/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ #include #include "common/stream.h" #include "draci/walking.h" #include "draci/sprite.h" namespace Draci { void WalkingMap::load(const byte *data, uint length) { Common::MemoryReadStream mapReader(data, length); _realWidth = mapReader.readUint16LE(); _realHeight = mapReader.readUint16LE(); _deltaX = mapReader.readUint16LE(); _deltaY = mapReader.readUint16LE(); _mapWidth = mapReader.readUint16LE(); _mapHeight = mapReader.readUint16LE(); _byteWidth = mapReader.readUint16LE(); // Set the data pointer to raw map data _data = data + mapReader.pos(); } bool WalkingMap::getPixel(int x, int y) const { const byte *pMapByte = _data + _byteWidth * y + x / 8; return *pMapByte & (1 << x % 8); } bool WalkingMap::isWalkable(int x, int y) const { // Convert to map pixels return getPixel(x / _deltaX, y / _deltaY); } Sprite *WalkingMap::newOverlayFromMap(byte colour) const { // HACK: Create a visible overlay from the walking map so we can test it byte *wlk = new byte[_realWidth * _realHeight]; memset(wlk, 255, _realWidth * _realHeight); for (int i = 0; i < _mapWidth; ++i) { for (int j = 0; j < _mapHeight; ++j) { if (getPixel(i, j)) { drawOverlayRectangle(Common::Point(i, j), colour, wlk); } } } Sprite *ov = new Sprite(_realWidth, _realHeight, wlk, 0, 0, false); // ov has taken the ownership of wlk. return ov; } /** * @brief For a given point, find a nearest walkable point on the walking map * * @param startX x coordinate of the point * @param startY y coordinate of the point * * @return A Common::Point representing the nearest walkable point * * The algorithm was copied from the original engine for exactness. * TODO: Study this algorithm in more detail so it can be documented properly and * possibly improved / simplified. */ Common::Point WalkingMap::findNearestWalkable(int startX, int startY, Common::Rect searchRect) const { // If the starting point is walkable, just return that if (searchRect.contains(startX, startY) && isWalkable(startX, startY)) { return Common::Point(startX, startY); } int signs[] = { 1, -1 }; const uint kSignsNum = 2; int radius = 0; int x, y; int dx, dy; int prediction; // The place where, eventually, the result coordinates will be stored int finalX, finalY; // The algorithm appears to start off with an ellipse with the minor radius equal to // zero and the major radius equal to the walking map delta (the number of pixels // one map pixel represents). It then uses a heuristic to gradually reshape it into // a circle (by shortening the major radius and lengthening the minor one). At each // such resizing step, it checks some select points on the ellipse for walkability. // It also does the same check for the ellipse perpendicular to it (rotated by 90 degrees). while (1) { // The default major radius radius += _deltaX; // The ellipse radii (minor, major) that get resized x = 0; y = radius; // Heuristic variables prediction = 1 - radius; dx = 3; dy = 2 * radius - 2; do { // The following two loops serve the purpose of checking the points on the two // ellipses for walkability. The signs[] array is there to obliterate the need // of writing out all combinations manually. for (uint i = 0; i < kSignsNum; ++i) { finalY = startY + y * signs[i]; for (uint j = 0; j < kSignsNum; ++j) { finalX = startX + x * signs[j]; // If the current point is walkable, return it if (searchRect.contains(finalX, finalY) && isWalkable(finalX, finalY)) { return Common::Point(finalX, finalY); } } } if (x == y) { // If the starting point is walkable, just return that if (searchRect.contains(finalX, finalY) && isWalkable(finalX, finalY)) { return Common::Point(finalX, finalY); } } for (uint i = 0; i < kSignsNum; ++i) { finalY = startY + x * signs[i]; for (uint j = 0; j < kSignsNum; ++j) { finalX = startX + y * signs[j]; // If the current point is walkable, return it if (searchRect.contains(finalX, finalY) && isWalkable(finalX, finalY)) { return Common::Point(finalX, finalY); } } } // If prediction is non-negative, we need to decrease the major radius of the // ellipse if (prediction >= 0) { prediction -= dy; dy -= 2 * _deltaX; y -= _deltaX; } // Increase the minor radius of the ellipse and update heuristic variables prediction += dx; dx += 2 * _deltaX; x += _deltaX; // If the current ellipse has been reshaped into a circle, // end this loop and enlarge the radius } while (x <= y); } } // We don't use Common::Point due to using static initialization. int WalkingMap::kDirections[][2] = { {0, -1}, {0, +1}, {-1, 0}, {+1, 0} }; bool WalkingMap::findShortestPath(Common::Point p1, Common::Point p2, WalkingPath *path) const { // Round the positions to map squares. p1.x /= _deltaX; p2.x /= _deltaX; p1.y /= _deltaY; p2.y /= _deltaY; // Allocate buffers for breadth-first search. The buffer of points for // exploration should be large enough. const int bufSize = 4 * _realHeight; int8 *cameFrom = new int8[_mapWidth * _mapHeight]; Common::Point *toSearch = new Common::Point[bufSize]; // Insert the starting point as a single seed. int toRead = 0, toWrite = 0; memset(cameFrom, -1, _mapWidth * _mapHeight); // -1 = not found yet cameFrom[p1.y * _mapWidth + p1.x] = 0; toSearch[toWrite++] = p1; // Search until we empty the whole buffer (not found) or find the // destination point. while (toRead != toWrite) { const Common::Point &here = toSearch[toRead]; const int from = cameFrom[here.y * _mapWidth + here.x]; if (here == p2) { break; } // Look into all 4 directions in a particular order depending // on the direction we came to this point from. This is to // ensure that among many paths of the same length, the one // with the smallest number of turns is preferred. for (int addDir = 0; addDir < 4; ++addDir) { const int probeDirection = (from + addDir) % 4; const int x = here.x + kDirections[probeDirection][0]; const int y = here.y + kDirections[probeDirection][1]; if (x < 0 || x >= _mapWidth || y < 0 || y >= _mapHeight) { continue; } // If this point is walkable and we haven't seen it // yet, record how we have reached it and insert it // into the round buffer for exploration. if (getPixel(x, y) && cameFrom[y * _mapWidth + x] == -1) { cameFrom[y * _mapWidth + x] = probeDirection; toSearch[toWrite++] = Common::Point(x, y); toWrite %= bufSize; } } ++toRead; toRead %= bufSize; } // The path doesn't exist. if (toRead == toWrite) { delete[] cameFrom; delete[] toSearch; return false; } // Trace the path back and store it. Count the path length, resize the // output array, and then track the pack from the end. path->clear(); for (int pass = 0; pass < 2; ++pass) { Common::Point p = p2; int index = 0; while (1) { ++index; if (pass == 1) { (*path)[path->size() - index] = p; } if (p == p1) { break; } const int from = cameFrom[p.y * _mapWidth + p.x]; p.x -= kDirections[from][0]; p.y -= kDirections[from][1]; } if (pass == 0) { path->resize(index); } } delete[] cameFrom; delete[] toSearch; return true; } void WalkingMap::obliquePath(const WalkingPath& path, WalkingPath *obliquedPath) { // Prune the path to only contain vertices where the direction is changing. obliquedPath->clear(); if (path.empty()) { return; } obliquedPath->push_back(path[0]); uint index = 1; while (index < path.size()) { // index1 points to the last vertex inserted into the // simplified path. uint index1 = index - 1; // Probe the vertical direction. Notice that the shortest path // never turns by 180 degrees and therefore it is sufficient to // test that the X coordinates are equal. while (index < path.size() && path[index].x == path[index1].x) { ++index; } if (index - 1 > index1) { index1 = index - 1; obliquedPath->push_back(path[index1]); } // Probe the horizontal direction. while (index < path.size() && path[index].y == path[index1].y) { ++index; } if (index - 1 > index1) { index1 = index - 1; obliquedPath->push_back(path[index1]); } } // Repeatedly oblique the path until it cannot be improved. This // process is finite, because after each success the number of vertices // goes down. while (managedToOblique(obliquedPath)) {} } Sprite *WalkingMap::newOverlayFromPath(const WalkingPath &path, byte colour) const { // HACK: Create a visible overlay from the walking map so we can test it byte *wlk = new byte[_realWidth * _realHeight]; memset(wlk, 255, _realWidth * _realHeight); for (uint segment = 1; segment < path.size(); ++segment) { const Common::Point &v1 = path[segment-1]; const Common::Point &v2 = path[segment]; const int steps = pointsBetween(v1, v2); // Draw