/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ #include "cine/cine.h" #include "cine/various.h" #include "cine/pal.h" #include "common/system.h" // For g_system->setPalette namespace Cine { Common::Array palArray; static byte paletteBuffer1[16]; static byte paletteBuffer2[16]; void loadPal(const char *fileName) { char buffer[20]; removeExtention(buffer, fileName); strcat(buffer, ".PAL"); palArray.clear(); Common::File palFileHandle; if (!palFileHandle.open(buffer)) error("loadPal(): Cannot open file %s", fileName); uint16 palEntriesCount = palFileHandle.readUint16LE(); palFileHandle.readUint16LE(); // entry size palArray.resize(palEntriesCount); for (uint i = 0; i < palArray.size(); ++i) { palFileHandle.read(palArray[i].name, 10); palFileHandle.read(palArray[i].pal1, 16); palFileHandle.read(palArray[i].pal2, 16); } palFileHandle.close(); } int16 findPaletteFromName(const char *fileName) { char buffer[10]; uint16 position = 0; uint16 i; strcpy(buffer, fileName); while (position < strlen(fileName)) { if (buffer[position] > 'a' && buffer[position] < 'z') { buffer[position] += 'A' - 'a'; } position++; } for (i = 0; i < palArray.size(); i++) { if (!strcmp(buffer, palArray[i].name)) { return i; } } return -1; } void loadRelatedPalette(const char *fileName) { char localName[16]; byte i; int16 paletteIndex; removeExtention(localName, fileName); paletteIndex = findPaletteFromName(localName); if (paletteIndex == -1) { for (i = 0; i < 16; i++) { // generate default palette paletteBuffer1[i] = paletteBuffer2[i] = (i << 4) + i; } } else { assert(paletteIndex < (int32)palArray.size()); memcpy(paletteBuffer1, palArray[paletteIndex].pal1, 16); memcpy(paletteBuffer2, palArray[paletteIndex].pal2, 16); } } void palRotate(uint16 *pal, byte a, byte b, byte c) { assert(pal); if (c == 1) { uint16 currentColor = pal[b]; for (int i = b; i > a; i--) { pal[i] = pal[i - 1]; } pal[a] = currentColor; } } void palRotate(byte *pal, byte a, byte b, byte c) { assert(pal); if (c == 1) { byte currentR = pal[3 * b + 0]; byte currentG = pal[3 * b + 1]; byte currentB = pal[3 * b + 2]; for (int i = b; i > a; i--) { pal[3 * i + 0] = pal[3 * (i - 1) + 0]; pal[3 * i + 1] = pal[3 * (i - 1) + 1]; pal[3 * i + 2] = pal[3 * (i - 1) + 2]; } pal[3 * a + 0] = currentR; pal[3 * a + 1] = currentG; pal[3 * a + 2] = currentB; } } uint16 transformColor(uint16 baseColor, int r, int g, int b) { int8 oriR = CLIP( (baseColor & 0x007) + b, 0, 7); int8 oriG = CLIP(((baseColor & 0x070) >> 4) + g, 0, 7); int8 oriB = CLIP(((baseColor & 0x700) >> 8) + r, 0, 7); return oriR | (oriG << 4) | (oriB << 8); } void transformPaletteRange(uint16 *dstPal, uint16 *srcPal, int startColor, int stopColor, int r, int g, int b) { assert(srcPal && dstPal); for (int i = startColor; i <= stopColor; i++) dstPal[i] = transformColor(srcPal[i], r, g, b); } void transformPaletteRange(byte *dstPal, byte *srcPal, int startColor, int stopColor, int r, int g, int b) { assert(srcPal && dstPal); for (int i = startColor; i <= stopColor; i++) { dstPal[3 * i + 0] = CLIP(srcPal[3 * i + 0] + r * 36, 0, 252); dstPal[3 * i + 1] = CLIP(srcPal[3 * i + 1] + g * 36, 0, 252); dstPal[3 * i + 2] = CLIP(srcPal[3 * i + 2] + b * 36, 0, 252); } } /*! \brief Shift byte to the left by given amount (Handles negative shifting amounts too, otherwise this would be trivial). */ byte shiftByteLeft(const byte value, const signed shiftLeft) { if (shiftLeft >= 0) return value << shiftLeft; else // right shift with negative shiftLeft values return value >> abs(shiftLeft); } /*! \brief Is given endian type big endian? (Handles native endian type too, otherwise this would be trivial). */ bool isBigEndian(const EndianType endian) { assert(endian == CINE_NATIVE_ENDIAN || endian == CINE_LITTLE_ENDIAN || endian == CINE_BIG_ENDIAN); // Handle explicit little and big endian types here if (endian != CINE_NATIVE_ENDIAN) { return (endian == CINE_BIG_ENDIAN); } // Handle native endian type here #if defined(SCUMM_BIG_ENDIAN) return true; #elif