/* ScummVM - Scumm Interpreter * * This file is licensed under both GPL and LGPL * Copyright (C) 2006 The ScummVM project * Copyright (C) 2006 Torbjorn Andersson and Johannes Schickel * * GPL License * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * LPGL License * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * $URL$ * $Id$ * */ #include "common/stdafx.h" #include "common/system.h" #include "common/mutex.h" #include "kyra/resource.h" #include "kyra/sound.h" #include "sound/mixer.h" #include "sound/fmopl.h" #include "sound/audiostream.h" // Basic Adlib Programming: // http://www.gamedev.net/reference/articles/article446.asp #define CALLBACKS_PER_SECOND 72 namespace Kyra { class AdlibDriver : public Audio::AudioStream { public: AdlibDriver(Audio::Mixer *mixer); ~AdlibDriver(); int callback(int opcode, ...); void callback(); // AudioStream API int readBuffer(int16 *buffer, const int numSamples) { int32 samplesLeft = numSamples; memset(buffer, 0, sizeof(int16) * numSamples); while (samplesLeft) { if (!_samplesTillCallback) { callback(); _samplesTillCallback = _samplesPerCallback; _samplesTillCallbackRemainder += _samplesPerCallbackRemainder; if (_samplesTillCallbackRemainder >= CALLBACKS_PER_SECOND) { _samplesTillCallback++; _samplesTillCallbackRemainder -= CALLBACKS_PER_SECOND; } } int32 render = MIN(samplesLeft, _samplesTillCallback); samplesLeft -= render; _samplesTillCallback -= render; YM3812UpdateOne(_adlib, buffer, render); buffer += render; } return numSamples; } bool isStereo() const { return false; } bool endOfData() const { return false; } int getRate() const { return _mixer->getOutputRate(); } void setSyncJumpMask(uint16 mask) { _syncJumpMask = mask; } private: struct OpcodeEntry { typedef int (AdlibDriver::*DriverOpcode)(va_list &list); DriverOpcode function; const char *name; }; void setupOpcodeList(); const OpcodeEntry *_opcodeList; int _opcodesEntries; int snd_ret0x100(va_list &list); int snd_ret0x1983(va_list &list); int snd_initDriver(va_list &list); int snd_deinitDriver(va_list &list); int snd_setSoundData(va_list &list); int snd_unkOpcode1(va_list &list); int snd_startSong(va_list &list); int snd_unkOpcode2(va_list &list); int snd_unkOpcode3(va_list &list); int snd_readByte(va_list &list); int snd_writeByte(va_list &list); int snd_getSoundTrigger(va_list &list); int snd_unkOpcode4(va_list &list); int snd_dummy(va_list &list); int snd_getNullvar4(va_list &list); int snd_setNullvar3(va_list &list); int snd_setFlag(va_list &list); int snd_clearFlag(va_list &list); // These variables have not yet been named, but some of them are partly // known nevertheless: // // unk16 - Sound-related. Possibly some sort of pitch bend. // unk18 - Sound-effect. Used for secondaryEffect1() // unk19 - Sound-effect. Used for secondaryEffect1() // unk20 - Sound-effect. Used for secondaryEffect1() // unk21 - Sound-effect. Used for secondaryEffect1() // unk22 - Sound-effect. Used for secondaryEffect1() // unk29 - Sound-effect. Used for primaryEffect1() // unk30 - Sound-effect. Used for primaryEffect1() // unk31 - Sound-effect. Used for primaryEffect1() // unk32 - Sound-effect. Used for primaryEffect2() // unk33 - Sound-effect. Used for primaryEffect2() // unk34 - Sound-effect. Used for primaryEffect2() // unk35 - Sound-effect. Used for primaryEffect2() // unk36 - Sound-effect. Used for primaryEffect2() // unk37 - Sound-effect. Used for primaryEffect2() // unk38 - Sound-effect. Used for primaryEffect2() // unk39 - Currently unused, except for updateCallback56() // unk40 - Currently unused, except for updateCallback56() // unk41 - Sound-effect. Used