/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #include "gob/surface.h" #include "common/system.h" #include "common/stream.h" #include "common/util.h" #include "common/frac.h" #include "graphics/primitives.h" #include "graphics/pixelformat.h" #include "graphics/surface.h" namespace Gob { LBMLoader::LBMLoader(Common::SeekableReadStream &stream) : _parser(&stream), _hasHeader(false), _palette(0), _image(0) { } bool LBMLoader::loadHeader(Graphics::BMHD &header) { if (!readHeader()) return false; header = _decoder._header; return true; } bool LBMLoader::loadPalette(byte *palette) { assert(!_palette); assert(palette); _palette = palette; Common::Functor1Mem c(this, &LBMLoader::callbackPalette); _parser.parse(c); if (!_palette) return false; _palette = 0; return true; } bool LBMLoader::loadImage(byte *image) { assert(!_image); assert(image); if (!readHeader()) return false; _image = image; Common::Functor1Mem c(this, &LBMLoader::callbackImage); _parser.parse(c); if (!_image) return false; _image = 0; return true; } bool LBMLoader::callbackHeader(Common::IFFChunk &chunk) { if (chunk._type == ID_BMHD) { if (chunk._size == sizeof(Graphics::BMHD)) { _decoder.loadHeader(chunk._stream); _hasHeader = true; } return true; // Stop the IFF parser } return false; } bool LBMLoader::callbackPalette(Common::IFFChunk &chunk) { assert(_palette); if (chunk._type == ID_CMAP) { if (chunk._size == 768) { if (chunk._stream->read(_palette, chunk._size) != chunk._size) _palette = 0; } else _palette = 0; return true; // Stop the IFF parser } return false; } bool LBMLoader::callbackImage(Common::IFFChunk &chunk) { assert(_image); if (chunk._type == ID_BODY) { _decoder.loadBitmap(Graphics::ILBMDecoder::ILBM_UNPACK_PLANES, _image, chunk._stream); return true; } return false; } bool LBMLoader::readHeader() { if (_hasHeader) return true; Common::Functor1Mem c(this, &LBMLoader::callbackHeader); _parser.parse(c); return _hasHeader; } static void plotPixel(int x, int y, int color, void *data) { Surface *dest = (Surface *)data; dest->putPixel(x, y, color); } Pixel::Pixel(byte *vidMem, uint8 bpp, byte *min, byte *max) : _vidMem(vidMem), _bpp(bpp), _min(min), _max(max) { assert((_bpp == 1) || (_bpp == 2)); assert(_vidMem >= _min); assert(_vidMem < _max); } Pixel &Pixel::operator++() { _vidMem += _bpp; return *this; } Pixel Pixel::operator++(int x) { Pixel p = *this; ++(*this); return p; } Pixel &Pixel::operator--() { _vidMem -= _bpp; return *this; } Pixel Pixel::operator--(int x) { Pixel p = *this; --(*this); return p; } Pixel &Pixel::operator+=(int x) { _vidMem += x * _bpp; return *this; } Pixel &Pixel::operator-=(int x) { _vidMem -= x * _bpp; return *this; } uint32 Pixel::get() const { assert(_vidMem >= _min); assert(_vidMem < _max); if (_bpp == 1) return *((byte *) _vidMem); if (_bpp == 2) return *((uint16 *) _vidMem); return 0; } void Pixel::set(uint32 p) { assert(_vidMem >= _min); assert(_vidMem < _max); if (_bpp == 1) *((byte *) _vidMem) = (byte) p; if (_bpp == 2) *((uint16 *) _vidMem) = (uint16) p; } bool Pixel::isValid() const { return (_vidMem >= _min) && (_vidMem < _max); } ConstPixel::ConstPixel(const byte *vidMem, uint8 bpp, const byte *min, const byte *max) : _vidMem(vidMem), _bpp(bpp), _min(min), _max(max) { assert((_bpp == 1) || (_bpp == 2)); assert(_vidMem >= _min); assert(_vidMem < _max); } ConstPixel &ConstPixel::operator++() { _vidMem += _bpp; return *this; } ConstPixel ConstPixel::operator++(int x) { ConstPixel p = *this; ++(*this); return p; } ConstPixel &ConstPixel::operator--() { _vidMem -= _bpp; return *this; } ConstPixel ConstPixel::operator--(int x) { ConstPixel p = *this; --(*this); return p; } ConstPixel &ConstPixel::operator+=(int x) { _vidMem += x * _bpp; return *this; } ConstPixel &ConstPixel::operator-=(int x) { _vidMem -= x * _bpp; return *this; } uint32 ConstPixel::get() const { assert(_vidMem >= _min); assert(_vidMem < _max); if (_bpp == 1) return *((const byte *) _vidMem); if (_bpp == 2) return *((const uint16 *) _vidMem); return 0; } bool ConstPixel::isValid() const { return (_vidMem >= _min) && (_vidMem < _max); } Surface::Surface(uint16 width, uint16 height, uint8 bpp, byte *vidMem) : _width(width), _height(height), _bpp(bpp), _vidMem(vidMem) { assert((_width > 0) && (_height > 0)); assert((_bpp == 1) || (_bpp == 2)); if (!_vidMem) { _vidMem = new byte[_bpp * _width * _height]; _ownVidMem = true; memset(_vidMem, 0, _bpp * _width * _height); } else _ownVidMem = false; } Surface::~Surface() { if (_ownVidMem) delete[] _vidMem; } uint16 Surface::getWidth() const { return _width; } uint16 Surface::getHeight() const { return _height; } uint8 Surface::getBPP() const { return _bpp; } void Surface::resize(uint16 width, uint16 height) { assert((width > 0) && (height > 0)); if (_ownVidMem) delete[] _vidMem; _width = width; _height = height; _vidMem = new byte[_bpp * _width * _height]; _ownVidMem = true; memset(_vidMem, 0, _bpp * _width * _height); } void Surface::setBPP(uint8 bpp) { if (_bpp == bpp) return; if (_ownVidMem) { delete[] _vidMem; _vidMem = new byte[bpp * _width * _height]; } else _width = (_width * _bpp) / bpp; _bpp = bpp; memset(_vidMem, 0, _bpp * _width * _height); } byte *Surface::getData(uint16 x, uint16 y) { return _vidMem + (y * _width * _bpp) + (x * _bpp); } const byte *Surface::getData(uint16 x, uint16 y) const { return _vidMem + (y * _width * _bpp) + (x * _bpp); } Pixel Surface::get(uint16 x, uint16 y) { byte *vidMem = getData(x, y); return Pixel(vidMem, _bpp, _vidMem, _vidMem + _height * _width * _bpp); } ConstPixel Surface::get(uint16 x, uint16 y) const { const byte *vidMem = getData(x, y); return ConstPixel(vidMem, _bpp, _vidMem, _vidMem + _height * _width * _bpp); } bool Surface::clipBlitRect(int16 &left, int16 &top, int16 &right, int16 &bottom, int16 &x, int16 &y, uint16 dWidth, uint16 dHeight, uint16 sWidth, uint16 sHeight) { if ((x >= dWidth) || (y >= dHeight)) // Nothing to do return false; // Just in case those are swapped if (left > right) SWAP(left, right); if (top > bottom) SWAP(top, bottom); if ((left >= sWidth) || (top >= sHeight) || (right < 0) || (bottom < 0)) // Nothing to do return false; // Adjust from coordinates if (left < 0) { x -= left; left = 0; } if (top < 0) { y -= top; top = 0; } // Adjust to coordinates if (x < 0) { left -= x; x = 0; } if (y < 0) { top -= y; y = 0; } // Limit by source and destination dimensions right = MIN(right , MIN(sWidth , dWidth - x + left) - 1); bottom = MIN(bottom, MIN(sHeight, dHeight - y + top ) - 1); if ((right < left) || (bottom < top)) // Nothing to do return false; // Clip to sane values right = MAX(right , 0); bottom = MAX(bottom, 0); return true; } void Surface::blit(const Surface &from, int16 left, int16 top, int16 right, int16 bottom, int16 x, int16 y, int32 transp) { // Color depths have to fit assert(_bpp == from._bpp); // Clip if (!clipBlitRect(left, top, right, bottom, x, y, _width, _height, from._width, from._height)) return; // Area to actually copy uint16 width = right - left + 1; uint16 height = bottom - top + 1; if ((width == 0) || (height == 0)) // Nothing to do return; if ((left == 0) && (_width == from._width) && (_width == width) && (transp == -1)) { // If these conditions are met, we can directly use memmove // Pointers