/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ #ifndef COMMON_ENDIAN_H #define COMMON_ENDIAN_H #include "common/scummsys.h" // // Endian conversion functions, macros etc., follow from here! // /** * Swap the bytes in a 32 bit word in order to convert LE encoded data to BE * and vice versa. */ FORCEINLINE uint32 SWAP_BYTES_32(uint32 a) { return ((a >> 24) & 0x000000FF) | ((a >> 8) & 0x0000FF00) | ((a << 8) & 0x00FF0000) | ((a << 24) & 0xFF000000); } /** * Swap the bytes in a 16 bit word in order to convert LE encoded data to BE * and vice versa. */ FORCEINLINE uint16 SWAP_BYTES_16(uint16 a) { return ((a >> 8) & 0x00FF) + ((a << 8) & 0xFF00); } /** * A wrapper macro used around four character constants, like 'DATA', to * ensure portability. Typical usage: MKID_BE('DATA'). * * Why is this necessary? The C/C++ standard does not define the endianess to * be used for character constants. Hence if one uses multi-byte character * constants, a potential portability problem opens up. * * Fortunately, a semi-standard has been established: On almost all systems * and compilers, multi-byte character constants are encoded using the big * endian convention (probably in analogy to the encoding of string constants). * Still some systems differ. This is why we provide the MKID_BE macro. If * you wrap your four character constants with it, the result will always be * BE encoded, even on systems which differ from the default BE encoding. * * For the latter systems we provide the INVERSE_MKID override. */ #if defined(INVERSE_MKID) #define MKID_BE(a) ((uint32) \ (((a) >> 24) & 0x000000FF) | \ (((a) >> 8) & 0x0000FF00) | \ (((a) << 8) & 0x00FF0000) | \ (((a) << 24) & 0xFF000000)) #else # define MKID_BE(a) ((uint32)(a)) #endif #if defined(SCUMM_LITTLE_ENDIAN) #define READ_UINT16(a) READ_LE_UINT16(a) #define READ_UINT32(a) READ_LE_UINT32(a) #define WRITE_UINT16(a, v) WRITE_LE_UINT16(a, v) #define WRITE_UINT32(a, v) WRITE_LE_UINT32(a, v) #define FROM_LE_32(a) ((uint32)(a)) #define FROM_LE_16(a) ((uint16)(a)) #define FROM_BE_32(a) SWAP_BYTES_32(a) #define FROM_BE_16(a) SWAP_BYTES_16(a) #define TO_LE_32(a) ((uint32)(a)) #define TO_LE_16(a) ((uint16)(a)) #define TO_BE_32(a) SWAP_BYTES_32(a) #define TO_BE_16(a) SWAP_BYTES_16(a) #elif defined(SCUMM_BIG_ENDIAN) #define MKID(a) ((uint32)(a)) #define MKID_BE(a) ((uint32)(a)) #define READ_UINT16(a) READ_BE_UINT16(a) #define READ_UINT32(a) READ_BE_UINT32(a) #define WRITE_UINT16(a, v) WRITE_BE_UINT16(a, v) #define WRITE_UINT32(a, v) WRITE_BE_UINT32(a, v) #define FROM_LE_32(a) SWAP_BYTES_32(a) #define FROM_LE_16(a) SWAP_BYTES_16(a) #define FROM_BE_32(a) ((uint32)(a)) #define FROM_BE_16(a) ((uint16)(a)) #define TO_LE_32(a) SWAP_BYTES_32(a) #define TO_LE_16(a) SWAP_BYTES_16(a) #define TO_BE_32(a) ((uint32)(a)) #define TO_BE_16(a) ((uint16)(a)) #else #error No endianness defined #endif #if defined(SCUMM_NEED_ALIGNMENT) || !defined(SCUMM_LITTLE_ENDIAN) FORCEINLINE uint16 READ_LE_UINT16(const void *ptr) { const byte *b = (const byte *)ptr; return (b[1] << 8) + b[0]; } FORCEINLINE uint32 READ_LE_UINT32(const void *ptr) { const byte *b = (const byte *)ptr; return (b[3] << 24) + (b[2] << 16) + (b[1] << 8) + (b[0]); } FORCEINLINE void WRITE_LE_UINT16(void *ptr, uint16 value) { byte *b = (byte *)ptr; b[0] = (byte)(value >> 0); b[1] = (byte)(value >> 8); } FORCEINLINE void WRITE_LE_UINT32(void *ptr, uint32 value) { byte *b = (byte *)ptr; b[0] = (byte)(value >> 0); b[1] = (byte)(value >> 8); b[2] = (byte)(value >> 16); b[3] = (byte)(value >> 24); } #else FORCEINLINE uint16 READ_LE_UINT16(const void *ptr) { return *(const uint16 *)(ptr); } FORCEINLINE uint32 READ_LE_UINT32(const void *ptr) { return *(const uint32 *)(ptr); } FORCEINLINE void WRITE_LE_UINT16(void *ptr, uint16 value) { *(uint16 *)(ptr) = value; } FORCEINLINE void WRITE_LE_UINT32(void *ptr, uint32 value) { *(uint32 *)(ptr) = value; } #endif #if defined(SCUMM_NEED_ALIGNMENT) || !defined(SCUMM_BIG_ENDIAN) FORCEINLINE uint16 READ_BE_UINT16(const void *ptr) { const byte *b = (const byte *)ptr; return (b[0] << 8) + b[1]; } FORCEINLINE uint32 READ_BE_UINT32(const void *ptr) { const byte *b = (const byte*)ptr; return (b[0] << 24) + (b[1] << 16) + (b[2] << 8) + (b[3]); } FORCEINLINE void WRITE_BE_UINT16(void *ptr, uint16 value) { byte *b = (byte *)ptr; b[0] = (byte)(value >> 8); b[1] = (byte)(value >> 0); } FORCEINLINE void WRITE_BE_UINT32(void *ptr, uint32 value) { byte *b = (byte *)ptr; b[0] = (byte)(value >> 24); b[1] = (byte)(value >> 16); b[2] = (byte)(value >> 8); b[3] = (byte)(value >> 0); } #else FORCEINLINE uint16 READ_BE_UINT16(const void *ptr) { return *(const uint16 *)(ptr); } FORCEINLINE uint32 READ_BE_UINT32(const void *ptr) { return *(const uint32 *)(ptr); } FORCEINLINE void WRITE_BE_UINT16(void *ptr, uint16 value) { *(uint16 *)(ptr) = value; } FORCEINLINE void WRITE_BE_UINT32(void *ptr, uint32 value) { *(uint32 *)(ptr) = value; } #endif FORCEINLINE uint32 READ_LE_UINT24(const void *ptr) { const byte *b = (const byte *)ptr; return (b[2] << 16) + (b[1] << 8) + (b[0]); } FORCEINLINE uint32 READ_BE_UINT24(const void *ptr) { const byte *b = (const byte*)ptr; return (b[0] << 16) + (b[1] << 8) + (b[2]); } #endif