for primaryEffect2() struct Channel { bool lock; // New to ScummVM uint8 opExtraLevel2; uint8 *dataptr; uint8 duration; uint8 repeatCounter; int8 baseOctave; uint8 priority; uint8 dataptrStackPos; uint8 *dataptrStack[4]; int8 baseNote; uint8 unk29; uint8 unk31; uint16 unk30; uint16 unk37; uint8 unk33; uint8 unk34; uint8 unk35; uint8 unk36; uint8 unk32; uint8 unk41; uint8 unk38; uint8 opExtraLevel1; uint8 spacing2; uint8 baseFreq; uint8 tempo; uint8 position; uint8 regAx; uint8 regBx; typedef void (AdlibDriver::*Callback)(Channel&); Callback primaryEffect; Callback secondaryEffect; uint8 fractionalSpacing; uint8 opLevel1; uint8 opLevel2; uint8 opExtraLevel3; uint8 twoChan; uint8 unk39; uint8 unk40; uint8 spacing1; uint8 durationRandomness; uint8 unk19; uint8 unk18; int8 unk20; int8 unk21; uint8 unk22; uint16 offset; uint8 tempoReset; uint8 rawNote; int8 unk16; }; void primaryEffect1(Channel &channel); void primaryEffect2(Channel &channel); void secondaryEffect1(Channel &channel); void resetAdlibState(); void writeOPL(byte reg, byte val); void initChannel(Channel &channel); void noteOff(Channel &channel); void unkOutput2(uint8 num); uint16 getRandomNr(); void setupDuration(uint8 duration, Channel &channel); void setupNote(uint8 rawNote, Channel &channel, bool flag = false); void setupInstrument(uint8 regOffset, uint8 *dataptr, Channel &channel); void noteOn(Channel &channel); void adjustVolume(Channel &channel); uint8 calculateOpLevel1(Channel &channel); uint8 calculateOpLevel2(Channel &channel); uint16 checkValue(int16 val) { if (val < 0) val = 0; else if (val > 0x3F) val = 0x3F; return val; } // The sound data has at least two lookup tables: // // * One for programs, starting at offset 0. // * One for instruments, starting at offset 500. uint8 *getProgram(int progId) { return _soundData + READ_LE_UINT16(_soundData + 2 * progId); } uint8 *getInstrument(int instrumentId) { return _soundData + READ_LE_UINT16(_soundData + 500 + 2 * instrumentId); } void setupPrograms(); void executePrograms(); struct ParserOpcode { typedef int (AdlibDriver::*POpcode)(uint8 *&dataptr, Channel &channel, uint8 value); POpcode function; const char *name; }; void setupParserOpcodeTable(); const ParserOpcode *_parserOpcodeTable; int _parserOpcodeTableSize; int update_setRepeat(uint8 *&dataptr, Channel &channel, uint8 value); int update_checkRepeat(uint8 *&dataptr, Channel &channel, uint8 value); int update_setupProgram(uint8 *&dataptr, Channel &channel, uint8 value); int update_setNoteSpacing(uint8 *&dataptr, Channel &channel, uint8 value); int update_jump(uint8 *&dataptr, Channel &channel, uint8 value); int update_jumpToSubroutine(uint8 *&dataptr, Channel &channel, uint8 value); int update_returnFromSubroutine(uint8 *&dataptr, Channel &channel, uint8 value); int update_setBaseOctave(uint8 *&dataptr, Channel &channel, uint8 value); int update_stopChannel(uint8 *&dataptr, Channel &channel, uint8 value); int update_playRest(uint8 *&dataptr, Channel &channel, uint8 value); int update_writeAdlib(uint8 *&dataptr, Channel &channel, uint8 value); int update_setupNoteAndDuration(uint8 *&dataptr, Channel &channel, uint8 value); int update_setBaseNote(uint8 *&dataptr, Channel &channel, uint8 value); int update_setupSecondaryEffect1(uint8 *&dataptr, Channel &channel, uint8 value); int update_stopOtherChannel(uint8 *&dataptr, Channel &channel, uint8 value); int update_waitForEndOfProgram(uint8 *&dataptr, Channel &channel, uint8 value); int update_setupInstrument(uint8 *&dataptr, Channel &channel, uint8 value); int update_setupPrimaryEffect1(uint8 *&dataptr, Channel &channel, uint8 