to the blit destination and source start points byte *dst = getData(x , y); const byte *src = from.getData(left, top); memmove(dst, src, width * height * _bpp); return; } if (transp == -1) { // We don't have to look for transparency => we can use memmove line-wise // Pointers to the blit destination and source start points byte *dst = getData(x , y); const byte *src = from.getData(left, top); while (height-- > 0) { memmove(dst, src, width * _bpp); dst += _width * _bpp; src += from._width * from._bpp; } return; } // Otherwise, we have to copy by pixel // Pointers to the blit destination and source start points Pixel dst = get(x , y); ConstPixel src = from.get(left, top); while (height-- > 0) { Pixel dstRow = dst; ConstPixel srcRow = src; for (uint16 i = 0; i < width; i++, dstRow++, srcRow++) if (srcRow.get() != ((uint32) transp)) dstRow.set(srcRow.get()); dst += _width; src += from._width; } } void Surface::blit(const Surface &from, int16 x, int16 y, int32 transp) { blit(from, 0, 0, from._width - 1, from._height - 1, x, y, transp); } void Surface::blit(const Surface &from, int32 transp) { blit(from, 0, 0, from._width - 1, from._height - 1, 0, 0, transp); } void Surface::blitScaled(const Surface &from, int16 left, int16 top, int16 right, int16 bottom, int16 x, int16 y, Common::Rational scale, int32 transp) { if (scale == 1) { // Yeah, "scaled" blit(from, left, top, right, bottom, x, y, transp); return; } // Color depths have to fit assert(_bpp == from._bpp); uint16 dWidth = (uint16) floor((_width / scale).toDouble()); uint16 dHeight = (uint16) floor((_height / scale).toDouble()); int16 clipX = ( int16) floor((x / scale).toDouble()); int16 clipY = ( int16) floor((y / scale).toDouble()); // Clip if (!clipBlitRect(left, top, right, bottom, clipX, clipY, dWidth, dHeight, from._width, from._height)) return; // Area to actually copy uint16 width = right - left + 1; uint16 height = bottom - top + 1; if ((width == 0) || (height == 0)) // Nothing to do return; width = MIN((int32) floor((width * scale).toDouble()), _width); height = MIN((int32) floor((height * scale).toDouble()), _height); // Pointers to the blit destination and source start points byte *dst = getData(x , y); const byte *src = from.getData(left, top); frac_t step = scale.getInverse().toFrac(); frac_t posW = 0, posH = 0; while (height-- > 0) { byte *dstRow = dst; const byte *srcRow = src; posW = 0; for (uint16 i = 0; i < width; i++, dstRow += _bpp) { memmove(dstRow, srcRow, _bpp); posW += step; while (posW >= ((frac_t) FRAC_ONE)) { srcRow += from._bpp; posW -= FRAC_ONE; } } posH += step; while (posH >= ((frac_t) FRAC_ONE)) { src += from._width * from._bpp; posH -= FRAC_ONE; } dst += _width * _bpp; } } void Surface::blitScaled(const Surface &from, int16 x, int16 y, Common::Rational scale, int32 transp) { blitScaled(from, 0, 0, from._width - 1, from._height - 1, x, y, scale, transp); } void Surface::blitScaled(const Surface &from, Common::Rational scale, int32 transp) { blitScaled(from, 0, 0, from._width - 1, from._height - 1, 0, 0, scale, transp); } void Surface::fillRect(uint16 left, uint16 top, uint16 right, uint16 bottom, uint32 color) { // Just in case those are swapped if (left > right) SWAP(left, right); if (top > bottom) SWAP(top, bottom); if ((left >= _width) || (top >= _height)) // Nothing to do return; // Area to actually fill uint16 width = CLIP(right - left + 1, 0, _width - left); uint16 height = CLIP(bottom - top + 1, 0, _height - top); if ((width == 0) || (height == 0)) // Nothing to do return; if ((left == 0) && (width == _width) && (_bpp == 1)) { // We can directly use memset byte *dst = getData(left, top); memset(dst, (byte) color, width * height); return; } if (_bpp == 1) { // We can use memset line-wise byte *dst = getData(left, top); while (height-- > 0) { memset(dst, (byte) color, width); dst += _width; } return; } assert(_bpp == 2); // Otherwise, we have to fill by pixel Pixel p = get(left, top); while (height-- > 0) { for (uint16 i = 0; i < width; i++, ++p) p.set(color); p += _width - width; } } void Surface::fill(uint32 color) { if (_bpp == 1) { // We can directly use memset memset(_vidMem, (byte) color, _width * _height); return; } fillRect(0, 0, _width - 1, _height - 1, color); } void Surface::clear() { fill(0); } void Surface::shadeRect(uint16 left, uint16 top, uint16 right, uint16 bottom, uint32 color, uint8 strength) { if (_bpp == 1) { // We can't properly shade in paletted mode, fill the rect instead fillRect(left, top, right, bottom, color); return; } // Just in case those are swapped if (left > right) SWAP(left, right); if (top > bottom) SWAP(top, bottom); if ((left >= _width) || (top >= _height)) // Nothing to do return; // Area to actually shade uint16 width = CLIP(right - left + 1, 0, _width - left); uint16 height = CLIP(bottom - top + 1, 0, _height - top); if ((width == 0) || (height == 0)) // Nothing to do return; Graphics::PixelFormat pixelFormat = g_system->getScreenFormat(); uint8 cR, cG, cB; pixelFormat.colorToRGB(color, cR, cG, cB); int shadeR = cR * (16 - strength); int shadeG = cG * (16 - strength); int shadeB = cB * (16 - strength); Pixel p = get(left, top); while (height-- > 0) { for (uint16 i = 0; i < width; i++, ++p) { uint8 r, g, b; pixelFormat.colorToRGB(p.get(), r, g, b); r = CLIP((shadeR + strength * r) >> 4, 0, 255); g = CLIP((shadeG + strength * g) >> 4, 0, 255); b = CLIP((shadeB + strength * b) >> 4, 0, 255); p.set(pixelFormat.RGBToColor(r, g, b)); } p += _width - width; } } void Surface::putPixel(uint16 x, uint16 y, uint32 color) { if ((x >= _width) || (y >= _height)) return; get(x, y).set(color); } void Surface::drawLine(uint16 x0, uint16 y0, uint16 x1, uint16 y1, uint32 color) { Graphics::drawLine(x0, y0, x1, y1, color, &plotPixel, this); } /* * The original's version of the Bresenham Algorithm was a bit "unclean" * and produced strange edges at 45, 135, 225 and 315 degrees, so using the * version found in the Wikipedia article about the * "Bresenham's line algorithm" instead */ void Surface::drawCircle(uint16 x0, uint16 y0, uint16 radius, uint32 color, int16 pattern) { int16 f = 1 - radius; int16 ddFx = 0; int16 ddFy = -2 * radius; int16 x = 0; int16 y = radius; if (pattern == 0) { putPixel(x0, y0 + radius, color); putPixel(x0, y0 - radius, color); putPixel(x0 + radius, y0, color); putPixel(x0 - radius, y0, color); } else warning("Surface::drawCircle - pattern %d", pattern); while (x < y) { if (f >= 0) { y--; ddFy += 2; f += ddFy; } x++; ddFx += 2; f += ddFx + 1; switch (pattern) { case -1: fillRect(x0 - y, y0 + x, x0 + y, y0 + x, color); fillRect(x0 - x, y0 + y, x0 + x, y0 + y, color); fillRect(x0 - y, y0 - x, x0 + y, y0 - x, color); fillRect(x0 - x, y0 - y, x0 + x, y0 - y, color); break; case 0: putPixel(x0 + x, y0 + y, color); putPixel(x0 - x, y0 + y, color); putPixel(x0 + x, y0 - y, color); putPixel(x0 - x, y0 - y, color); putPixel(x0 + y, y0 + x, color); putPixel(x0 - y, y0 + x, color); putPixel(x0 + y, y0 - x, color); putPixel(x0 - y, y0 - x, color); break; default: fillRect(x0 + y - pattern, y0 + x - pattern, x0 + y, y0 + x, color); fillRect(x0 + x - pattern, y0 + y - pattern, x0 + x, y0 + y, color); fillRect(x0 - y, y0 + x - pattern, x0 - y + pattern, y0 + x, color); fillRect(x0 - x, y0 + y - pattern, x0 - x + pattern, y0 + y, color); fillRect(x0 + y - pattern, y0 - x, x0 + y, y0 - x + pattern, color); fillRect(x0 + x - pattern, y0 - y, x0 + x, y0 - y + pattern, color); fillRect(x0 - y, y0 - x, x0 - y + pattern, y0 - x + pattern, color); fillRect(x0 - x, y0 - y, x0 - x + pattern, y0 - y + pattern, color); break; } } } void Surface::blitToScreen(uint16 left, uint16 top, uint16 right, uint16 bottom, uint16 x, uint16 y) const { // Color depths have to fit assert(g_system->getScreenFormat().bytesPerPixel == _bpp); uint16 sWidth = g_system->getWidth(); uint16 sHeight = g_system->getHeight(); if ((x >= sWidth) || (y >= sHeight)) // Nothing to do return; // Just in case those are swapped if (left > right) SWAP(left, right); if (top > bottom) SWAP(top, bottom); if ((left >= _width) || (top >= _height)) // Nothing to do return; // Area to actually copy uint16 width = MAX(MIN(MIN(right - left + 1, _width - left), sWidth - x), 0); uint16 height = MAX(MIN(MIN(bottom - top + 1, _height - top ), sHeight - y), 0); if ((width == 0) || (height == 0)) // Nothing to do return; // Pointers to the blit destination and source start points const byte *src = getData(left, top); g_system->copyRectToScreen(src, _width * _bpp, x, y, width, height); } bool Surface::loadImage(Common::SeekableReadStream &stream) { ImageType type = identifyImage(stream); if (type == kImageTypeNone) return false; return loadImage(stream, type); } bool Surface::loadImage(Common::SeekableReadStream &stream, ImageType type) { if (type == kImageTypeNone) return false; switch (type) { case kImageTypeTGA: return loadTGA(stream); case kImageTypeLBM: return loadLBM(stream); case kImageTypeBRC: return loadBRC(stream); case kImageTypeBMP: return loadBMP(stream); case kImageTypeJPEG: return loadJPEG(stream); default: warning("Surface::loadImage(): Unknown image type: %d", (int) type); return false; } return false; } ImageType Surface::identifyImage(Common::SeekableReadStream &stream) { uint32 startPos = stream.pos(); if ((stream.size() - startPos) < 17) return kImageTypeNone; char buffer[10]; if (!stream.read(buffer, 10)) return kImageTypeNone; stream.seek(startPos); if (!strncmp(buffer , "FORM", 4)) return kImageTypeLBM; if (!strncmp(buffer + 6, "JFIF", 4)) return kImageTypeJPEG; if (!strncmp(buffer , "BRC" , 3)) return kImageTypeBRC; if (!strncmp(buffer , "BM" , 2)) return kImageTypeBMP; // Try to determine if it's maybe a TGA stream.skip(12); uint16 width = stream.readUint16LE(); uint16 height = stream.readUint16LE(); uint8 bpp = stream.readByte(); // Check width, height and bpp for sane values if ((width == 0) || (height == 0) || (bpp == 0)) return kImageTypeNone; if ((width > 800) || (height > 600)) return kImageTypeNone; if ((bpp != 8) && (bpp != 16) && (bpp != 24) && (bpp != 32)) return kImageTypeNone; // This might be a TGA return kImageTypeTGA; } bool Surface::loadTGA(Common::SeekableReadStream &stream) { warning("TODO: Surface::loadTGA()"); return false; } bool Surface::loadLBM(Common::SeekableReadStream &stream) { LBMLoader loader(stream); Graphics::BMHD header; loader.loadHeader(header); if (header.depth != 8) // Only 8bpp LBMs supported for now return false; resize(header.width, header.height); return loader.loadImage(_vidMem); } bool Surface::loadBRC(Common::SeekableReadStream &stream) { warning("TODO: Surface::loadBRC()"); return false; } bool Surface::loadBMP(Common::SeekableReadStream &stream) { warning("TODO: Surface::loadBMP()"); return false; } bool Surface::loadJPEG(Common::SeekableReadStream &stream) { warning("TODO: Surface::loadJPEG()"); return false; } } // End of namespace Gob