/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ /* * This code is based on original Hugo Trilogy source code * * Copyright (c) 1989-1995 David P. Gray * */ #include "common/debug.h" #include "common/system.h" #include "common/random.h" #include "hugo/hugo.h" #include "hugo/game.h" #include "hugo/object.h" #include "hugo/display.h" #include "hugo/file.h" #include "hugo/route.h" #include "hugo/util.h" #include "hugo/parser.h" #include "hugo/schedule.h" namespace Hugo { ObjectHandler_v2d::ObjectHandler_v2d(HugoEngine *vm) : ObjectHandler_v1d(vm) { } ObjectHandler_v2d::~ObjectHandler_v2d() { } /** * Draw all objects on screen as follows: * 1. Sort 'FLOATING' objects in order of y2 (base of object) * 2. Display new object frames/positions in dib * Finally, cycle any animating objects to next frame */ void ObjectHandler_v2d::updateImages() { debugC(5, kDebugObject, "updateImages"); // Initialise the index array to visible objects in current screen int num_objs = 0; byte objindex[kMaxObjNumb]; // Array of indeces to objects for (int i = 0; i < _numObj; i++) { object_t *obj = &_objects[i]; if ((obj->screenIndex == *_vm->_screen_p) && (obj->cycling >= kCycleAlmostInvisible)) objindex[num_objs++] = i; } // Sort the objects into increasing y+y2 (painter's algorithm) qsort(objindex, num_objs, sizeof(objindex[0]), y2comp); // Add each visible object to display list for (int i = 0; i < num_objs; i++) { object_t *obj = &_objects[objindex[i]]; // Count down inter-frame timer if (obj->frameTimer) obj->frameTimer--; if (obj->cycling > kCycleAlmostInvisible) { // Only if visible switch (obj->cycling) { case kCycleNotCycling: _vm->_screen->displayFrame(obj->x, obj->y, obj->currImagePtr, obj->priority == kPriorityOverOverlay); break; case kCycleForward: if (obj->frameTimer) // Not time to see next frame yet _vm->_screen->displayFrame(obj->x, obj->y, obj->currImagePtr, obj->priority == kPriorityOverOverlay); else _vm->_screen->displayFrame(obj->x, obj->y, obj->currImagePtr->nextSeqPtr, obj->priority == kPriorityOverOverlay); break; case kCycleBackward: { seq_t *seqPtr = obj->currImagePtr; if (!obj->frameTimer) { // Show next frame while (seqPtr->nextSeqPtr != obj->currImagePtr) seqPtr = seqPtr->nextSeqPtr; } _vm->_screen->displayFrame(obj->x, obj->y, seqPtr, obj->priority == kPriorityOverOverlay); break; } default: break; } } } _vm->_scheduler->waitForRefresh(); // Cycle any animating objects for (int i = 0; i < num_objs; i++) { object_t *obj = &_objects[objindex[i]]; if (obj->cycling != kCycleInvisible) { // Only if it's visible if (obj->cycling == kCycleAlmostInvisible) obj->cycling = kCycleInvisible; // Now Rotate to next picture in sequence switch (obj->cycling) { case kCycleNotCycling: break; case kCycleForward: if (!obj->frameTimer) { // Time to step to next frame obj->currImagePtr = obj->currImagePtr->nextSeqPtr; // Find out if this is last frame of sequence // If so, reset frame_timer and decrement n_cycle if (obj->frameInterval || obj->cycleNumb) { obj->frameTimer = obj->frameInterval; for (int j = 0; j < obj->seqNumb; j++) { if (obj->currImagePtr->nextSeqPtr == obj->seqList[j].seqPtr) { if (obj->cycleNumb) { // Decr cycleNumb if Non-continous if (!