/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ #include "common/stdafx.h" #include "common/md5.h" #include "common/config-manager.h" #include "common/fs.h" #include "common/algorithm.h" #include "sound/mixer.h" #include "agi/agi.h" #include "agi/sound.h" namespace Agi { #define USE_INTERPOLATION static bool g_useChorus = true; /* TODO: add support for variable sampling rate in the output device */ /** Reads an Apple IIGS envelope from then given stream. */ bool IIgsEnvelope::read(Common::SeekableReadStream &stream) { for (int segNum = 0; segNum < ENVELOPE_SEGMENT_COUNT; segNum++) { seg[segNum].bp = stream.readByte(); seg[segNum].inc = stream.readUint16BE(); } return !stream.ioFailed(); } /** Reads an Apple IIGS wave information structure from the given stream. */ bool IIgsWaveInfo::read(Common::SeekableReadStream &stream, bool ignoreAddr) { top = stream.readByte(); addr = stream.readByte() * 256; size = (1 << (stream.readByte() & 7)) * 256; // Read packed mode byte and parse it into parts byte packedModeByte = stream.readByte(); channel = (packedModeByte >> 4) & 1; // Bit 4 mode = (packedModeByte >> 1) & 3; // Bits 1-2 halt = (packedModeByte & 1) != 0; // Bit 0 (Converted to boolean) relPitch = stream.readUint16BE(); // Zero the wave address if we want to ignore the wave address info if (ignoreAddr) addr = 0; return !stream.ioFailed(); } bool IIgsWaveInfo::finalize(Common::SeekableReadStream &uint8Wave) { uint32 startPos = uint8Wave.pos(); // Save stream's starting position uint8Wave.seek(addr, SEEK_CUR); // Seek to wave's address // Calculate the true sample size (A zero ends the sample prematurely) uint trueSize = size; // Set a default value for the result for (uint i = 0; i < size; i++) { if (uint8Wave.readByte() == 0) { trueSize = i; break; } } size = trueSize; // Set the true sample size uint8Wave.seek(startPos); // Seek back to the stream's starting position return true; } bool IIgsOscillator::finalize(Common::SeekableReadStream &uint8Wave) { for (uint i = 0; i < WAVES_PER_OSCILLATOR; i++) if (!waves[i].finalize(uint8Wave)) return false; return true; } bool IIgsOscillatorList::read(Common::SeekableReadStream &stream, uint oscillatorCount, bool ignoreAddr) { // First read the A waves and then the B waves for the oscillators for (uint waveNum = 0; waveNum < WAVES_PER_OSCILLATOR; waveNum++) for (uint oscNum = 0; oscNum < oscillatorCount; oscNum++) if (!osc[oscNum].waves[waveNum].read(stream, ignoreAddr)) return false; count = oscillatorCount; // Set the oscillator count return true; } bool IIgsOscillatorList::finalize(Common::SeekableReadStream &uint8Wave) { for (uint i = 0; i < count; i++) if (!osc[i].finalize(uint8Wave)) return false; return true; } bool IIgsInstrumentHeader::read(Common::SeekableReadStream &stream, bool ignoreAddr) { env.read(stream); relseg = stream.readByte(); byte priority = stream.readByte(); // Not needed? 32 in all tested data. bendrange = stream.readByte(); vibdepth = stream.readByte(); vibspeed = stream.readByte(); byte spare = stream.readByte(); // Not needed? 