only points in the interval [v1, v2). These half-open // half-closed intervals connect all the way to the last point. for (int step = 0; step < steps; ++step) { drawOverlayRectangle(interpolate(v1, v2, step, steps), colour, wlk); } } // Draw the last point. This works also when the path has no segment, // but just one point. if (path.size() > 0) { const Common::Point &vLast = path[path.size()-1]; drawOverlayRectangle(vLast, colour, wlk); } Sprite *ov = new Sprite(_realWidth, _realHeight, wlk, 0, 0, false); // ov has taken the ownership of wlk. return ov; } void WalkingMap::drawOverlayRectangle(const Common::Point &p, byte colour, byte *buf) const { for (int i = 0; i < _deltaX; ++i) { for (int j = 0; j < _deltaY; ++j) { buf[(p.y * _deltaY + j) * _realWidth + (p.x * _deltaX + i)] = colour; } } } int WalkingMap::pointsBetween(const Common::Point &p1, const Common::Point &p2) const { return MAX(abs(p2.x - p1.x), abs(p2.y - p1.y)); } Common::Point WalkingMap::interpolate(const Common::Point &p1, const Common::Point &p2, int i, int n) const { const int x = (p1.x * (n-i) + p2.x * i + n/2) / n; const int y = (p1.y * (n-i) + p2.y * i + n/2) / n; return Common::Point(x, y); } bool WalkingMap::lineIsCovered(const Common::Point &p1, const Common::Point &p2) const { const int steps = pointsBetween(p1, p2); for (int step = 0; step <= steps; ++step) { Common::Point p = interpolate(p1, p2, step, steps); if (!getPixel(p.x, p.y)) { return false; } } return true; } bool WalkingMap::managedToOblique(WalkingPath *path) const { bool improved = false; // Making the path oblique works as follows. If the path has at least // 3 remaining vertices, we try to oblique the L-shaped path between // them. First we try to connect the 1st and 3rd vertex directly (if // all points on the line between them are walkable) and then we try to // walk on both edges towards the 2nd vertex in parallel and try to // find a shortcut (replacing the 2nd vertex by this mid-point). If // either of those attempts succeeds, we have shortned the path. We // update the path vertices and continue with the next segment. for (uint head = 2; head < path->size(); ++head) { const Common::Point &v1 = (*path)[head-2]; const Common::Point &v2 = (*path)[head-1]; const Common::Point &v3 = (*path)[head]; const int points12 = pointsBetween(v1, v2); const int points32 = pointsBetween(v3, v2); // Find the first point p on each edge [v1, v2] and [v3, v2] // such that the edge [p, the third vertex] is covered. // Ideally we would like p \in {v1, v3} and the closer the // better. The last point p = v2 should always succeed. int first12, first32; for (first12 = 0; first12 < points12; ++first12) { Common::Point midPoint = interpolate(v1, v2, first12, points12); if (lineIsCovered(midPoint, v3)) { break; } } if (first12 == 0) { // Can completely remove the vertex. Head stays the // same after -- and ++. path->remove_at(--head); improved = true; continue; } for (first32 = 0; first32 < points32; ++first32) { Common::Point midPoint = interpolate(v3, v2, first32, points32); if (lineIsCovered(midPoint, v1)) { break; } } if (first12 < points12 && first32 >= points32 + MIN(first12 - points12, 0)) { // There is such a point on the first edge and the // second edge has either not succeeded or we gain more // by cutting this edge than the other one. (*path)[head-1] = interpolate(v1, v2, first12, points12); // After replacing the 2nd vertex, let head move on. } else if (first32 < points32) { (*path)[head-1] = interpolate(v3, v2, first32, points32); } } return improved; } void WalkingState::setPath(const Common::Point &p1, const Common::Point &p2, const Common::Point &delta, const WalkingPath& path) { _path = path; if (!_path.size()) { return; } if (_path.size() == 1 && p2 != p1) { // Although the first and last point belong to the same // rectangle and therefore the computed path is of length 1, // they are different pixels. _path.push_back(p2); } // The first and last point are available with pixel accurracy. _path[0] = p1; _path[_path.size() - 1] = p2; // The intermediate points are given with map granularity; convert them // to pixels. for (uint i = 1; i < _path.size() - 1; ++i) { _path[i].x *= delta.x; _path[i].y *= delta.y; } } }