/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ // Based on eos' (I)FFT code which is in turn // Based upon the (I)FFT code in FFmpeg // Copyright (c) 2008 Loren Merritt // Copyright (c) 2002 Fabrice Bellard // Partly based on libdjbfft by D. J. Bernstein #include "common/cosinetables.h" #include "common/fft.h" #include "common/util.h" namespace Common { FFT::FFT(int bits, int inverse) : _bits(bits), _inverse(inverse) { assert((_bits >= 2) && (_bits <= 16)); int n = 1 << bits; _tmpBuf = new Complex[n]; _expTab = new Complex[n / 2]; _revTab = new uint16[n]; _splitRadix = 1; for (int i = 0; i < n; i++) _revTab[-splitRadixPermutation(i, n, _inverse) & (n - 1)] = i; } FFT::~FFT() { delete[] _revTab; delete[] _expTab; delete[] _tmpBuf; } void FFT::permute(Complex *z) { int np = 1 << _bits; if (_tmpBuf) { for(int j = 0; j < np; j++) _tmpBuf[_revTab[j]] = z[j]; memcpy(z, _tmpBuf, np * sizeof(Complex)); return; } // Reverse for(int j = 0; j < np; j++) { int k = _revTab[j]; if (k < j) SWAP(z[k], z[j]); } } int FFT::splitRadixPermutation(int i, int n, int inverse) { if (n <= 2) return i & 1; int m = n >> 1; if(!(i & m)) return splitRadixPermutation(i, m, inverse) * 2; m >>= 1; if(inverse == !(i & m)) return splitRadixPermutation(i, m, inverse) * 4 + 1; return splitRadixPermutation(i, m, inverse) * 4 - 1; } #define sqrthalf (float)M_SQRT1_2 #define BF(x,y,a,b) {\ x = a - b;\ y = a + b;\ } #define BUTTERFLIES(a0,a1,a2,a3) {\ BF(t3, t5, t5, t1);\ BF(a2.re, a0.re, a0.re, t5);\ BF(a3.im, a1.im, a1.im, t3);\ BF(t4, t6, t2, t6);\ BF(a3.re, a1.re, a1.re, t4);\ BF(a2.im, a0.im, a0.im, t6);\ } // force loading all the inputs before storing any. // this is slightly slower for small data, but avoids store->load aliasing // for addresses separated by large powers of 2. #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\ float r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\ BF(t3, t5, t5, t1);\ BF(a2.re, a0.re, r0, t5);\ BF(a3.im, a1.im, i1, t3);\ BF(t4, t6, t2, t6);\ BF(a3.re, a1.re, r1, t4);\ BF(a2.im, a0.im, i0, t6);\ } #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\ t1 = a2.re * wre + a2.im * wim;\ t2 = a2.im * wre - a2.re * wim;\ t5 = a3.re * wre - a3.im * wim;\ t6 = a3.im * wre + a3.re * wim;\ BUTTERFLIES(a0,a1,a2,a3)\ } #define TRANSFORM_ZERO(a0,a1,a2,a3) {\ t1 = a2.re;\ t2 = a2.im;\ t5 = a3.re;\ t6 = a3.im;\ BUTTERFLIES(a0,a1,a2,a3)\ } /* z[0...8n-1], w[1...2n-1] */ #define PASS(name)\ static void name(Complex *z, const float *wre, unsigned int n)\ {\ float t1, t2, t3, t4, t5, t6;\ int o1 = 2*n;\ int o2 = 4*n;\ int o3 = 6*n;\ const float *wim = wre+o1;\ n--;\ \ TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\ TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\ do {\ z += 2;\ wre += 2;\ wim -= 2;\ TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\ TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\ } while(--n);\ } PASS(pass) #undef BUTTERFLIES #define BUTTERFLIES BUTTERFLIES_BIG PASS(pass_big) #define DECL_FFT(t,n,n2,n4)\ static void fft##n(Complex *z)\ {\ fft##n2(z);\ fft##n4(z+n4*2);\ fft##n4(z+n4*3);\ pass(z,getCosineTable(t),n4/2);\ } static void fft4(Complex *z) { float t1, t2, t3, t4, t5, t6, t7, t8; BF(t3, t1, z[0].re, z[1].re); BF(t8, t6, z[3].re, z[2].re); BF(z[2].re, z[0].re, t1, t6); BF(t4, t2, z[0].im, z[1].im); BF(t7, t5, z[2].im, z[3].im); BF(z[3].im, z[1].im, t4, t8); BF(z[3].re, z[1].re, t3, t7); BF(z[2].im, z[0].im, t2, t5); } static void fft8(Complex *z) { float t1, t2, t3, t4, t5, t6, t7, t8; fft4(z); BF(t1, z[5].re, z[4].re, -z[5].re); BF(t2, z[5].im, z[4].im, -z[5].im); BF(t3, z[7].re, z[6].re, -z[7].re); BF(t4, z[7].im, z[6].im, -z[7].im); BF(t8, t1, t3, t1); BF(t7, t2, t2, t4); BF(z[4].re, z[0].re, z[0].re, t1); BF(z[4].im, z[0].im, z[0].im, t2); BF(z[6].re, z[2].re, z[2].re, t7); BF(z[6].im, z[2].im, z[2].im, t8); TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf); } static void fft16(Complex *z) { float t1, t2, t3, t4, t5, t6; fft8(z); fft4(z+8); fft4(z+12); const float * const cosTable = getCosineTable(4); TRANSFORM_ZERO(z[0],z[4],z[8],z[12]); TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf); TRANSFORM(z[1],z[5],z[9],z[13],cosTable[1],cosTable[3]); TRANSFORM(z[3],z[7],z[11],z[15],cosTable[3],cosTable[1]); } DECL_FFT(5, 32,16,8) DECL_FFT(6, 64,32,16) DECL_FFT(7, 128,64,32) DECL_FFT(8, 256,128,64) DECL_FFT(9, 512,256,128) #define pass pass_big DECL_FFT(10, 1024,512,256) DECL_FFT(11, 2048,1024,512) DECL_FFT(12, 4096,2048,1024) DECL_FFT(13, 8192,4096,2048) DECL_FFT(14, 16384,8192,4096) DECL_FFT(15, 32768,16384,8192) DECL_FFT(16, 65536,32768,16384) static void (* const fft_dispatch[])(Complex*) = { fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024, fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, }; void FFT::calc(Complex *z) { fft_dispatch[_bits - 2](z); } } // End of namespace Common