0 in all tested data. byte wac = stream.readByte(); // Read A wave count byte wbc = stream.readByte(); // Read B wave count oscList.read(stream, wac, ignoreAddr); // Read the oscillators return (wac == wbc) && !stream.ioFailed(); // A and B wave counts must match } bool IIgsInstrumentHeader::finalize(Common::SeekableReadStream &uint8Wave) { return oscList.finalize(uint8Wave); } bool IIgsSampleHeader::read(Common::SeekableReadStream &stream) { type = stream.readUint16LE(); pitch = stream.readByte(); unknownByte_Ofs3 = stream.readByte(); volume = stream.readByte(); unknownByte_Ofs5 = stream.readByte(); instrumentSize = stream.readUint16LE(); sampleSize = stream.readUint16LE(); // Read the instrument header *ignoring* its wave address info return instrument.read(stream, true); } bool IIgsSampleHeader::finalize(Common::SeekableReadStream &uint8Wave) { return instrument.finalize(uint8Wave); } /** Older Apple IIGS AGI instrument set. Used only by Space Quest I (AGI v1.002). */ static const instrumentSetInfo instSetV1 = { 1192, 26, "7ee16bbc135171ffd6b9120cc7ff1af2", "edd3bf8905d9c238e02832b732fb2e18" }; /** Newer Apple IIGS AGI instrument set (AGI v1.003+). Used by all others than Space Quest I. */ static const instrumentSetInfo instSetV2 = { 1292, 28, "b7d428955bb90721996de1cbca25e768", "c05fb0b0e11deefab58bc68fbd2a3d07" }; /** Information about different Apple IIGS AGI executables. */ static const IIgsExeInfo IIgsExeInfos[] = { {GID_SQ1, "SQ", 0x1002, 138496, 0x80AD, instSetV1}, {GID_LSL1, "LL", 0x1003, 141003, 0x844E, instSetV2}, {GID_AGIDEMO, "DEMO", 0x1005, 141884, 0x8469, instSetV2}, {GID_KQ1, "KQ", 0x1006, 141894, 0x8469, instSetV2}, {GID_PQ1, "PQ", 0x1007, 141882, 0x8469, instSetV2}, {GID_MIXEDUP, "MG", 0x1013, 142552, 0x84B7, instSetV2}, {GID_KQ2, "KQ2", 0x1013, 143775, 0x84B7, instSetV2}, {GID_KQ3, "KQ3", 0x1014, 144312, 0x84B7, instSetV2}, {GID_SQ2, "SQ2", 0x1014, 107882, 0x6563, instSetV2}, {GID_MH1, "MH", 0x2004, 147678, 0x8979, instSetV2}, {GID_KQ4, "KQ4", 0x2006, 147652, 0x8979, instSetV2}, {GID_BC, "BC", 0x3001, 148192, 0x8979, instSetV2}, {GID_GOLDRUSH, "GR", 0x3003, 148268, 0x8979, instSetV2} }; static IIgsInstrumentHeader g_instruments[MAX_INSTRUMENTS]; static uint g_numInstruments = 0; static int16 g_wave[SIERRASTANDARD_SIZE]; // FIXME? Should this be allocated from the heap? (Size is 128KiB) bool SoundMgr::finalizeInstruments(Common::SeekableReadStream &uint8Wave) { for (uint i = 0; i < g_numInstruments; i++) if (!g_instruments[i].finalize(uint8Wave)) return false; return true; } /** * Load an Apple IIGS AGI sample resource from the given stream and * create an AudioStream out of it. * * @param stream The source stream. * @param resnum Sound resource number. Optional. Used for error messages. * @return A non-null AudioStream pointer if successful, NULL otherwise. * @note In case of failure (i.e. NULL is returned), stream is reset back * to its original position and its I/O failed -status is cleared. * TODO: Add better handling of invalid resource number when printing error messages. * TODO: Add support for looping sounds. * FIXME: Fix sample rate calculation, it's probably not accurate at the moment. */ Audio::AudioStream *SoundMgr::makeIIgsSampleStream(Common::SeekableReadStream &stream, int resnum) { const uint32 startPos = stream.pos(); IIgsSampleHeader header; Audio::AudioStream *result = NULL; bool readHeaderOk = header.read(stream); // Check that the header was read ok and that it's of