/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #ifndef COMMON_ENDIAN_H #define COMMON_ENDIAN_H #include "common/scummsys.h" /** * \file endian.h * Endian conversion and byteswap conversion functions or macros * * SWAP_BYTES_??(a) - inverse byte order * SWAP_CONSTANT_??(a) - inverse byte order, implemented as macro. * Use with compiletime-constants only, the result will be a compiletime-constant aswell. * Unlike most other functions these can be used for eg. switch-case labels * * READ_UINT??(a) - read native value from pointer a * READ_??_UINT??(a) - read LE/BE value from pointer a and convert it to native * WRITE_??_UINT??(a, v) - write native value v to pointer a with LE/BE encoding * TO_??_??(a) - convert native value v to LE/BE * FROM_??_??(a) - convert LE/BE value v to native * CONSTANT_??_??(a) - convert LE/BE value v to native, implemented as macro. * Use with compiletime-constants only, the result will be a compiletime-constant aswell. * Unlike most other functions these can be used for eg. switch-case labels */ // Sanity check #if !defined(SCUMM_LITTLE_ENDIAN) && !defined(SCUMM_BIG_ENDIAN) # error No endianness defined #endif #define SWAP_CONSTANT_64(a) \ ((uint64)((((a) >> 56) & 0x000000FF) | \ (((a) >> 40) & 0x0000FF00) | \ (((a) >> 24) & 0x00FF0000) | \ (((a) >> 8) & 0xFF000000) | \ (((a) & 0xFF000000) << 8) | \ (((a) & 0x00FF0000) << 24) | \ (((a) & 0x0000FF00) << 40) | \ (((a) & 0x000000FF) << 56) )) #define SWAP_CONSTANT_32(a) \ ((uint32)((((a) >> 24) & 0x00FF) | \ (((a) >> 8) & 0xFF00) | \ (((a) & 0xFF00) << 8) | \ (((a) & 0x00FF) << 24) )) #define SWAP_CONSTANT_16(a) \ ((uint16)((((a) >> 8) & 0x00FF) | \ (((a) << 8) & 0xFF00) )) /** * Swap the bytes in a 64 bit word in order to convert LE encoded data to BE * and vice versa. */ // machine/compiler-specific variants come first, fallback last // Test for GCC and if the target has the MIPS rel.2 instructions (we know the psp does) // // TODO: Fix this #if statement. It isn't changed from 32 bit. Is there a 64 bit swap instruction? #if defined(__GNUC__) && (defined(__psp__) || defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS64R2)) FORCEINLINE uint32 SWAP_BYTES_32(const uint32 a) { if (__builtin_constant_p(a)) { return SWAP_CONSTANT_32(a); } else { uint32 result; # if defined(__psp__) // use special allegrex instruction __asm__ ("wsbw %0,%1" : "=r" (result) : "r" (a)); # else __asm__ ("wsbh %0,%1\n" "rotr %0,%0,16" : "=r" (result) : "r" (a)); # endif return result; } } // Test for GCC >= 4.3.0 as this version added the bswap builtin #elif GCC_ATLEAST(4, 3) FORCEINLINE uint64 SWAP_BYTES_64(uint64 a) { return __builtin_bswap64(a); } #elif defined(_MSC_VER) FORCEINLINE uint64 SWAP_BYTES_64(uint64 a) { return _byteswap_uint64(a); } // generic fallback #else inline uint64 SWAP_BYTES_64(uint64 a) { uint32 low = (uint32)a, high = (uint32)(a >> 32); uint16 lowLow = (uint16)low, lowHigh = (uint16)(low >> 16), highLow = (uint16)high, highHigh = (uint16)(high >> 16); return ((uint64)(((uint32)(uint16)((lowLow >> 8) | (lowLow << 8)) << 16) | (uint16)((lowHigh >> 8) | (lowHigh << 8))) << 32) | (((uint32)(uint16)((highLow >> 8) | (highLow << 8)) << 16) | (uint16)((highHigh >> 8) | (highHigh << 8))) } #endif /** * Swap the bytes in a 32 bit word in order to