defined(SCUMM_LITTLE_ENDIAN) return false; #else #error No endianness defined #endif } /*! \brief Calculate byte position of given bit position in a multibyte variable using defined endianness. */ int bytePos(const int bitPos, const int numBytes, const bool bigEndian) { if (bigEndian) return (numBytes - 1) - (bitPos / 8); else // little endian return bitPos / 8; } // a.k.a. palRotate Palette &Palette::rotateRight(byte firstIndex, byte lastIndex) { const Color lastColor = _colors[lastIndex]; for (int i = lastIndex; i > firstIndex; i--) _colors[i] = _colors[i - 1]; _colors[firstIndex] = lastColor; return *this; } bool Palette::empty() const { return _colors.empty(); } uint Palette::colorCount() const { return _colors.size(); } Palette &Palette::fillWithBlack() { for (uint i = 0; i < _colors.size(); i++) { _colors[i].r = 0; _colors[i].g = 0; _colors[i].b = 0; } return *this; } // TODO: Add better heuristic for checking whether the color format is valid bool Palette::isValid() const { // Check that the color format has been actually set and not just default constructed. // Also check that the alpha channel is discarded. return _format != Graphics::PixelFormat() && _format.aLoss == 8; } const Graphics::PixelFormat &Palette::colorFormat() const { return _format; } void Palette::setGlobalOSystemPalette() const { byte buf[256 * 4]; // Allocate space for the largest possible palette save(buf, sizeof(buf), Cine::kSystemPalFormat, CINE_LITTLE_ENDIAN); g_system->setPalette(buf, 0, colorCount()); } Cine::Palette::Color Palette::getColor(byte index) const { return _colors[index]; } uint8 Palette::getR(byte index) const { return _colors[index].r; } uint8 Palette::getG(byte index) const { return _colors[index].g; } uint8 Palette::getB(byte index) const { return _colors[index].b; } void Palette::setColorFormat(const Graphics::PixelFormat format) { _format = format; } // a.k.a. transformPaletteRange Palette &Palette::saturatedAddColor(Palette& output, byte firstIndex, byte lastIndex, signed r, signed g, signed b) { assert(firstIndex < colorCount() && lastIndex < colorCount()); assert(firstIndex < output.colorCount() && lastIndex < output.colorCount()); assert(output.colorFormat() == colorFormat()); for (uint i = firstIndex; i <= lastIndex; i++) output._colors[i] = saturatedAddColor(_colors[i], r, g, b); return output; } Palette &Palette::saturatedAddColor(Palette& output, byte firstIndex, byte lastIndex, signed rSource, signed gSource, signed bSource, const Graphics::PixelFormat &sourceFormat) { // Convert the source color to the internal color format ensuring that no divide by zero will happen const signed r = _format.rMax() * rSource / MAX(sourceFormat.rMax(), 1); const signed g = _format.gMax() * gSource / MAX(sourceFormat.gMax(), 1); const signed b = _format.bMax() * bSource / MAX(sourceFormat.bMax(), 1); return saturatedAddColor(output, firstIndex, lastIndex, r, g, b); } Palette &Palette::saturatedAddNormalizedGray(Palette& output, byte firstIndex, byte lastIndex, int grayDividend, int grayDenominator) { assert(grayDenominator != 0); const signed r = _format.rMax() * grayDividend / grayDenominator; const signed g = _format.gMax() * grayDividend / grayDenominator; const signed b = _format.bMax() * grayDividend / grayDenominator; return saturatedAddColor(output, firstIndex, lastIndex, r, g, b); } // a.k.a. transformColor // Parameter color components (i.e. r, g and b) are in range [-7, 7] // e.g. r = 7 sets the resulting color's red component to maximum // e.g. r = -7 sets the resulting color's red component to minimum (i.e. zero) Cine::Palette::Color Palette::saturatedAddColor(Cine::Palette::Color baseColor, signed r, signed g, signed b) const { Cine::Palette::Color result; result.r = CLIP(baseColor.r + r, 0, _format.rMax()); result.g = CLIP(baseColor.g + g, 0, _format.gMax()); result.b = CLIP(baseColor.b + b, 0, _format.bMax()); return result; } Palette::Palette(const Graphics::PixelFormat format, const uint