the correct type // and that there's room for the sample data in the stream. if (readHeaderOk && header.type == AGI_SOUND_SAMPLE) { // An Apple IIGS AGI sample resource uint32 tailLen = stream.size() - stream.pos(); if (tailLen < header.sampleSize) { // Check if there's no room for the sample data in the stream // Apple IIGS Manhunter I: Sound resource 16 has only 16074 bytes // of sample data although header says it should have 16384 bytes. warning("Apple IIGS sample (%d) too short (%d bytes. Should be %d bytes). Using the part that's left", resnum, tailLen, header.sampleSize); header.sampleSize = (uint16) tailLen; // Use the part that's left } if (header.pitch > 0x7F) { // Check if the pitch is invalid warning("Apple IIGS sample (%d) has too high pitch (0x%02x)", resnum, header.pitch); header.pitch &= 0x7F; // Apple IIGS AGI probably did it this way too } // Allocate memory for the sample data and read it in byte *sampleData = (byte *) malloc(header.sampleSize); uint32 readBytes = stream.read(sampleData, header.sampleSize); if (readBytes == header.sampleSize) { // Check that we got all the data we requested // Create a stream out of the read sample data (Needed by the finalize-function) Common::MemoryReadStream sampleStream(sampleData, readBytes); header.finalize(sampleStream); // Make an audio stream from the mono, 8 bit, unsigned input data byte flags = Audio::Mixer::FLAG_AUTOFREE | Audio::Mixer::FLAG_UNSIGNED; int rate = (int) (1076 * pow(SEMITONE, header.pitch)); result = Audio::makeLinearInputStream(sampleData, header.sampleSize, rate, flags, 0, 0); } else // Couldn't read enough data, so let's delete the sample data buffer delete sampleData; } // If couldn't make a sample out of the input stream for any reason then // rewind back to stream's starting position and clear I/O failed -status. if (result == NULL) { stream.seek(startPos); stream.clearIOFailed(); } return result; } static int playing; static ChannelInfo chn[NUM_CHANNELS]; static int endflag = -1; static int playingSound = -1; static uint8 *song; static uint8 env; static int16 *sndBuffer; static int16 *waveform; static int16 waveformRamp[WAVEFORM_SIZE] = { 0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 255, 0, -248, -240, -232, -224, -216, -208, -200, -192, -184, -176, -168, -160, -152, -144, -136, -128, -120, -112, -104, -96, -88, -80, -72, -64, -56, -48, -40, -32, -24, -16, -8 /* Ramp up */ }; static int16 waveformSquare[WAVEFORM_SIZE] = { 255, 230, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 110, -255, -230, -220, -220, -220, -220, -220, -220, -220, -220, -220, -220, -220, -220, -220, -220, -220, -220, -220, -220, -220, -220, -220, -220, -220, -220, -220, -110, 0, 0, 0, 0 /* Square */ }; static int16 waveformMac[WAVEFORM_SIZE] = { 45, 110, 135, 161, 167, 173, 175, 176, 156, 137, 123, 110, 91, 72, 35, -2, -60, -118, -142, -165, -170, -176, -177, -179, -177, -176, -164, -152, -117, -82, -17, 47, 92, 137, 151, 166, 170, 173, 171, 169, 151, 133, 116, 100, 72, 43, -7, -57, -99, -141, -156, -170, -174, -177, -178, -179, -175, -172, -165, -159, -137, -114, -67, -19 }; static uint16 period[] = { 1024, 1085, 1149, 1218, 1290, 1367, 1448, 1534, 1625, 1722, 1825, 1933 }; #if 0 static struct AgiNote playSample[] = { {0xff, 0x7f, 