--obj->cycleNumb) obj->cycling = kCycleNotCycling; } } } } } break; case kCycleBackward: { if (!obj->frameTimer) { // Time to step to prev frame seq_t *seqPtr = obj->currImagePtr; while (obj->currImagePtr->nextSeqPtr != seqPtr) obj->currImagePtr = obj->currImagePtr->nextSeqPtr; // Find out if this is first frame of sequence // If so, reset frame_timer and decrement n_cycle if (obj->frameInterval || obj->cycleNumb) { obj->frameTimer = obj->frameInterval; for (int j = 0; j < obj->seqNumb; j++) { if (obj->currImagePtr == obj->seqList[j].seqPtr) { if (obj->cycleNumb){ // Decr cycleNumb if Non-continous if (!--obj->cycleNumb) obj->cycling = kCycleNotCycling; } } } } } break; } default: break; } obj->oldx = obj->x; obj->oldy = obj->y; } } } /** * Update all object positions. Process object 'local' events * including boundary events and collisions */ void ObjectHandler_v2d::moveObjects() { debugC(4, kDebugObject, "moveObjects"); // Added to DOS version in order to handle mouse properly // Do special route processing _vm->_route->processRoute(); // Perform any adjustments to velocity based on special path types // and store all (visible) object baselines into the boundary file. // Don't store foreground or background objects for (int i = 0; i < _numObj; i++) { object_t *obj = &_objects[i]; // Get pointer to object seq_t *currImage = obj->currImagePtr; // Get ptr to current image if (obj->screenIndex == *_vm->_screen_p) { switch (obj->pathType) { case kPathChase: case kPathChase2: { int8 radius = obj->radius; // Default to object's radius if (radius < 0) // If radius infinity, use closer value radius = kStepDx; // Allowable motion wrt boundary int dx = _vm->_hero->x + _vm->_hero->currImagePtr->x1 - obj->x - currImage->x1; int dy = _vm->_hero->y + _vm->_hero->currImagePtr->y2 - obj->y - currImage->y2 - 1; if (abs(dx) <= radius) obj->vx = 0; else obj->vx = (dx > 0) ? MIN(dx, obj->vxPath) : MAX(dx, -obj->vxPath); if (abs(dy) <= radius) obj->vy = 0; else obj->vy = (dy > 0) ? MIN(dy, obj->vyPath) : MAX(dy, -obj->vyPath); // Set first image in sequence (if multi-seq object) switch (obj->seqNumb) { case 4: if (!obj->vx) { // Got 4 directions if (obj->vx != obj->oldvx) { // vx just stopped if (dy > 0) obj->currImagePtr = obj->seqList[DOWN].seqPtr; else obj->currImagePtr = obj->seqList[_UP].seqPtr; } } else if (obj->vx != obj->oldvx) { if (dx > 0) obj->currImagePtr = obj->seqList[RIGHT].seqPtr; else obj->currImagePtr = obj->seqList[LEFT].seqPtr; } break; case 3: case 2: if (obj->vx != obj->oldvx) { // vx just stopped if (dx > 0) // Left & right only obj->currImagePtr = obj->seqList[RIGHT].seqPtr; else obj->currImagePtr = obj->seqList[LEFT].seqPtr; } break; } if (obj->vx || obj->vy) { obj->cycling = kCycleForward; } else { obj->cycling = kCycleNotCycling; boundaryCollision(obj); // Must have got hero! } obj->oldvx = obj->vx; obj->oldvy = obj->vy; currImage = obj->currImagePtr; // Get (new) ptr to current image break; } case kPathWander2: case kPathWander: if (!_vm->_rnd->getRandomNumber(3 * _vm->_normalTPS)) { // Kick on random interval obj->vx = _vm->_rnd->getRandomNumber(obj->vxPath << 1) - obj->vxPath; obj->vy = _vm->_rnd->getRandomNumber(obj->vyPath << 1) - obj->vyPath; // Set first image in sequence (if multi-seq object) if (obj->seqNumb > 1) { if (!obj->vx && (obj->seqNumb >= 4)) { if (obj->vx != obj->oldvx) { // vx just stopped if (obj->vy > 0) obj->currImagePtr = obj->seqList[DOWN].seqPtr; else obj->currImagePtr = obj->seqList[_UP].seqPtr; } } else if (obj->vx != obj->oldvx) { if (obj->vx > 0) obj->currImagePtr = obj->seqList[RIGHT].seqPtr; else obj->currImagePtr = obj->seqList[LEFT].seqPtr; } } obj->oldvx = obj->vx; obj->oldvy = obj->vy; currImage = obj->currImagePtr; // Get (new) ptr to current image } if (obj->vx || obj->vy) obj->cycling = kCycleForward; break; default: ; // Really, nothing } // Store boundaries if ((obj->cycling > kCycleAlmostInvisible) && (obj->priority == kPriorityFloating)) storeBoundary(obj->x + currImage->x1, obj->x + currImage->x2, obj->y + currImage->y2); } } // Move objects, allowing for boundaries for (int i = 0; i < _numObj; i++) { object_t *obj = &_objects[i]; // Get pointer to object if ((obj->screenIndex == *_vm->_screen_p) && (obj->vx || obj->vy)) { // Only process if it's moving // Do object movement. Delta_x,y return allowed movement in x,y // to move as close to a boundary as possible without crossing it. seq_t *currImage = obj->currImagePtr; // Get ptr to current image // object coordinates int x1 = obj->x + currImage->x1; // Left edge of object int x2 = obj->x + currImage->x2; // Right edge int y1 = obj->y + currImage->y1; // Top edge int y2 = obj->y + currImage->y2; // Bottom edge if ((obj->cycling > kCycleAlmostInvisible) && (obj->priority == kPriorityFloating)) clearBoundary(x1, x2, y2); // Clear our own boundary // Allowable motion wrt boundary int dx = deltaX(x1, x2, obj->vx, y2); if (dx != obj->vx) { // An object boundary collision! boundaryCollision(obj); obj->vx = 0; } int dy = deltaY(x1, x2, obj->vy, y2); if (dy != obj->vy) { // An object boundary collision! boundaryCollision(obj); obj->vy = 0; } if ((obj->cycling > kCycleAlmostInvisible) && (obj->priority == kPriorityFloating)) storeBoundary(x1, x2, y2); // Re-store our own boundary obj->x += dx; // Update object position obj->y += dy; // Don't let object go outside screen if (x1 < kEdge) obj->x = kEdge2; if (x2 > (kXPix - kEdge)) obj->x = kXPix - kEdge2 - (x2 - x1); if (y1 < kEdge) obj->y = kEdge2; if (y2 > (kYPix - kEdge)) obj->y = kYPix - kEdge2 - (y2 - y1); if ((obj->vx == 0) && (obj->vy == 0) && (obj->pathType != kPathWander2) && (obj->pathType != kPathChase2)) obj->cycling = kCycleNotCycling; } } // Clear all object baselines from the boundary file. for (int i = 0; i < _numObj; i++) { object_t *obj = &_objects[i]; // Get pointer to object seq_t *currImage = obj->currImagePtr; // Get ptr to current image if ((obj->screenIndex == *_vm->_screen_p) && (obj->cycling > kCycleAlmostInvisible) && (obj->priority == kPriorityFloating)) clearBoundary(obj->oldx + currImage->x1, obj->oldx + currImage->x2, obj->oldy + currImage->y2); } // If maze mode is enabled, do special maze processing if (_vm->_maze.enabledFl) { seq_t *currImage = _vm->_hero->currImagePtr; // Get ptr to current image // hero coordinates int x1 = _vm->_hero->x + currImage->x1; // Left edge of object int x2 = _vm->_hero->x + currImage->x2; // Right edge int y1 = _vm->_hero->y + currImage->y1; // Top edge int y2 = _vm->_hero->y + currImage->y2; // Bottom edge _vm->_scheduler->processMaze(x1, x2, y1, y2); } } void ObjectHandler_v2d::homeIn(const int objIndex1, const int objIndex2, const int8 objDx, const int8 objDy) { // object obj1 will home in on object obj2 object_t *obj1 = &_objects[objIndex1]; object_t *obj2 = &_objects[objIndex2]; obj1->pathType = kPathAuto; int dx = obj1->x + obj1->currImagePtr->x1 - obj2->x - obj2->currImagePtr->x1; int dy = obj1->y + obj1->currImagePtr->y1 - obj2->y - obj2->currImagePtr->y1; if (dx == 0) // Don't EVER divide by zero! dx = 1; if (dy == 0) dy = 1; if (abs(dx) > abs(dy)) { obj1->vx = objDx * -sign(dx); obj1->vy = abs((objDy * dy) / dx) * -sign(dy); } else { obj1->vy = objDy * -sign(dy); obj1->vx = abs((objDx * dx) / dy) * -sign(dx); } } } // End of namespace Hugo