/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ /* * This code is based on the original source code of Lord Avalot d'Argent version 1.3. * Copyright (c) 1994-1995 Mike, Mark and Thomas Thurman. */ #include "avalanche/avalanche.h" #include "avalanche/graphics.h" #include "common/system.h" #include "common/rect.h" #include "engines/util.h" #include "graphics/palette.h" #include "math.h" namespace Avalanche { const byte Graphics::kEgaPaletteIndex[16] = {0, 1, 2, 3, 4, 5, 20, 7, 56, 57, 58, 59, 60, 61, 62, 63}; Graphics::Graphics(AvalancheEngine *vm) { _vm = vm; } Graphics::~Graphics() { _surface.free(); _magics.free(); _background.free(); _screen.free(); _scrolls.free(); } void Graphics::init() { initGraphics(kScreenWidth, kScreenHeight * 2, true); // Doubling the height. for (int i = 0; i < 64; ++i) { _egaPalette[i][0] = (i >> 2 & 1) * 0xaa + (i >> 5 & 1) * 0x55; _egaPalette[i][1] = (i >> 1 & 1) * 0xaa + (i >> 4 & 1) * 0x55; _egaPalette[i][2] = (i & 1) * 0xaa + (i >> 3 & 1) * 0x55; } for (int i = 0; i < 16; i++) g_system->getPaletteManager()->setPalette(_egaPalette[kEgaPaletteIndex[i]], i, 1); _surface.create(kScreenWidth, kScreenHeight, ::Graphics::PixelFormat::createFormatCLUT8()); _magics.create(kScreenWidth, kScreenHeight, ::Graphics::PixelFormat::createFormatCLUT8()); _screen.create(kScreenWidth, kScreenHeight * 2, ::Graphics::PixelFormat::createFormatCLUT8()); _scrolls.create(kScreenWidth, kScreenHeight, ::Graphics::PixelFormat::createFormatCLUT8()); } void Graphics::fleshColors() { g_system->getPaletteManager()->setPalette(_egaPalette[39], 13, 1); g_system->getPaletteManager()->setPalette(_egaPalette[28], 5, 1); } Common::Point Graphics::drawArc(::Graphics::Surface &surface, int16 x, int16 y, int16 stAngle, int16 endAngle, uint16 radius, byte color) { Common::Point endPoint; const double pi = 3.14; const double convfac = pi / 180.0; int32 xRadius = radius; int32 yRadius = radius * kScreenWidth / (8 * kScreenHeight); // Just don't ask why... if (xRadius == 0) xRadius++; if (yRadius == 0) yRadius++; // Check for an ellipse with negligable x and y radius. if ((xRadius <= 1) && (yRadius <= 1)) { *(byte *)_scrolls.getBasePtr(x, y) = color; endPoint.x = x; endPoint.y = y; return endPoint; } // Check if valid angles. stAngle = stAngle % 361; endAngle = endAngle % 361; // If impossible angles, then swap them! if (endAngle < stAngle) { uint16 tmpAngle=endAngle; endAngle=stAngle; stAngle=tmpAngle; } // Approximate the number of pixels required by using the circumference equation of an ellipse. uint16 numOfPixels = (uint16)floor(sqrt(3.0) * sqrt(pow(double(xRadius), 2) + pow(double(yRadius), 2)) + 0.5); // Calculate the angle precision required. double delta = 90.0 / numOfPixels; // Always just go over the first 90 degrees. Could be optimized a // bit if startAngle and endAngle lie in the same quadrant, left as an // exercise for the reader. :) double j = 0; // Calculate stop position, go 1 further than 90 because otherwise 1 pixel is sometimes not drawn. uint16 deltaEnd = 91; // Set the end point. double tempTerm = endAngle * convfac; endPoint.x = (int16)floor(xRadius * cos(tempTerm) + 0.5) + x; endPoint.y = (int16)floor(yRadius * sin(tempTerm + pi) + 0.5) + y; // Calculate points. int16 xNext = xRadius; int16 yNext = 0; do { int16 xTemp = xNext; int16 yTemp = yNext; // This is used by both sin and cos. tempTerm = (j + delta) * convfac; xNext = (int16)floor(xRadius * cos(tempTerm) + 0.5); yNext = (int16)floor(yRadius * sin(tempTerm + pi) + 0.5); int16 xp = x + xTemp; int16 xm = x - xTemp; int16 yp = y + yTemp; int16 ym = y - yTemp; if ((j >= stAngle) && (j <= endAngle)) *(byte *)_scrolls.getBasePtr(xp,yp) = color; if (((180-j) >= stAngle) && ((180-j) <= endAngle)) *(byte *)_scrolls.getBasePtr(xm,yp) = color; if (((j+180) >= stAngle) && ((j+180) <= endAngle)) *(byte *)_scrolls.getBasePtr(xm,ym) = color; if (((360-j) >= stAngle) && ((360-j) <= endAngle)) *(byte *)_scrolls.getBasePtr(xp,ym) = color; j += delta; } while (j <= deltaEnd); return endPoint; } void Graphics::drawPieSlice(::Graphics::Surface &surface, int16 x, int16 y, int16 stAngle, int16 endAngle, uint16 radius, byte color) { while (radius > 0) drawArc(surface, x, y, stAngle, endAngle, radius--, color); } void Graphics::drawTriangle(::Graphics::Surface &surface, Common::Point *p, byte color) { // Draw the borders with a marking color. _scrolls.drawLine(p[0].x, p[0].y, p[1].x, p[1].y, 255); _scrolls.drawLine(p[1].x, p[1].y, p[2].x, p[2].y, 255); _scrolls.drawLine(p[2].x, p[2].y, p[0].x, p[0].y, 255); // Get the top and the bottom of the triangle. uint16 maxY = p[0].y, minY = p[0].y; for (int i = 1; i < 3; i++) { if (p[i].y < minY) minY = p[i].y; if (p[i].y > maxY) maxY = p[i].y; } // Fill the triangle. for (uint16 y = minY; y <= maxY; y++) { uint16 x = 0; while (*(byte *)_scrolls.getBasePtr(x, y) != 255) x++; uint16 minX = x; uint16 maxX = x; x++; while ((*(byte *)_scrolls.getBasePtr(x, y) != 255) && (x != 639)) x++; if (x != 639) maxX = x; if (minX != maxX) _scrolls.drawLine(minX, y, maxX, y, color); } // Redraw the borders with the actual color. _scrolls.drawLine(p[0].x, p[0].y, p[1].x, p[1].y, color); _scrolls.drawLine(p[1].x, p[1].y, p[2].x, p[2].y, color); _scrolls.drawLine(p[2].x, p[2].y, p[0].x, p[0].y, color); } void Graphics::drawText(::Graphics::Surface &surface, const Common::String &text, FontType font, byte fontHeight, int16 x, int16 y, byte color) { for (uint i = 0; i < text.size(); i++) { for (int j = 0; j < fontHeight; j++) { byte pixel = font[(byte)text[i]][j]; for (int bit = 0; bit < 8; bit++) { byte pixelBit = (pixel >> bit) & 1; if (pixelBit) *(byte *)surface.getBasePtr(x + i * 8 + 7 - bit, y + j) = color; } } } } ::Graphics::Surface Graphics::loadPictureGraphic(Common::File &file) { // This function mimics Pascal's getimage(). // The height and the width are stored in 2-2 bytes. We have to add 1 to each because Pascal stores the value of them -1. uint16 width = file.readUint16LE() + 1; uint16 height = file.readUint16LE() + 1; ::Graphics::Surface picture; // We make a Surface object for the picture itself. picture.create(width, height, ::Graphics::PixelFormat::createFormatCLUT8()); // Produce the picture. We read it in row-by-row, and every row has 4 planes. for (int y = 0; y < height; y++) { for (int8 plane = 3; plane >= 0; plane--) { // The planes are in the opposite way. for (uint16 x = 0; x < width; x += 8) { byte pixel = file.readByte(); for (int bit = 0; bit < 8; bit++) { byte pixelBit = (pixel >> bit) & 1; if (pixelBit != 0) *(byte *)picture.getBasePtr(x + 7 - bit, y) += (pixelBit << plane); } } } } return picture; } ::Graphics::Surface Graphics::loadPictureRow(Common::File &file, uint16 width, uint16 height) { // This function is our own creation, very much like the one above. The main differences are that // we don't read the width and the height from the file, the planes are in a different order // and we read the picture plane-by-plane. ::Graphics::Surface picture; picture.create(width, height, ::Graphics::PixelFormat::createFormatCLUT8()); for (int plane = 0; plane < 4; plane++) { for (uint16 y = 0; y < height; y++) { for (uint16 x = 0; x < width; x += 8) { byte pixel = file.readByte(); for (int i = 0; i < 8; i++) { byte pixelBit = (pixel >> i) & 1; *(byte *)picture.getBasePtr(x + 7 - i, y) += (pixelBit << plane); } } } } return picture; } void Graphics::drawSprite(const SpriteInfo &sprite, byte picnum, int16 x, int16 y) { // First we make the pixels of the spirte blank. for (int j = 0; j < sprite._yLength; j++) { for (int i = 0; i < sprite._xLength; i++) { if (((*sprite._sil[picnum])[j][i / 8] >> ((7 - i % 8)) & 1) == 0) *(byte *)_surface.getBasePtr(x + i, y + j) = 0; } } // Then we draw the picture to the blank places. uint16 maniPos = 0; // Because the original manitype starts at 5!!! See Graphics.h for definition. for (int j = 0; j < sprite._yLength; j++) { for (int8 plane = 3; plane >= 0; plane--) { // The planes are in the opposite way. for (uint16 i = 0; i < sprite._xLength; i += 8) { byte pixel = (*sprite._mani[picnum])[maniPos++]; for (int bit = 0; bit < 8; bit++) { byte pixelBit = (pixel >> bit) & 1; *(byte *)_surface.getBasePtr(x + i + 7 - bit, y + j) += (pixelBit << plane); } } } } } void Graphics::drawPicture(::Graphics::Surface &target, const ::Graphics::Surface &picture, uint16 destX, uint16 destY) { // Copy the picture to the given place on the screen. for (uint16 y = 0; y < picture.h; y++) { for (uint16 x = 0; x < picture.w; x++) *(byte *)target.getBasePtr(x + destX, y + destY) = *(byte *)picture.getBasePtr(x, y); } } void Graphics::refreshScreen() { // These cycles are for doubling the screen height. for (uint16 y = 0; y < _screen.h / 2; y++) { for (uint16 x = 0; x < _screen.w; x++) { for (int j = 0; j < 2; j++) *(byte *)_screen.getBasePtr(x, y * 2 + j) = *(byte *)_surface.getBasePtr(x, y); } } // Now we copy the stretched picture to the screen. g_system->copyRectToScreen(_screen.getPixels(), _screen.pitch, 0, 0, kScreenWidth, kScreenHeight * 2); g_system->updateScreen(); } void Graphics::refreshBackground() { _vm->_graphics->drawPicture(_vm->_graphics->_surface, _vm->_graphics->_background, 0, 10); } } // End of namespace Avalanche