0x18, 0x00, 0x7f}, {0xff, 0xff, 0x00, 0x00, 0x00}, {0xff, 0xff, 0x00, 0x00, 0x00}, {0xff, 0xff, 0x00, 0x00, 0x00} }; #endif static int noteToPeriod(int note) { return 10 * (period[note % 12] >> (note / 12 - 3)); } void SoundMgr::unloadSound(int resnum) { if (_vm->_game.dirSound[resnum].flags & RES_LOADED) { if (_vm->_game.sounds[resnum].isPlaying()) { _vm->_game.sounds[resnum].stop(); } /* Release RAW data for sound */ free(_vm->_game.sounds[resnum].rdata); _vm->_game.sounds[resnum].rdata = NULL; _vm->_game.dirSound[resnum].flags &= ~RES_LOADED; } } void SoundMgr::startSound(int resnum, int flag) { int i, type; #if 0 struct SoundIIgsSample *smp; #endif if (_vm->_game.sounds[resnum].isPlaying()) return; stopSound(); if (_vm->_game.sounds[resnum].rdata == NULL) return; type = READ_LE_UINT16(_vm->_game.sounds[resnum].rdata); if (type != AGI_SOUND_SAMPLE && type != AGI_SOUND_MIDI && type != AGI_SOUND_4CHN) return; _vm->_game.sounds[resnum].play(); _vm->_game.sounds[resnum].type = type; playingSound = resnum; song = (uint8 *)_vm->_game.sounds[resnum].rdata; switch (type) { #if 0 case AGI_SOUND_SAMPLE: debugC(3, kDebugLevelSound, "IIGS sample"); smp = (struct SoundIIgsSample *)_vm->_game.sounds[resnum].rdata; for (i = 0; i < NUM_CHANNELS; i++) { chn[i].type = type; chn[i].flags = 0; chn[i].ins = (int16 *)&_vm->_game.sounds[resnum].rdata[54]; chn[i].size = ((int)smp->sizeHi << 8) + smp->sizeLo; chn[i].ptr = &playSample[i]; chn[i].timer = 0; chn[i].vol = 0; chn[i].end = 0; } break; case AGI_SOUND_MIDI: debugC(3, kDebugLevelSound, "IIGS MIDI sequence"); for (i = 0; i < NUM_CHANNELS; i++) { chn[i].type = type; chn[i].flags = AGI_SOUND_LOOP | AGI_SOUND_ENVELOPE; chn[i].ins = waveform; chn[i].size = WAVEFORM_SIZE; chn[i].vol = 0; chn[i].end = 0; } chn[0].timer = *(song + 2); chn[0].ptr = (struct AgiNote *)(song + 3); break; #endif case AGI_SOUND_4CHN: /* Initialize channel info */ for (i = 0; i < NUM_CHANNELS; i++) { chn[i].type = type; chn[i].flags = AGI_SOUND_LOOP; if (env) { chn[i].flags |= AGI_SOUND_ENVELOPE; chn[i].adsr = AGI_SOUND_ENV_ATTACK; } chn[i].ins = waveform; chn[i].size = WAVEFORM_SIZE; chn[i].ptr = song + READ_LE_UINT16(song + i * 2); chn[i].timer = 0; chn[i].vol = 0; chn[i].end = 0; } break; } memset(sndBuffer, 0, BUFFER_SIZE << 1); endflag = flag; /* Nat Budin reports that the flag should be reset when sound starts */ _vm->setflag(endflag, false); } void SoundMgr::stopSound() { int i; endflag = -1; for (i = 0; i < NUM_CHANNELS; i++) stopNote(i); if (playingSound != -1) { _vm->_game.sounds[playingSound].stop(); playingSound = -1; } } static int16 *buffer; int SoundMgr::initSound() { int r = -1; buffer = sndBuffer = (int16 *)calloc(2, BUFFER_SIZE); env = false; switch (_vm->_soundemu) { case SOUND_EMU_NONE: waveform = waveformRamp; env = true; break; case SOUND_EMU_AMIGA: case SOUND_EMU_PC: waveform = waveformSquare; break; case SOUND_EMU_MAC: waveform = waveformMac; break; } report("Initializing sound:\n"); report("sound: envelopes "); if (env) { report("enabled (decay=%d, sustain=%d)\n", ENV_DECAY, ENV_SUSTAIN); } else { report("disabled\n"); } loadInstruments(); _mixer->playInputStream(Audio::Mixer::kPlainSoundType, &_soundHandle, this, -1, Audio::Mixer::kMaxChannelVolume, 0, false, true); return r; } void SoundMgr::deinitSound() { debugC(3, kDebugLevelSound, "()"); _mixer->stopHandle(_soundHandle); free(sndBuffer); } void SoundMgr::stopNote(int i) { chn[i].adsr = AGI_SOUND_ENV_RELEASE; if (g_useChorus) { /* Stop chorus ;) */ if (chn[i].type == AGI_SOUND_4CHN && _vm->_soundemu == SOUND_EMU_NONE && i < 3) { stopNote(i + 4); } } } void SoundMgr::playNote(int i, int freq, int vol) { if (!