value); int update_removePrimaryEffect1(uint8 *&dataptr, Channel &channel, uint8 value); int update_setBaseFreq(uint8 *&dataptr, Channel &channel, uint8 value); int update_setupPrimaryEffect2(uint8 *&dataptr, Channel &channel, uint8 value); int update_setPriority(uint8 *&dataptr, Channel &channel, uint8 value); int updateCallback23(uint8 *&dataptr, Channel &channel, uint8 value); int updateCallback24(uint8 *&dataptr, Channel &channel, uint8 value); int update_setExtraLevel1(uint8 *&dataptr, Channel &channel, uint8 value); int update_setupDuration(uint8 *&dataptr, Channel &channel, uint8 value); int update_playNote(uint8 *&dataptr, Channel &channel, uint8 value); int update_setFractionalNoteSpacing(uint8 *&dataptr, Channel &channel, uint8 value); int update_setTempo(uint8 *&dataptr, Channel &channel, uint8 value); int update_removeSecondaryEffect1(uint8 *&dataptr, Channel &channel, uint8 value); int update_setChannelTempo(uint8 *&dataptr, Channel &channel, uint8 value); int update_setExtraLevel3(uint8 *&dataptr, Channel &channel, uint8 value); int update_setExtraLevel2(uint8 *&dataptr, Channel &channel, uint8 value); int update_changeExtraLevel2(uint8 *&dataptr, Channel &channel, uint8 value); int update_setAMDepth(uint8 *&dataptr, Channel &channel, uint8 value); int update_setVibratoDepth(uint8 *&dataptr, Channel &channel, uint8 value); int update_changeExtraLevel1(uint8 *&dataptr, Channel &channel, uint8 value); int updateCallback38(uint8 *&dataptr, Channel &channel, uint8 value); int updateCallback39(uint8 *&dataptr, Channel &channel, uint8 value); int update_removePrimaryEffect2(uint8 *&dataptr, Channel &channel, uint8 value); int updateCallback41(uint8 *&dataptr, Channel &channel, uint8 value); int update_resetToGlobalTempo(uint8 *&dataptr, Channel &channel, uint8 value); int update_nop1(uint8 *&dataptr, Channel &channel, uint8 value); int update_setDurationRandomness(uint8 *&dataptr, Channel &channel, uint8 value); int update_changeChannelTempo(uint8 *&dataptr, Channel &channel, uint8 value); int updateCallback46(uint8 *&dataptr, Channel &channel, uint8 value); int update_nop2(uint8 *&dataptr, Channel &channel, uint8 value); int update_setupRhythmSection(uint8 *&dataptr, Channel &channel, uint8 value); int update_playRhythmSection(uint8 *&dataptr, Channel &channel, uint8 value); int update_removeRhythmSection(uint8 *&dataptr, Channel &channel, uint8 value); int updateCallback51(uint8 *&dataptr, Channel &channel, uint8 value); int updateCallback52(uint8 *&dataptr, Channel &channel, uint8 value); int updateCallback53(uint8 *&dataptr, Channel &channel, uint8 value); int update_setSoundTrigger(uint8 *&dataptr, Channel &channel, uint8 value); int update_setTempoReset(uint8 *&dataptr, Channel &channel, uint8 value); int updateCallback56(uint8 *&dataptr, Channel &channel, uint8 value); private: // These variables have not yet been named, but some of them are partly // known nevertheless: // // _unkValue1 - Unknown. Used for updating _unkValue2 // _unkValue2 - Unknown. Used for updating _unkValue4 // _unkValue3 - Unknown. Used for updating _unkValue2 // _unkValue4 - Unknown. Used for updating _unkValue5 // _unkValue5 - Unknown. Used for controlling updateCallback24(). // _unkValue6 - Unknown. Rhythm section volume? // _unkValue7 - Unknown. Rhythm section volume? // _unkValue8 - Unknown. Rhythm section volume? // _unkValue9 - Unknown. Rhythm section volume? // _unkValue10 - Unknown. Rhythm section volume? // _unkValue11 - Unknown. Rhythm section volume? // _unkValue12 - Unknown. Rhythm section volume? // _unkValue13 - Unknown. Rhythm section