/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef COMMON_ARRAY_H #define COMMON_ARRAY_H #include "common/scummsys.h" #include "common/algorithm.h" #include "common/textconsole.h" // For error() namespace Common { /** * This class implements a dynamically sized container, which * can be accessed similar to a regular C++ array. Accessing * elements is performed in constant time (like with plain arrays). * In addition, one can append, insert and remove entries (this * is the 'dynamic' part). Doing that in general takes time * proportional to the number of elements in the array. * * The container class closest to this in the C++ standard library is * std::vector. However, there are some differences. The most important one is * that std::vector has a far more sophisticated (and complicated) memory * management scheme. There, only elements that 'live' are actually constructed * (i.e., have their constructor called), and objects that are removed are * immediately destructed (have their destructor called). * With Array, this is not the case; instead, it simply uses new[] and * delete[] to allocate whole blocks of objects, possibly more than are * currently 'alive'. This simplifies memory management, but may have * undesirable side effects when one wants to use an Array of complex * data types. * * @todo Improve the storage management of this class. * In particular, don't use new[] and delete[], but rather * construct/destruct objects manually. This way, we can * ensure that storage which is not currently used does not * correspond to a live active object. * (This is only of interest for array of non-POD objects). */ template class Array { protected: uint _capacity; uint _size; T *_storage; public: typedef T *iterator; typedef const T *const_iterator; typedef T value_type; public: Array() : _capacity(0), _size(0), _storage(0) {} Array(const Array &array) : _capacity(array._size), _size(array._size), _storage(0) { if (array._storage) { allocCapacity(_size); copy(array._storage, array._storage + _size, _storage); } } /** * Construct an array by copying data from a regular array. */ template Array(const T2 *data, int n) { _size = n; allocCapacity(n); copy(data, data + _size, _storage); } ~Array() { delete[] _storage; _storage = 0; _capacity = _size = 0; } /** Appends element to the end of the array. */ void push_back(const T &element) { if (_size + 1 <= _capacity) _storage[_size++] = element; else insert_aux(end(), &element, &element + 1); } void push_back(const Array &array) { if (_size + array.size() <= _capacity) { copy(array.begin(), array.end(), end()); _size += array.size(); } else insert_aux(end(), array.begin(), array.end()); } /** Removes the last element of the array. */ void pop_back() { assert(_size > 0); _size--; } /** Returns a reference to the first element of the array. */ T &front() { assert(_size > 0); return _storage[0]; } /** Returns a reference to the first element of the array. */ const T &front() const { assert(_size > 0); return _storage[0]; } /** Returns a reference to the last element of the array. */ T &back() { assert(_size > 0); return _storage[_size-1]; } /** Returns a reference to the last element of the array. */ const T &back() const { assert(_size > 0); return _storage[_size-1]; } void insert_at(int idx, const T &element) { assert(idx >= 0 && (uint)idx <= _size); insert_aux(_storage + idx, &element, &element + 1); } void insert_at(int idx, const Array &array) { assert(idx >= 0 && (uint)idx <= _size); insert_aux(_storage + idx, array.begin(), array.end()); } T remove_at(int idx) { assert(idx >= 0 && (uint)idx < _size); T tmp = _storage[idx]; copy(_storage + idx + 1, _storage + _size, _storage + idx); _size--; return tmp; } // TODO: insert, remove, ... T& operator[](int idx) { assert(idx >= 0 && (uint)idx < _size); return _storage[idx]; } const T& operator[](int idx) const { assert(idx >= 0 && (uint)idx < _size); return _storage[idx]; } Array& operator=(const Array &array) { if (this == &array) return *this; delete[] _storage; _size = array._size; allocCapacity(_size); copy(array._storage, array._storage + _size, _storage); return *this; } uint size() const { return _size; } void clear() { delete[] _storage; _storage = 0; _size = 0; _capacity = 0; } bool empty() const { return (_size == 0); } bool operator==(const Array &other) const { if (this == &other) return true; if (_size != other._size) return false; for (uint i = 0; i < _size; ++i) { if (_storage[i] != other._storage[i]) return false; } return true; } bool operator!=(const Array &other) const { return !(*this == other); } iterator begin() { return _storage; } iterator end() { return _storage + _size; } const_iterator begin() const { return _storage; } const_iterator end() const { return _storage + _size; } void reserve(uint newCapacity) { if (newCapacity <= _capacity) return; T *oldStorage = _storage; allocCapacity(newCapacity); if (oldStorage) { // Copy old data copy(oldStorage, oldStorage + _size, _storage); delete[] oldStorage; } } void resize(uint newSize) { reserve(newSize); for (uint i = _size; i < newSize; ++i) _storage[i] = T(); _size = newSize; } void assign(const_iterator first, const_iterator last) { resize(distance(first, last)); // FIXME: ineffective? T *dst = _storage; while (first != last) *dst++ = *first++; } protected: static uint roundUpCapacity(uint capacity) { // Round up capacity to the next power of 2; // we use a minimal capacity of 8. uint capa = 8; while (capa < capacity) capa <<= 1; return capa; } void allocCapacity(uint capacity) { _capacity = capacity; if (capacity) { _storage = new T[capacity]; if (!_storage) ::error("Common::Array: failure to allocate %u bytes", capacity * (uint)sizeof(T)); } else { _storage = 0; } } /** * Insert a range of elements coming from this or another array. * Unlike std::vector::insert, this method does not accept * arbitrary iterators, mainly because our iterator system is * seriously limited and does not distinguish between input iterators, * output iterators, forward iterators or random access iterators. * * So, we simply restrict to Array iterators. Extending this to arbitrary * random access iterators would be trivial. * * Moreover, this method does not handle all cases of inserting a subrange * of an array into itself; this is why it is private for now. */ iterator insert_aux(iterator pos, const_iterator first, const_iterator last) { assert(_storage <= pos && pos <= _storage + _size); assert(first <= last); const uint n = last - first; if (n) { const uint idx = pos - _storage; T *oldStorage = _storage; if (_size + n > _capacity || (_storage <= first && first <= _storage + _size) ) { // If there is not enough space, allocate more and // copy old elements over. // Likewise, if this is a self-insert, we allocate new // storage to avoid conflicts. This is not the most efficient // way to ensure that, but probably the simplest on. allocCapacity(roundUpCapacity(_size + n)); copy(oldStorage, oldStorage + idx, _storage); pos = _storage + idx; } // Make room for the new elements by shifting back // existing ones. copy_backward(oldStorage + idx, oldStorage + _size, _storage + _size + n); // Insert the new elements. copy(first, last, pos); // Finally, update the internal state if (_storage != oldStorage) { delete[] oldStorage; } _size += n; } return pos; } }; } // End of namespace Common #endif