numColors) : _format(format), _colors() { _colors.resize(numColors); fillWithBlack(); } Palette &Palette::clear() { _format = Graphics::PixelFormat(); _colors.clear(); return *this; } Palette &Palette::load(const byte *buf, const uint size, const Graphics::PixelFormat format, const uint numColors, const EndianType endian) { assert(format.bytesPerPixel * numColors <= size); // Make sure there's enough input space assert(format.aLoss == 8); // No alpha assert(format.rShift / 8 == (format.rShift + MAX(0, format.rBits() - 1)) / 8); // R must be inside one byte assert(format.gShift / 8 == (format.gShift + MAX(0, format.gBits() - 1)) / 8); // G must be inside one byte assert(format.bShift / 8 == (format.bShift + MAX(0, format.bBits() - 1)) / 8); // B must be inside one byte setColorFormat(format); _colors.clear(); _colors.resize(numColors); const int rBytePos = bytePos(format.rShift, format.bytesPerPixel, isBigEndian(endian)); const int gBytePos = bytePos(format.gShift, format.bytesPerPixel, isBigEndian(endian)); const int bBytePos = bytePos(format.bShift, format.bytesPerPixel, isBigEndian(endian)); for (uint i = 0; i < numColors; i++) { // format.rMax(), format.gMax(), format.bMax() are also used as masks here _colors[i].r = (buf[i * format.bytesPerPixel + rBytePos] >> (format.rShift % 8)) & format.rMax(); _colors[i].g = (buf[i * format.bytesPerPixel + gBytePos] >> (format.gShift % 8)) & format.gMax(); _colors[i].b = (buf[i * format.bytesPerPixel + bBytePos] >> (format.bShift % 8)) & format.bMax(); } return *this; } byte *Palette::save(byte *buf, const uint size, const EndianType endian) const { return save(buf, size, colorFormat(), colorCount(), endian); } byte *Palette::save(byte *buf, const uint size, const Graphics::PixelFormat format, const EndianType endian) const { return save(buf, size, format, colorCount(), endian); } byte *Palette::save(byte *buf, const uint size, const Graphics::PixelFormat format, const uint numColors, const EndianType endian, const byte firstIndex) const { assert(format.bytesPerPixel * numColors <= size); // Make sure there's enough output space assert(format.aLoss == 8); // No alpha assert(format.rShift / 8 == (format.rShift + MAX(0, format.rBits() - 1)) / 8); // R must be inside one byte assert(format.gShift / 8 == (format.gShift + MAX(0, format.gBits() - 1)) / 8); // G must be inside one byte assert(format.bShift / 8 == (format.bShift + MAX(0, format.bBits() - 1)) / 8); // B must be inside one byte // Clear the part of the output palette we're going to be writing to with all black memset(buf, 0, format.bytesPerPixel * numColors); // Calculate how much bit shifting the color components need (for positioning them correctly) const signed rShiftLeft = (colorFormat().rLoss - (signed) format.rLoss) + (format.rShift % 8); const signed gShiftLeft = (colorFormat().gLoss - (signed) format.gLoss) + (format.gShift % 8); const signed bShiftLeft = (colorFormat().bLoss - (signed) format.bLoss) + (format.bShift % 8); // Calculate the byte masks for each color component (for masking away excess bits) const byte rMask = format.rMax() << (format.rShift % 8); const byte gMask = format.gMax() << (format.gShift % 8); const byte bMask = format.bMax() << (format.bShift % 8); const int rBytePos = bytePos(format.rShift, format.bytesPerPixel, isBigEndian(endian)); const int gBytePos = bytePos(format.gShift, format.bytesPerPixel, isBigEndian(endian)); const int bBytePos = bytePos(format.bShift, format.bytesPerPixel, isBigEndian(endian)); // Save the palette to the output in the specified format for (uint i = firstIndex; i < firstIndex + numColors; i++) { buf[i * format.bytesPerPixel + rBytePos] |= (shiftByteLeft(_colors[i].r, rShiftLeft) & rMask); buf[i * format.bytesPerPixel + gBytePos] |= (shiftByteLeft(_colors[i].g, gShiftLeft) & gMask); buf[i * format.bytesPerPixel + bBytePos] |= (shiftByteLeft(_colors[i].b, bShiftLeft) & bMask); } // Return the pointer to the output palette return buf; } } // End of namespace Cine