convert LE encoded data to BE * and vice versa. */ // machine/compiler-specific variants come first, fallback last // Test for GCC and if the target has the MIPS rel.2 instructions (we know the psp does) #if defined(__GNUC__) && (defined(__psp__) || defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS64R2)) FORCEINLINE uint32 SWAP_BYTES_32(const uint32 a) { if (__builtin_constant_p(a)) { return SWAP_CONSTANT_32(a); } else { uint32 result; # if defined(__psp__) // use special allegrex instruction __asm__ ("wsbw %0,%1" : "=r" (result) : "r" (a)); # else __asm__ ("wsbh %0,%1\n" "rotr %0,%0,16" : "=r" (result) : "r" (a)); # endif return result; } } // Test for GCC >= 4.3.0 as this version added the bswap builtin #elif GCC_ATLEAST(4, 3) FORCEINLINE uint32 SWAP_BYTES_32(uint32 a) { return __builtin_bswap32(a); } #elif defined(_MSC_VER) FORCEINLINE uint32 SWAP_BYTES_32(uint32 a) { return _byteswap_ulong(a); } // generic fallback #else inline uint32 SWAP_BYTES_32(uint32 a) { const uint16 low = (uint16)a, high = (uint16)(a >> 16); return ((uint32)(uint16)((low >> 8) | (low << 8)) << 16) | (uint16)((high >> 8) | (high << 8)); } #endif /** * Swap the bytes in a 16 bit word in order to convert LE encoded data to BE * and vice versa. */ // compilerspecific variants come first, fallback last // Test for GCC and if the target has the MIPS rel.2 instructions (we know the psp does) #if defined(__GNUC__) && (defined(__psp__) || defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS64R2)) FORCEINLINE uint16 SWAP_BYTES_16(const uint16 a) { if (__builtin_constant_p(a)) { return SWAP_CONSTANT_16(a); } else { uint16 result; __asm__ ("wsbh %0,%1" : "=r" (result) : "r" (a)); return result; } } #else inline uint16 SWAP_BYTES_16(const uint16 a) { return (a >> 8) | (a << 8); } #endif /** * A wrapper macro used around four character constants, like 'DATA', to * ensure portability. Typical usage: MKTAG('D','A','T','A'). * * Why is this necessary? The C/C++ standard does not define the endianess to * be used for character constants. Hence if one uses multi-byte character * constants, a potential portability problem opens up. */ #define MKTAG(a0,a1,a2,a3) ((uint32)((a3) | ((a2) << 8) | ((a1) << 16) | ((a0) << 24))) /** * A wrapper macro used around two character constants, like 'wb', to * ensure portability. Typical usage: MKTAG16('w','b'). */ #define MKTAG16(a0,a1) ((uint16)((a1) | ((a0) << 8))) // Functions for reading/writing native integers. // They also transparently handle the need for alignment. // Test for GCC >= 4.0. These implementations will automatically use // CPU-specific instructions for unaligned data when they are available (eg. // MIPS). See also this email thread on scummvm-devel for details: // // // Moreover, we activate this code for GCC >= 3.3 but *only* if unaligned access // is allowed. #if GCC_ATLEAST(4, 0) || (GCC_ATLEAST(3, 3) && !defined(SCUMM_NEED_ALIGNMENT)) FORCEINLINE uint16 READ_UINT16(const void *ptr) { struct Unaligned16 { uint16 val; } __attribute__ ((__packed__, __may_alias__)); return ((const Unaligned16 *)ptr)->val; } FORCEINLINE uint32 READ_UINT32(const void *ptr) { struct Unaligned32 { uint32 val; } __attribute__ ((__packed__, __may_alias__)); return ((const Unaligned32 *)ptr)->val; } FORCEINLINE uint64 