_vm->getflag(fSoundOn)) vol = 0; else if (vol && _vm->_soundemu == SOUND_EMU_PC) vol = 160; chn[i].phase = 0; chn[i].freq = freq; chn[i].vol = vol; chn[i].env = 0x10000; chn[i].adsr = AGI_SOUND_ENV_ATTACK; if (g_useChorus) { /* Add chorus ;) */ if (chn[i].type == AGI_SOUND_4CHN && _vm->_soundemu == SOUND_EMU_NONE && i < 3) { int newfreq = freq * 1007 / 1000; if (freq == newfreq) newfreq++; playNote(i + 4, newfreq, vol * 2 / 3); } } } void SoundMgr::playMidiSound() { uint8 *p; uint8 parm1, parm2; static uint8 cmd, ch; playing = 1; if (chn[0].timer > 0) { chn[0].timer -= 2; return; } p = (uint8 *)chn[0].ptr; if (*p & 0x80) { cmd = *p++; ch = cmd & 0x0f; cmd >>= 4; } switch (cmd) { case 0x08: parm1 = *p++; parm2 = *p++; if (ch < NUM_CHANNELS) stopNote(ch); break; case 0x09: parm1 = *p++; parm2 = *p++; if (ch < NUM_CHANNELS) playNote(ch, noteToPeriod(parm1), 127); break; case 0x0b: parm1 = *p++; parm2 = *p++; debugC(3, kDebugLevelSound, "controller %02x, ch %02x, val %02x", parm1, ch, parm2); break; case 0x0c: parm1 = *p++; #if 0 if (ch < NUM_CHANNELS) { chn[ch].ins = (uint16 *)&wave[waveaddr[parm1]]; chn[ch].size = wavesize[parm1]; } debugC(3, kDebugLevelSound, "set patch %02x (%d,%d), ch %02x", parm1, waveaddr[parm1], wavesize[parm1], ch); #endif break; } chn[0].timer = *p++; chn[0].ptr = p; if (*p >= 0xfc) { debugC(3, kDebugLevelSound, "end of sequence"); playing = 0; return; } } void SoundMgr::playSampleSound() { playNote(0, 11025 * 10, 200); playing = 1; } void SoundMgr::playAgiSound() { int i; AgiNote note; for (playing = i = 0; i < (_vm->_soundemu == SOUND_EMU_PC ? 1 : 4); i++) { playing |= !chn[i].end; note.read(chn[i].ptr); // Read a single note (Doesn't advance the pointer) if (chn[i].end) continue; if ((--chn[i].timer) <= 0) { stopNote(i); if (note.freqDiv != 0) { int volume = (note.attenuation == 0x0F) ? 0 : (0xFF - note.attenuation * 2); playNote(i, note.freqDiv * 10, volume); } chn[i].timer = note.duration; if (chn[i].timer == 0xffff) { chn[i].end = 1; chn[i].vol = 0; chn[i].env = 0; if (g_useChorus) { /* chorus */ if (chn[i].type == AGI_SOUND_4CHN && _vm->_soundemu == SOUND_EMU_NONE && i < 3) { chn[i + 4].vol = 0; chn[i + 4].env = 0; } } } chn[i].ptr += 5; // Advance the pointer to the next note data (5 bytes per note) } } } void SoundMgr::playSound() { int i; if (endflag == -1) return; if (chn[0].type == AGI_SOUND_MIDI) { /* play_midi_sound (); */ playing = 0; } else if (chn[0].type == AGI_SOUND_SAMPLE) { playSampleSound(); } else playAgiSound(); if (!playing) { for (i = 0; i < NUM_CHANNELS; chn[i++].vol = 0); if (endflag != -1) _vm->setflag(endflag, true); if (playingSound != -1) _vm->_game.sounds[playingSound].stop(); playingSound = -1; endflag = -1; } } uint32 SoundMgr::mixSound(void) { register int i, p; int16 *src; int c, b, m; memset(sndBuffer, 0, BUFFER_SIZE << 1); for (c = 0; c < NUM_CHANNELS; c++) { if (!chn[c].vol) continue; m = chn[c].flags & AGI_SOUND_ENVELOPE ? chn[c].vol * chn[c].env >> 16 : chn[c].vol; if (chn[c].type != AGI_SOUND_4CHN || c != 3) { src = chn[c].ins; p = chn[c].phase; for (i = 0; i < BUFFER_SIZE; i++) { b = src[p >> 8]; #ifdef USE_INTERPOLATION b += ((src[((p >> 8) + 1) % chn[c].size] - src[p >> 8]) * (p & 0xff)) >> 8; #endif sndBuffer[i] += (b * m) >> 4; p += (uint32) 118600 *4 / chn[c].freq; /* FIXME */ if (chn[c].flags & AGI_SOUND_LOOP) { p %= chn[c].size << 8; } else { if (p >= chn[c].size << 8) { p = chn[c].vol = 0; chn[c].end = 1; break; } } } chn[c].phase = p; } else { /* Add white noise */ for (i = 0; i < BUFFER_SIZE; i++) { b = _vm->_rnd->getRandomNumber(255) - 128; sndBuffer[i] += (b * m) >> 4; } } switch (chn[c].adsr) { case AGI_SOUND_ENV_ATTACK: /* not implemented */ chn[c].adsr = AGI_SOUND_ENV_DECAY; break; case AGI_SOUND_ENV_DECAY: if (chn[c].env > chn[c].vol * ENV_SUSTAIN + ENV_DECAY) { chn[c].env -= ENV_DECAY; } else { chn[c].env = chn[c].vol * ENV_SUSTAIN; chn[c].adsr = AGI_SOUND_ENV_SUSTAIN; } break; case AGI_SOUND_ENV_SUSTAIN: break; case AGI_SOUND_ENV_RELEASE: if (chn[c].env >= ENV_RELEASE) { chn[c].env -= ENV_RELEASE; } else { chn[c].env = 0; } } } return BUFFER_SIZE; } #if 0 void Sound::unloadInstruments() { free(instruments); } #endif /** * Finds information about an Apple IIGS AGI executable based on the game ID. * @return A non-null IIgsExeInfo pointer if successful, otherwise NULL. */ const IIgsExeInfo *SoundMgr::getIIgsExeInfo(enum AgiGameID gameid) const { for (int i = 0; i < ARRAYSIZE(IIgsExeInfos); i++) if (IIgsExeInfos[i].gameid == gameid) return &IIgsExeInfos[i]; return NULL; } bool SoundMgr::loadInstrumentHeaders(const Common::String &exePath, const IIgsExeInfo &exeInfo) { bool loadedOk = false; // Was loading successful? Common::File file; // Open the executable file and check that it has correct size file.open(exePath); if (file.size() != exeInfo.exeSize) { debugC(3, kDebugLevelSound, "Apple IIGS executable (%s) has wrong size (Is %d, should be %d)", exePath.c_str(), file.size(), exeInfo.exeSize); } // Read the whole executable file into memory Common::MemoryReadStream *data = file.readStream(file.size()); file.close(); // Check that we got enough data to be able to parse the instruments if (data != NULL && data->size() >= (exeInfo.instSetStart + exeInfo.instSet.byteCount)) { // Check instrument set's length (The info's saved in the executable) data->seek(exeInfo.instSetStart - 4); uint16 instSetByteCount = data->readUint16LE(); if (instSetByteCount != exeInfo.instSet.byteCount) { debugC(3, kDebugLevelSound, "Wrong instrument set size (Is %d, should be %d) in Apple IIGS executable (%s)", instSetByteCount, exeInfo.instSet.byteCount, exePath.c_str()); } // Check instrument set's md5sum data->seek(exeInfo.instSetStart); char md5str[32+1]; Common::md5_file_string(*data, md5str, exeInfo.instSet.byteCount); if (scumm_stricmp(md5str, exeInfo.instSet.md5)) { warning("Unknown Apple IIGS instrument set (md5: %s) in %s, trying to use it nonetheless", md5str, exePath.c_str()); } // Read in the instrument set one instrument at a time data->seek(exeInfo.instSetStart); g_numInstruments = 0; // Zero number of successfully loaded instruments for (uint i = 