE) + (ORG_Y / LINE_SPACE); TexVertex texNodes[4] = { { SCALE(1), SCALE(1) }, { SCALE(1), SCALE(14) }, { SCALE(128), SCALE(1) }, { SCALE(128), SCALE(14) } }; float angleStep = ((2 * PI) / _tvHeight); while (!_systemQuit) { do { WaitSema(g_AnimSema); } while ((!_systemQuit) && (!g_RunAnim)); if (_systemQuit) break; if (PollSema(_screenSema) > 0) { // make sure no thread is currently drawing WaitSema(g_DmacSema); // dma transfers have to be finished WaitSema(g_VblankSema); // wait for image, if there is one... // redraw the engine's last frame _dmaPipe->flatRect(kFullScreen + 0, kFullScreen + 1, GS_RGBA(0, 0, 0, 0)); // clear screen if (_showOverlay) { _dmaPipe->setTex(_texPtrs[SCREEN], _width, TEX_POW, TEX_POW, GS_PSMCT16, 0, 0, 0, 0); _dmaPipe->textureRect(kFullScreen + 0, kFullScreen + 1, _texCoords + 0, _texCoords + 1); } else { _dmaPipe->setTex(_texPtrs[SCREEN], _pitch, TEX_POW, TEX_POW, GS_PSMT8, _clutPtrs[SCREEN], 0, 64, GS_PSMCT32); _dmaPipe->textureRect(_blitCoords + 0, _blitCoords + 1, _texCoords + 0, _texCoords + 1); } _dmaPipe->setTex(_texPtrs[PRINTF], 3 * 128, TEX_POW, TEX_POW, GS_PSMT8H, _clutPtrs[TEXT], 0, 64, GS_PSMCT32); _dmaPipe->textureRect(kFullScreen + 0, kFullScreen + 1, kPrintTex + 0, kPrintTex + 1); if (_showMouse) { GsVertex mouseCoords[2]; mouseCoords[0].x = (((_mouseX - _hotSpotX) * _mouseScaleX + 8) >> 4) + ORIGIN_X; mouseCoords[0].y = (((_mouseY - _hotSpotY) * _mouseScaleY + 8) >> 4) + ORIGIN_Y; mouseCoords[1].x = mouseCoords[0].x + (((M_SIZE * _mouseScaleX) + 8) >> 4); mouseCoords[1].y = mouseCoords[0].y + (((M_SIZE * _mouseScaleY) + 8) >> 4); mouseCoords[0].z = mouseCoords[1].z = 0; _dmaPipe->setTex(_texPtrs[MOUSE], M_SIZE, M_POW, M_POW, GS_PSMT8H, _clutPtrs[MOUSE], 0, 64, GS_PSMCT32); _dmaPipe->textureRect(mouseCoords + 0, mouseCoords + 1, kMouseTex + 0, kMouseTex + 1); } _dmaPipe->setAlphaBlend(SOURCE_COLOR, ZERO_COLOR, SOURCE_ALPHA, DEST_COLOR, 0); yPos -= scrlSpeed; if (yPos <= -LINE_SPACE) { yPos += LINE_SPACE; texSta++; } float drawY = yPos; for (int i = 0; i < texMax; i++) { uint8 texIdx = (texSta + i) & 0xF; float x[4] = { -64.0, -64.0, 64.0, 64.0 }; float y[4]; y[0] = y[2] = drawY - _tvHeight / 2 - LINE_SPACE / 2; y[1] = y[3] = y[0] + LINE_SPACE; float z[4]; GsVertex nodes[4]; float angle = PI / 2 + angleStep * drawY; float rotSin = sinf(angle); float rotCos = cosf(angle); for (int coord = 0; coord < 4; coord++) { z[coord] = rotCos * x[coord]; x[coord] = rotSin * x[coord]; nodes[coord].z = 0; nodes[coord].x = (uint16)(((V * x[coord]) / (z[coord] + V + Z_TRANSL)) * 16); nodes[coord].y = (uint16)(((V * y[coord]) / (z[coord] + V + Z_TRANSL)) * 16); nodes[coord].x += SCALE(_tvWidth - 80 + ORG_X); nodes[coord].y += SCALE(_tvHeight / 2 + ORG_Y); } uint32 texPtr = _texPtrs[TEXT] + 128 * 16 * 4 * (texIdx >> 1); if (texIdx & 1) _dmaPipe->setTex(texPtr, 128, 7, 4, GS_PSMT4HL, _clutPtrs[TEXT], 0, 64, GS_PSMCT32); else _dmaPipe->setTex(texPtr, 128, 7, 4, GS_PSMT4HH, _clutPtrs[TEXT], 0, 64, GS_PSMCT32); _dmaPipe->textureRect(nodes + 0, nodes + 1, nodes + 2, nodes + 3, texNodes + 0, texNodes + 1, texNodes + 2, texNodes + 3, GS_RGBA(0x80, 0x80, 0x80, 0x80)); drawY += LINE_SPACE; } g_DmacCmd = GS_SET_DISPFB(_frameBufPtr[_curDrawBuf], _tvWidth, GS_PSMCT24); // put it here for dmac/vblank handler _dmaPipe->flush(); _curDrawBuf ^= 1; _dmaPipe->setDrawBuffer(_frameBufPtr[_curDrawBuf], _tvWidth, GS_PSMCT24, 0); _dmaPipe->setAlphaBlend(DEST_COLOR, ZERO_COLOR, SOURCE_ALPHA, SOURCE_COLOR, 0); SignalSema(_screenSema); } } ExitThread(); } void runAnimThread(Gs2dScreen *param) { param->animThread(); } // data for the animated zeros and ones... const uint8 Gs2dScreen::_binaryData[4 * 14 * 2] = { // figure zero 0x00, 0x00, 0x00, 0x00, 0x11, 0x11, 0x11, 0x11, 0x00, 0x22, 0x22, 0x00, 0x31, 0x13, 0x31, 0x13, 0x20, 0x02, 0x22, 0x02, 0x31, 0x13, 0x33, 0x13, 0x20, 0x02, 0x20, 0x02, 0x31, 0x33, 0x31, 0x13, 0x20, 0x22, 0x20, 0x02, 0x31, 0x13, 0x31, 0x13, 0x00, 0x22, 0x22, 0x00, 0x11, 0x11, 0x11, 0x11, 0x00, 0x00, 0x00, 0x00, 0x11, 0x11, 0x11, 0x11, // figure one 0x00, 0x00, 0x00, 0x00, 0x11, 0x11, 0x11, 0x11, 0x00, 0x20, 0x02, 0x00, 0x11, 0x33, 0x13, 0x11, 0x22, 0x22, 0x02, 0x00, 0x11, 0x31, 0x13, 0x11, 0x00, 0x20, 0x02, 0x00, 0x11, 0x31, 0x13, 0x11, 0x00, 0x20, 0x02, 0x00, 0x11, 0x31, 0x13, 0x11, 0x00, 0x20, 0x02, 0x00, 0x11, 0x11, 0x11, 0x11, 0x00, 0x00, 0x00, 0x00, 0x11, 0x11, 0x11, 0x11 }; const uint16 Gs2dScreen::_binaryPattern[16] = { 0xD992, 0x344B, 0xA592, 0x110D, 0x9234, 0x2326, 0x5199, 0xC8A6, 0x4D29, 0x18B0, 0xA5AA, 0x2949, 0x6DB3, 0xB2AA, 0x64A4, 0x3329 }; const uint32 Gs2dScreen::_binaryClut[16] __attribute__((aligned(64))) = { GS_RGBA( 0, 0, 0, 0x40), GS_RGBA( 50, 50, 50, 0x40), GS_RGBA( 204, 204, 0xFF, 0x40), GS_RGBA( 140, 140, 0xFF, 0x40), GS_RGBA( 0, 0, 0, 0x80), // scrPrintf: transparent GS_RGBA( 0, 0, 0, 0x20), // scrPrintf: semitransparent GS_RGBA(0xC0, 0xC0, 0xC0, 0), // scrPrintf: red GS_RGBA(0x16, 0x16, 0xF0, 0), // scrPrintf: blue GS_RGBA(0xFF, 0xFF, 0xFF, 0x80), GS_RGBA(0xFF, 0xFF, 0xFF, 0x80), // unused GS_RGBA(0xFF, 0xFF, 0xFF, 0x80), GS_RGBA(0xFF, 0xFF, 0xFF, 0x80), GS_RGBA(0xFF, 0xFF, 0xFF, 0x80), GS_RGBA(0xFF, 0xFF, 0xFF, 0x80), GS_RGBA(0xFF, 0xFF, 0xFF, 0x80), GS_RGBA(0xFF, 0xFF, 0xFF, 0x80) };