READ_UINT64(const void *ptr) { struct Unaligned64 { uint64 val; } __attribute__ ((__packed__, __may_alias__)); return ((const Unaligned64 *)ptr)->val; } FORCEINLINE void WRITE_UINT16(void *ptr, uint16 value) { struct Unaligned16 { uint16 val; } __attribute__ ((__packed__, __may_alias__)); ((Unaligned16 *)ptr)->val = value; } FORCEINLINE void WRITE_UINT32(void *ptr, uint32 value) { struct Unaligned32 { uint32 val; } __attribute__ ((__packed__, __may_alias__)); ((Unaligned32 *)ptr)->val = value; } FORCEINLINE void WRITE_UINT64(void *ptr, uint64 value) { struct Unaligned64 { uint64 val; } __attribute__((__packed__, __may_alias__)); ((Unaligned64 *)ptr)->val = value; } #elif !defined(SCUMM_NEED_ALIGNMENT) FORCEINLINE uint16 READ_UINT16(const void *ptr) { return *(const uint16 *)(ptr); } FORCEINLINE uint32 READ_UINT32(const void *ptr) { return *(const uint32 *)(ptr); } FORCEINLINE uint64 READ_UINT64(const void *ptr) { return *(const uint64 *)(ptr); } FORCEINLINE void WRITE_UINT16(void *ptr, uint16 value) { *(uint16 *)(ptr) = value; } FORCEINLINE void WRITE_UINT32(void *ptr, uint32 value) { *(uint32 *)(ptr) = value; } FORCEINLINE void WRITE_UINT64(void *ptr, uint64 value) { *(uint64 *)(ptr) = value; } // use software fallback by loading each byte explicitely #else # if defined(SCUMM_LITTLE_ENDIAN) inline uint16 READ_UINT16(const void *ptr) { const uint8 *b = (const uint8 *)ptr; return (b[1] << 8) | b[0]; } inline uint32 READ_UINT32(const void *ptr) { const uint8 *b = (const uint8 *)ptr; return (b[3] << 24) | (b[2] << 16) | (b[1] << 8) | (b[0]); } inline uint64 READ_UINT64(const void *ptr) { const uint8 *b = (const uint8 *)ptr; return (b[7] << 56) | (b[6] << 48) | (b[5] << 40) | (b[4] << 32) | (b[3] << 24) | (b[2] << 16) | (b[1] << 8) | (b[0]); } inline void WRITE_UINT16(void *ptr, uint16 value) { uint8 *b = (uint8 *)ptr; b[0] = (uint8)(value >> 0); b[1] = (uint8)(value >> 8); } inline void WRITE_UINT32(void *ptr, uint32 value) { uint8 *b = (uint8 *)ptr; b[0] = (uint8)(value >> 0); b[1] = (uint8)(value >> 8); b[2] = (uint8)(value >> 16); b[3] = (uint8)(value >> 24); } inline void WRITE_UINT64(void *ptr, uint64 value) { uint8 *b = (uint8 *)ptr; b[0] = (uint8)(value >> 0); b[1] = (uint8)(value >> 8); b[2] = (uint8)(value >> 16); b[3] = (uint8)(value >> 24); b[4] = (uint8)(value >> 32); b[5] = (uint8)(value >> 40); b[6] = (uint8)(value >> 48); b[7] = (uint8)(value >> 56); } # elif defined(SCUMM_BIG_ENDIAN) inline uint16 READ_UINT16(const void *ptr) { const uint8 *b = (const uint8 *)ptr; return (b[0] << 8) | b[1]; } inline uint32 READ_UINT32(const void *ptr) { const uint8 *b = (const uint8 *)ptr; return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | (b[3]); } inline uint64 READ_UINT64(const void *ptr) { const uint8 *b = (const uint8 *)ptr; return (b[0] << 56) | (b[1] << 48) | (b[2] << 40) | (b[3] << 32) | (b[4] << 24) | (b[5] << 16) | (b[6] << 8) | (b[7]); } inline void WRITE_UINT16(void *ptr, uint16 value) { uint8 *b = (uint8 *)ptr; b[0] = (uint8)(value >> 8); b[1] = (uint8)(value >> 0); } inline void WRITE_UINT32(void *ptr, uint32 value) { uint8 *b = (uint8 *)ptr; b[0] = (uint8)(value >> 24); b[1] = (uint8)(value >> 16); b[2] = (uint8)(value >> 8); b[3] = (uint8)(value >> 0); } inline void WRITE_UINT64(void *ptr, uint64 value) { uint8 *b = (uint8 *)ptr; b[0] = (uint8)(value >> 56); b[1] = (uint8)(value >> 48); b[2] = (uint8)(value >> 40); b[3] = (uint8)(value >> 32); b[4] = (uint8)(value >> 24); b[5] = (uint8)(value >> 16); b[6] = (uint8)(value >> 8); b[7] = (uint8)(value >> 0); } # endif #endif // Map Funtions for reading/writing BE/LE integers depending on native endianess #if defined(SCUMM_LITTLE_ENDIAN) #define READ_LE_UINT16(a) READ_UINT16(a) #define READ_LE_UINT32(a) READ_UINT32(a) #define READ_LE_UINT64(a) READ_UINT64(a) #define WRITE_LE_UINT16(a, v) WRITE_UINT16(a, v) #define WRITE_LE_UINT32(a, v) WRITE_UINT32(a, v) #define WRITE_LE_UINT64(a, v) WRITE_UINT64(a, v) #define FROM_LE_64(a) ((uint64)(a)) #define FROM_LE_32(a) ((uint32)(a)) #define FROM_LE_16(a) ((uint16)(a)) #define FROM_BE_64(a) SWAP_BYTES_64(a) #define FROM_BE_32(a) SWAP_BYTES_32(a) #define FROM_BE_16(a) SWAP_BYTES_16(a) #define TO_LE_64(a) ((uint64)(a)) #define TO_LE_32(a) ((uint32)(a)) #define TO_LE_16(a) ((uint16)(a)) #define TO_BE_64(a) SWAP_BYTES_64(a) #define TO_BE_32(a) SWAP_BYTES_32(a) #define TO_BE_16(a) SWAP_BYTES_16(a) #define CONSTANT_LE_64(a) ((uint64)(a)) #define CONSTANT_LE_32(a) ((uint32)(a)) #define CONSTANT_LE_16(a) ((uint16)(a)) #define CONSTANT_BE_64(a) SWAP_CONSTANT_64(a) #define CONSTANT_BE_32(a) SWAP_CONSTANT_32(a) #define CONSTANT_BE_16(a) SWAP_CONSTANT_16(a) // if the unaligned load and the byteswap take alot instructions its better to directly read and invert # if defined(SCUMM_NEED_ALIGNMENT) && !defined(__mips__) inline uint16 READ_BE_UINT16(const void *ptr) { const uint8 *b = (const uint8 *)ptr; return (b[0] << 8) | b[1]; } inline uint32 READ_BE_UINT32(const void *ptr) { const uint8 *b = (const uint8 *)ptr; return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | (b[3]); } inline uint64 READ_BE_UINT64(const void *ptr) { const uint8 *b = (const uint8 *)ptr; return (b[0] << 56) | b[1] << 48) | b[2] << 40) | b[3] << 32) | b[4] << 24) | (b[5] << 16) | (b[6] << 8) | (b[7]); } inline void WRITE_BE_UINT16(void *ptr, uint16 value) { uint8 *b = (uint8 *)ptr; b[0] = (uint8)(value >> 8); b[1] = (uint8)(value >> 0); } inline void WRITE_BE_UINT32(void *ptr, uint32 value) { uint8 *b = (uint8 *)ptr; b[0] = (uint8)(value >> 24); b[1] = (uint8)(value >> 16); b[2] = (uint8)(value >> 8); b[3] = (uint8)(value >> 0); } inline void WRITE_BE_UINT64(void *ptr, uint64 value) { uint8 *b = (uint8 *)ptr; b[0] = (uint8)(value >> 56); b[1] = (uint8)(value >> 48); b[2] = (uint8)(value >> 40); b[3] = (uint8)(value >> 32); b[4] = (uint8)(value >> 24); b[5] = (uint8)(value >> 16); b[6] = (uint8)(value >> 8); b[7] = (uint8)(value >> 0); } # else inline uint16 READ_BE_UINT16(const void *ptr) { return SWAP_BYTES_16(READ_UINT16(ptr)); } inline uint32 READ_BE_UINT32(const void *ptr) { return SWAP_BYTES_32(READ_UINT32(ptr)); } inline uint32 READ_BE_UINT64(const void *ptr) { return SWAP_BYTES_64(READ_UINT64(ptr)); } inline void WRITE_BE_UINT16(void *ptr, uint16 value) { WRITE_UINT16(ptr, SWAP_BYTES_16(value)); } inline void WRITE_BE_UINT32(void *ptr, uint32 value) { WRITE_UINT32(ptr, SWAP_BYTES_32(value)); } inline void WRITE_BE_UINT64(void *ptr, uint64 value) { WRITE_UINT64(ptr, SWAP_BYTES_64(value)); } # endif // if defined(SCUMM_NEED_ALIGNMENT) #elif defined(SCUMM_BIG_ENDIAN) #define