0; i < exeInfo.instSet.instCount; i++) { if (!g_instruments[i].read(*data)) { warning("Error loading Apple IIGS instrument (%d. of %d) from %s, not loading more instruments", i + 1, exeInfo.instSet.instCount, exePath.c_str()); break; } g_numInstruments++; // Increase number of successfully loaded instruments } // Loading was successful only if all instruments were loaded successfully loadedOk = (g_numInstruments == exeInfo.instSet.instCount); } else // Couldn't read enough data from the executable file warning("Error loading instruments from Apple IIGS executable (%s)", exePath.c_str()); delete data; // Free the memory buffer allocated for reading the executable file return loadedOk; } /** * Convert sample from 8-bit unsigned to 16-bit signed format. * @param source Source stream containing the 8-bit unsigned sample data. * @param dest Destination buffer for the 16-bit signed sample data. * @param length Length of the sample data to be converted. */ bool SoundMgr::convertWave(Common::SeekableReadStream &source, int16 *dest, uint length) { // Convert the wave from 8-bit unsigned to 16-bit signed format for (uint i = 0; i < length; i++) dest[i] = (int16) ((source.readByte() - 128) * 256); return !source.ioFailed(); } Common::MemoryReadStream *SoundMgr::loadWaveFile(const Common::String &wavePath, const IIgsExeInfo &exeInfo) { bool loadedOk = false; // Was loading successful? Common::File file; // Open the wave file and read it into memory file.open(wavePath); Common::MemoryReadStream *uint8Wave = file.readStream(file.size()); file.close(); // Check that we got the whole wave file if (uint8Wave != NULL && uint8Wave->size() == SIERRASTANDARD_SIZE) { // Check wave file's md5sum char md5str[32+1]; Common::md5_file_string(*uint8Wave, md5str, SIERRASTANDARD_SIZE); if (scumm_stricmp(md5str, exeInfo.instSet.waveFileMd5)) { warning("Unknown Apple IIGS wave file (md5: %s, game: %s).\n" \ "Please report the information on the previous line to the ScummVM team.\n" \ "Using the wave file as it is - music may sound weird", md5str, exeInfo.exePrefix); } return uint8Wave; } else { // Couldn't read the wave file or it had incorrect size warning("Error loading Apple IIGS wave file (%s), not loading instruments", wavePath.c_str()); delete uint8Wave; // Free the memory buffer allocated for reading the wave file return NULL; } } /** * A function object (i.e. a functor) for testing if a FilesystemNode * object's name is equal (Ignoring case) to a string or to at least * one of the strings in a list of strings. Can be used e.g. with find_if(). */ struct fsnodeNameEqualsIgnoreCase : public Common::UnaryFunction { fsnodeNameEqualsIgnoreCase(const Common::StringList &str) : _str(str) {} fsnodeNameEqualsIgnoreCase(const Common::String str) { _str.push_back(str); } bool operator()(const FilesystemNode ¶m) const { for (Common::StringList::const_iterator iter = _str.begin(); iter != _str.end(); iter++) if (param.name().equalsIgnoreCase(*iter)) return true; return false; } private: Common::StringList _str; }; bool SoundMgr::loadInstruments() { // Check that the platform is Apple IIGS, as only it uses custom instruments if (_vm->getPlatform() != Common::kPlatformApple2GS) { debugC(3, kDebugLevelSound, "Platform isn't Apple IIGS so not