READ_BE_UINT16(a) READ_UINT16(a) #define READ_BE_UINT32(a) READ_UINT32(a) #define READ_BE_UINT64(a) READ_UINT64(a) #define WRITE_BE_UINT16(a, v) WRITE_UINT16(a, v) #define WRITE_BE_UINT32(a, v) WRITE_UINT32(a, v) #define WRITE_BE_UINT64(a, v) WRITE_UINT64(a, v) #define FROM_LE_64(a) SWAP_BYTES_64(a) #define FROM_LE_32(a) SWAP_BYTES_32(a) #define FROM_LE_16(a) SWAP_BYTES_16(a) #define FROM_BE_64(a) ((uint64)(a)) #define FROM_BE_32(a) ((uint32)(a)) #define FROM_BE_16(a) ((uint16)(a)) #define TO_LE_64(a) SWAP_BYTES_64(a) #define TO_LE_32(a) SWAP_BYTES_32(a) #define TO_LE_16(a) SWAP_BYTES_16(a) #define TO_BE_64(a) ((uint64)(a)) #define TO_BE_32(a) ((uint32)(a)) #define TO_BE_16(a) ((uint16)(a)) #define CONSTANT_LE_64(a) SWAP_CONSTANT_64(a) #define CONSTANT_LE_32(a) SWAP_CONSTANT_32(a) #define CONSTANT_LE_16(a) SWAP_CONSTANT_16(a) #define CONSTANT_BE_64(a) ((uint64)(a)) #define CONSTANT_BE_32(a) ((uint32)(a)) #define CONSTANT_BE_16(a) ((uint16)(a)) // if the unaligned load and the byteswap take alot instructions its better to directly read and invert # if defined(SCUMM_NEED_ALIGNMENT) && !defined(__mips__) inline uint16 READ_LE_UINT16(const void *ptr) { const uint8 *b = (const uint8 *)ptr; return (b[1] << 8) | b[0]; } inline uint32 READ_LE_UINT32(const void *ptr) { const uint8 *b = (const uint8 *)ptr; return (b[3] << 24) | (b[2] << 16) | (b[1] << 8) | (b[0]); } inline uint64 READ_LE_UINT64(const void *ptr) { const uint8 *b = (const uint8 *)ptr; return (b[7] << 56) | (b[6] << 48) | (b[5] << 40) | (b[4] << 32) | (b[3] << 24) | (b[2] << 16) | (b[1] << 8) | (b[0]); } inline void WRITE_LE_UINT16(void *ptr, uint16 value) { uint8 *b = (uint8 *)ptr; b[0] = (uint8)(value >> 0); b[1] = (uint8)(value >> 8); } inline void WRITE_LE_UINT32(void *ptr, uint32 value) { uint8 *b = (uint8 *)ptr; b[0] = (uint8)(value >> 0); b[1] = (uint8)(value >> 8); b[2] = (uint8)(value >> 16); b[3] = (uint8)(value >> 24); } inline void WRITE_LE_UINT64(void *ptr, uint64 value) { uint8 *b = (uint8 *)ptr; b[0] = (uint8)(value >> 0); b[1] = (uint8)(value >> 8); b[2] = (uint8)(value >> 16); b[3] = (uint8)(value >> 24); b[4] = (uint8)(value >> 32); b[5] = (uint8)(value >> 40); b[6] = (uint8)(value >> 48); b[7] = (uint8)(value >> 56); } # else inline uint16 READ_LE_UINT16(const void *ptr) { return SWAP_BYTES_16(READ_UINT16(ptr)); } inline uint32 READ_LE_UINT32(const void *ptr) { return SWAP_BYTES_32(READ_UINT32(ptr)); } inline uint64 READ_LE_UINT64(const void *ptr) { return SWAP_BYTES_64(READ_UINT64(ptr)); } inline void WRITE_LE_UINT16(void *ptr, uint16 value) { WRITE_UINT16(ptr, SWAP_BYTES_16(value)); } inline void WRITE_LE_UINT32(void *ptr, uint32 value) { WRITE_UINT32(ptr, SWAP_BYTES_32(value)); } inline void WRITE_LE_UINT64(void *ptr, uint64 value) { WRITE_UINT64(ptr, SWAP_BYTES_64(value)); } # endif // if defined(SCUMM_NEED_ALIGNMENT) #endif // if defined(SCUMM_LITTLE_ENDIAN) inline uint32 READ_LE_UINT24(const void *ptr) { const uint8 *b = (const uint8 *)ptr; return (b[2] << 16) | (b[1] << 8) | (b[0]); } inline uint32 READ_BE_UINT24(const void *ptr) { const uint8 *b = (const uint8 *)ptr; return (b[0] << 16) | (b[1] << 8) | (b[2]); } #ifdef SCUMM_LITTLE_ENDIAN #define READ_UINT24(a) READ_LE_UINT24(a) #else #define READ_UINT24(a) READ_BE_UINT24(a) #endif #endif