loading any instruments"); return true; } // Get info on the particular Apple IIGS AGI game's executable const IIgsExeInfo *exeInfo = getIIgsExeInfo((enum AgiGameID) _vm->getGameID()); if (exeInfo == NULL) { warning("Unsupported Apple IIGS game, not loading instruments"); return false; } // List files in the game path FSList fslist; FilesystemNode dir(ConfMan.get("path")); if (!dir.listDir(fslist, FilesystemNode::kListFilesOnly)) { warning("Invalid game path (\"%s\"), not loading Apple IIGS instruments", dir.path().c_str()); return false; } // Populate executable filenames list (Long filename and short filename) for searching Common::StringList exeNames; exeNames.push_back(Common::String(exeInfo->exePrefix) + ".SYS16"); exeNames.push_back(Common::String(exeInfo->exePrefix) + ".SYS"); // Populate wave filenames list (Long filename and short filename) for searching Common::StringList waveNames; waveNames.push_back("SIERRASTANDARD"); waveNames.push_back("SIERRAST"); // Search for the executable file and the wave file (i.e. check if any of the filenames match) FSList::const_iterator exeFsnode, waveFsnode; exeFsnode = Common::find_if(fslist.begin(), fslist.end(), fsnodeNameEqualsIgnoreCase(exeNames)); waveFsnode = Common::find_if(fslist.begin(), fslist.end(), fsnodeNameEqualsIgnoreCase(waveNames)); // Make sure that we found the executable file if (exeFsnode == fslist.end()) { warning("Couldn't find Apple IIGS game executable (%s), not loading instruments", exeNames.begin()->c_str()); return false; } // Make sure that we found the wave file if (waveFsnode == fslist.end()) { warning("Couldn't find Apple IIGS wave file (%s), not loading instruments", waveNames.begin()->c_str()); return false; } // First load the wave file and then load the instrument headers. // Finally fix the instruments' lengths using the wave file data // (A zero in the wave file data can end the sample prematurely) // and convert the wave file from 8-bit unsigned to 16-bit signed format. Common::MemoryReadStream *uint8Wave = loadWaveFile(waveFsnode->path(), *exeInfo); bool result = uint8Wave != NULL && loadInstrumentHeaders(exeFsnode->path(), *exeInfo) && finalizeInstruments(*uint8Wave) && convertWave(*uint8Wave, g_wave, uint8Wave->size()); delete uint8Wave; // Free the 8-bit unsigned wave file buffer return result; } static void fillAudio(void *udata, int16 *stream, uint len) { SoundMgr *soundMgr = (SoundMgr *)udata; uint32 p = 0; static uint32 n = 0, s = 0; len <<= 2; debugC(5, kDebugLevelSound, "(%p, %p, %d)", (void *)udata, (void *)stream, len); memcpy(stream, (uint8 *)buffer + s, p = n); for (n = 0, len -= p; n < len; p += n, len -= n) { soundMgr->playSound(); n = soundMgr->mixSound() << 1; if (len < n) { memcpy((uint8 *)stream + p, buffer, len); s = len; n -= s; return; } else { memcpy((uint8 *)stream + p, buffer, n); } } soundMgr->playSound(); n = soundMgr->mixSound() << 1; memcpy((uint8 *)stream + p, buffer, s = len); n -= s; } SoundMgr::SoundMgr(AgiEngine *agi, Audio::Mixer *pMixer) { _vm = agi; _mixer = pMixer; _sampleRate = pMixer->getOutputRate(); } void SoundMgr::premixerCall(int16 *data, uint len) { fillAudio(this, data, len); } void SoundMgr::setVolume(uint8 volume) { // TODO } SoundMgr::~SoundMgr() { } } // End of namespace Agi