volume? // _unkValue14 - Unknown. Rhythm section volume? // _unkValue15 - Unknown. Rhythm section volume? // _unkValue16 - Unknown. Rhythm section volume? // _unkValue17 - Unknown. Rhythm section volume? // _unkValue18 - Unknown. Rhythm section volume? // _unkValue19 - Unknown. Rhythm section volume? // _unkValue20 - Unknown. Rhythm section volume? // _unkTable[] - Probably frequences for the 12-tone scale. // _unkTable2[] - Unknown. Currently only used by updateCallback46() // _unkTable2_1[] - One of the tables in _unkTable2[] // _unkTable2_2[] - One of the tables in _unkTable2[] // _unkTable2_3[] - One of the tables in _unkTable2[] int32 _samplesPerCallback; int32 _samplesPerCallbackRemainder; int32 _samplesTillCallback; int32 _samplesTillCallbackRemainder; int _lastProcessed; int8 _flagTrigger; int _curChannel; uint8 _soundTrigger; int _soundsPlaying; uint16 _rnd; uint8 _unkValue1; uint8 _unkValue2; uint8 _unkValue3; uint8 _unkValue4; uint8 _unkValue5; uint8 _unkValue6; uint8 _unkValue7; uint8 _unkValue8; uint8 _unkValue9; uint8 _unkValue10; uint8 _unkValue11; uint8 _unkValue12; uint8 _unkValue13; uint8 _unkValue14; uint8 _unkValue15; uint8 _unkValue16; uint8 _unkValue17; uint8 _unkValue18; uint8 _unkValue19; uint8 _unkValue20; int _flags; FM_OPL *_adlib; uint8 *_soundData; uint8 _soundIdTable[0x10]; Channel _channels[10]; uint8 _vibratoAndAMDepthBits; uint8 _rhythmSectionBits; uint8 _curRegOffset; uint8 _tempo; const uint8 *_tablePtr1; const uint8 *_tablePtr2; static const uint8 _regOffset[]; static const uint16 _unkTable[]; static const uint8 *_unkTable2[]; static const uint8 _unkTable2_1[]; static const uint8 _unkTable2_2[]; static const uint8 _unkTable2_3[]; static const uint8 _unkTables[][32]; uint16 _syncJumpMask; Common::Mutex _mutex; Audio::Mixer *_mixer; void lock() { _mutex.lock(); } void unlock() { _mutex.unlock(); } }; AdlibDriver::AdlibDriver(Audio::Mixer *mixer) { setupOpcodeList(); setupParserOpcodeTable(); _mixer = mixer; _flags = 0; _adlib = makeAdlibOPL(getRate()); assert(_adlib); memset(_channels, 0, sizeof(_channels)); _soundData = 0; _vibratoAndAMDepthBits = _curRegOffset = 0; _lastProcessed = _flagTrigger = _curChannel = _rhythmSectionBits = 0; _soundsPlaying = 0; _rnd = 0x1234; _tempo = 0; _soundTrigger = 0; _unkValue3 = 0xFF; _unkValue1 = _unkValue2 = _unkValue4 = _unkValue5 = 0; _unkValue6 = _unkValue7 = _unkValue8 = _unkValue9 = _unkValue10 = 0; _unkValue11 = _unkValue12 = _unkValue13 = _unkValue14 = _unkValue15 = _unkValue16 = _unkValue17 = _unkValue18 = _unkValue19 = _unkValue20 = 0; _tablePtr1 = _tablePtr2 = 0; _mixer->setupPremix(this); _samplesPerCallback = getRate() / CALLBACKS_PER_SECOND; _samplesPerCallbackRemainder = getRate() % CALLBACKS_PER_SECOND; _samplesTillCallback = 0; _samplesTillCallbackRemainder = 0; _syncJumpMask = 0; } AdlibDriver::~AdlibDriver() { _mixer->setupPremix(0); OPLDestroy(_adlib); _adlib = 0; } int AdlibDriver::callback(int opcode, ...) { lock(); if (opcode >= _opcodesEntries || opcode < 0) { warning("AdlibDriver: calling unknown opcode '%d'", opcode); return 0; } debugC(9, kDebugLevelSound, "Calling opcode '%s' (%d)", _opcodeList[opcode].name, opcode); va_list args; va_start(args, opcode); int returnValue = (this->*(_opcodeList[opcode].function))(args); va_end(args); unlock(); return returnValue; } // Opcodes int AdlibDriver::snd_ret0x100(va_list &list) { return 0x100; } int AdlibDriver::snd_ret0x1983(va_list &list) { return 0x1983; } int AdlibDriver::snd_initDriver(va_list &list) { _lastProcessed = _soundsPlaying = 0; resetAdlibState(); return 0; } int AdlibDriver::snd_deinitDriver(va_list &list) { resetAdlibState(); return 0; } int AdlibDriver::snd_setSoundData(va_list &list) { if (_soundData) { delete [] _soundData; _soundData = 0; } _soundData = va_arg(list, uint8*); return 0; } int AdlibDriver::snd_unkOpcode1(va_list &list) { warning("unimplemented snd_unkOpcode1"); return 0; } int AdlibDriver::snd_startSong(va_list &list) { int songId = va_arg(list, int); _flags |= 8; _flagTrigger = 1; uint8 *ptr = getProgram(songId); uint8 chan = *ptr; if ((songId << 1) != 0) { if (chan == 9) { if (_flags & 2) return 0; } else { if (_flags & 1) return 0; } } _soundIdTable[_soundsPlaying++] = songId; _soundsPlaying &= 0x0F; return 0; } int AdlibDriver::snd_unkOpcode2(va_list &list) { warning("unimplemented snd_unkOpcode2"); return 0; } int AdlibDriver::snd_unkOpcode3(va_list &list) { int value = va_arg(list, int); int loop = value; if (value < 0) { value = 0; loop = 9; } loop -= value; ++loop; while (loop--) { _curChannel = value; Channel &channel = _channels[_curChannel]; channel.priority = 0; channel.dataptr = 0; if (value != 9) { noteOff(channel); } ++value; } return 0; } int AdlibDriver::snd_readByte(va_list &list) { int a = va_arg(list, int); int b = va_arg(list, int); uint8 *ptr = getProgram(a) + b; return *ptr; } int AdlibDriver::snd_writeByte(va_list &list) { int a = va_arg(list, int); int b = va_arg(list, int); int c = va_arg(list, int); uint8 *ptr = getProgram(a) + b; uint8 oldValue = *ptr; *ptr = (uint8)c; return oldValue; } int AdlibDriver::snd_getSoundTrigger(va_list &list) { return _soundTrigger; } int AdlibDriver::snd_unkOpcode4(va_list &list) { warning("unimplemented snd_unkOpcode4"); return 0; } int AdlibDriver::snd_dummy(va_list &list) { return 0; } int AdlibDriver::snd_getNullvar4(va_list &list) { warning("unimplemented snd_getNullvar4"); return 0; } int AdlibDriver::snd_setNullvar3(va_list &list) { warning("unimplemented snd_setNullvar3"); return 0; } int AdlibDriver::snd_setFlag(va_list &list) { int oldFlags = _flags; _flags |= va_arg(list, int); return oldFlags; } int AdlibDriver::snd_clearFlag(va_list &list) { int oldFlags = _flags; _flags &= ~(va_arg(list, int)); return oldFlags; } // timer callback void AdlibDriver::callback() { lock(); --_flagTrigger; if (_flagTrigger < 0) _flags &= ~8; setupPrograms(); executePrograms(); uint8 temp = _unkValue3; _unkValue3 += _tempo; if (_unkValue3 < temp) { if (!(--_unkValue2)) { _unkValue2 = _unkValue1; ++_unkValue4; } } unlock(); } void AdlibDriver::setupPrograms() { while (_lastProcessed != _soundsPlaying) { uint8 *ptr = getProgram(_soundIdTable[_lastProcessed]); uint8 chan = *ptr++; uint8 priority = *ptr++; // Only start this sound if its priority is higher than the one // already playing. Channel &channel = _channels[chan]; if (priority >= channel.priority) { initChannel(channel); channel.priority = priority; channel.dataptr = ptr; channel.tempo = 0xFF; channel.position = 0xFF; channel.duration = 1; unkOutput2(chan); } // What we have set up now is, probably, the controlling // channel for the sound. It is assumed that this program will // set up all the other channels it needs, clearing their locks // along the way. ++_lastProcessed; _lastProcessed &= 0x0F; } } // A few words on opcode parsing and timing: // // First of all, We simulate a timer callback 72 times per second. Each timeout // we update each channel that has something to play. // // Each channel has its own individual tempo, which is added to its position. // This will frequently cause the position to "wrap around" but that is // intentional. In fact, it's the signal to go ahead and do more stuff with // that channel. // // Each channel also has a duration, indicating how much time is left on the // its current task. This duration is decreased by one. As long as it still has // not reached zero, the only thing that can happen is that the note is turned // off depending on manual or automatic note spacing. Once the duration reaches // zero, a new set of musical opcodes are executed. // // An opcode is one byte, followed by a variable number of parameters. Since // most opcodes have at least one one-byte parameter, we read that as well. Any // opcode that doesn't have that one parameter is responsible for moving the // data pointer back again. // // If the most significant bit of the opcode is 1, it's a function; call it. // The opcode functions return either 0 (continue), 1 (stop) or 2 (stop, and do // not run the effects callbacks). // // If the most significant bit of the opcode is 0, it's a note, and the first // parameter is its duration. (There are cases where the duration is modified // but that's an exception.) The note opcode is assumed to return 1, and is the // last opcode unless its duration is zero. // // Finally, most of the times that the callback is called, it will invoke the // effects callbacks. The final opcode in a set can prevent this, if it's a // function and it returns anything other than 1. void AdlibDriver::executePrograms() { // Each channel runs its own program. There are ten channels: One for // each Adlib channel (0-8), plus one "control channel" (9) which is // the one that tells the other channels what to do. // This is where we ensure that channels that are made to jump "in // sync" do so. if (_syncJumpMask) { bool forceUnlock = true; for (_curChannel = 9; _curChannel >= 0; --_curChannel) { if ((_syncJumpMask & (1 << _curChannel)) == 0) continue; if (_channels[_curChannel].dataptr && !_channels[_curChannel].lock) { forceUnlock = false; } } if (forceUnlock) { for (_curChannel = 9; _curChannel >= 0; --_curChannel) if (_syncJumpMask & (1 << _curChannel)) _channels[_curChannel].lock = false; } } for (_curChannel = 9; _curChannel >= 0; --_curChannel) { int result = 1; if (!_channels[_curChannel].dataptr) { continue; } if (_channels[_curChannel].lock && (_syncJumpMask & (1 << _curChannel))) { continue; } Channel &channel = _channels[_curChannel]; _curRegOffset = _regOffset[_curChannel]; if (channel.tempoReset) { channel.tempo = _tempo; } uint8 backup = channel.position; channel.position += channel.tempo; if (channel.position < backup) { if (--channel.duration) { if (channel.duration == channel.spacing2) noteOff(channel); if (channel.duration == channel.spacing1 && _curChannel != 9) noteOff(channel); } else { // An opcode is not allowed to modify its own // data pointer except through the 'dataptr' // parameter. To enforce that, we have to work // on a copy of the data pointer. // // This fixes a subtle music bug where the // wrong music would play when getting the // quill in Kyra 1. uint8 *dataptr = channel.dataptr; while (dataptr) { uint8 opcode = *dataptr++; uint8 param = *dataptr++; if (opcode & 0x80) { opcode &= 0x7F; if (opcode >= _parserOpcodeTableSize) opcode = _parserOpcodeTableSize - 1; debugC(9, kDebugLevelSound, "Calling opcode '%s' (%d) (channel: %d)", _parserOpcodeTable[opcode].name, opcode, _curChannel); result = (this->*(_parserOpcodeTable[opcode].function))(dataptr, channel, param); channel.dataptr = dataptr; if (result) break; } else { debugC(9, kDebugLevelSound, "Note on opcode 0x%02X (duration: %d) (channel: %d)", opcode, param, _curChannel); setupNote(opcode, channel); noteOn(channel); setupDuration(param, channel); if (param) { channel.dataptr = dataptr; break; } } } } } if (result == 1) { if (channel.primaryEffect) (this->*(channel.primaryEffect))(channel); if (channel.secondaryEffect) (this->*(channel.secondaryEffect))(channel); } } } // void AdlibDriver::resetAdlibState() { debugC(9, kDebugLevelSound, "resetAdlibState()"); _rnd = 0x1234; // Authorize the control of the waveforms writeOPL(0x01, 0x20); // Select FM music mode writeOPL(0x08, 0x00); // I would guess the main purpose of this is to turn off the rhythm, // thus allowing us to use 9 melodic voices instead of 6. writeOPL(0xBD, 0x00); int loop = 10; while (loop--) { if (loop != 9) { // Silence the channel writeOPL(0x40 + _regOffset[loop], 0x3F); writeOPL(0x43 + _regOffset[loop], 0x3F); } initChannel(_channels[loop]); } } // Old calling style: output0x388(0xABCD) // New calling style: writeOPL(0xAB, 0xCD) void AdlibDriver::writeOPL(byte reg, byte val) { OPLWriteReg(_adlib, reg, val); } void AdlibDriver::initChannel(Channel &channel) { debugC(9, kDebugLevelSound, "initChannel(%lu)", (long)(&channel - _channels)); memset(&channel.dataptr, 0, sizeof(Channel) - ((char*)&channel.dataptr - (char*)&channel)); channel.tempo = 0xFF; channel.priority = 0; // normally here are nullfuncs but we set 0 for now channel.primaryEffect = 0; channel.secondaryEffect = 0; channel.spacing1 = 1; channel.lock = false; } void AdlibDriver::noteOff(Channel &channel) { debugC(9, kDebugLevelSound, "noteOff(%lu)", (long)(&channel - _channels)); // The control channel has no corresponding Adlib channel if (_curChannel >= 9) return; // When the rhythm section is enabled, channels 6, 7 and 8 are special. if (_rhythmSectionBits && _curChannel >= 6) return; // This means the "Key On" bit will always be 0 channel.regBx &= 0xDF; // Octave / F-Number / Key-On writeOPL(0xB0 + _curChannel, channel.regBx); } void AdlibDriver::unkOutput2(uint8 chan) { debugC(9, kDebugLevelSound, "unkOutput2(%d)", chan); // The control channel has no corresponding Adlib channel if (chan >= 9) return; // I believe this has to do with channels 6, 7, and 8 being special // when Adlib's rhythm section is enabled. if (_rhythmSectionBits && chan >= 6) return; uint8 offset = _regOffset[chan]; // The channel is cleared: First the attack/delay rate, then the // sustain level/release rate, and finally the note is turned off. writeOPL(0x60 + offset, 0xFF); writeOPL(0x63 + offset, 0xFF); writeOPL(0x80 + offset, 0xFF); writeOPL(0x83 + offset, 0xFF); writeOPL(0xB0 + chan, 0x00); // ...and then the note is turned on again, with whatever value is // still lurking in the A0 + chan register, but everything else - // including the two most significant frequency bit, and the octave - // set to zero. // // This is very strange behaviour, and causes problems with the ancient // FMOPL code we borrowed from AdPlug. I've added a workaround. See // fmopl.cpp for more details. // // More recent versions of the MAME FMOPL don't seem to have this // problem, but cannot currently be used because of licensing and // performance issues. // // Ken Silverman's Adlib emulator (which can be found on his Web page - // http://www.advsys.net/ken - and as part of AdPlug) also seems to be // immune, but is apparently not as feature complete as MAME's. writeOPL(0xB0 + chan, 0x20); } // I believe this is a random number generator. It actually does seem to // generate an even distribution of almost all numbers from 0 through 65535, // though in my tests some numbers were never generated. uint16 AdlibDriver::getRandomNr() { _rnd += 0x9248; uint16 lowBits = _rnd & 7; _rnd >>= 3; _rnd |= (lowBits << 13); return _rnd; } void AdlibDriver::setupDuration(uint8 duration, Channel &channel) { debugC(9, kDebugLevelSound, "setupDuration(%d, %lu)", duration, (long)(&channel - _channels)); if (channel.durationRandomness) { channel.duration = duration + (getRandomNr() & channel.durationRandomness); return; } if (channel.fractionalSpacing) { channel.spacing2 = (duration >> 3) * channel.fractionalSpacing; } channel.duration = duration; } // This function may or may not play the note. It's usually followed by a call // to noteOn(), which will always play the current note. void AdlibDriver::setupNote(uint8 rawNote, Channel &channel, bool flag) { debugC(9, kDebugLevelSound, "setupNote(%d, %lu)", rawNote, (long)(&channel - _channels)); channel.rawNote = rawNote; int8 note = (rawNote & 0x0F) + channel.baseNote; int8 octave = ((rawNote + channel.baseOctave) >> 4) & 0x0F; // There are only twelve notes. If we go outside that, we have to // adjust the note and octave. if (note >= 12) { note -= 12; octave++; } else if (note < 0) { note += 12; octave--; } // The calculation of frequency looks quite different from the original // disassembly at a first glance, but when you consider that the // largest possible value would be 0x0246 + 0xFF + 0x47 (and that's if // baseFreq is unsigned), freq is still a 10-bit value, just as it // should be to fit in the Ax and Bx registers. // // If it were larger than that, it could have overflowed into the // octave bits, and that could possibly have been used in some sound. // But as it is now, I can't see any way it would happen. uint16 freq = _unkTable[note] + channel.baseFreq; // When called from callback 41, the behaviour is slightly different: // We adjust the frequency, even when channel.unk16 is 0. if (channel.unk16 || flag) { const uint8 *table; if (channel.unk16 >= 0) { table = _unkTables[(channel.rawNote & 0x0F) + 2]; freq += table[channel.unk16]; } else { table = _unkTables[channel.rawNote & 0x0F]; freq -= table[-channel.unk16]; } } channel.regAx = freq & 0xFF; channel.regBx = (channel.regBx & 0x20) | (octave << 2) | ((freq >> 8) & 0x03); // Keep the note on or off writeOPL(0xA0 + _curChannel, channel.regAx); writeOPL(0xB0 + _curChannel, channel.regBx); } void AdlibDriver::setupInstrument(uint8 regOffset, uint8 *dataptr, Channel &channel) { debugC(9, kDebugLevelSound, "setupInstrument(%d, %p, %lu)", regOffset, (const void *)dataptr, (long)(&channel - _channels)); // Amplitude Modulation / Vibrato / Envelope Generator Type / // Keyboard Scaling Rate / Modulator Frequency Multiple writeOPL(0x20 + regOffset, *dataptr++); writeOPL(0x23 + regOffset, *dataptr++); uint8 temp = *dataptr++; // Feedback / Algorithm // It is very likely that _curChannel really does refer to the same // channel as regOffset, but there's only one Cx register per channel. writeOPL(0xC0 + _curChannel, temp); // The algorithm bit. I don't pretend to understand this fully, but // "If set to 0, operator 1 modulates operator 2. In this case, // operator 2 is the only one producing sound. If set to 1, both // operators produce sound directly. Complex sounds are more easily // created if the algorithm is set to 0." channel.twoChan = temp & 1; // Waveform Select writeOPL(0xE0 + regOffset, *dataptr++); writeOPL(0xE3 + regOffset, *dataptr++); channel.opLevel1 = *dataptr++; channel.opLevel2 = *dataptr++; // Level Key Scaling / Total Level writeOPL(0x40 + regOffset, calculateOpLevel1(channel)); writeOPL(0x43 + regOffset, calculateOpLevel2(channel)); // Attack Rate / Decay Rate writeOPL(0x60 + regOffset, *dataptr++); writeOPL(0x63 + regOffset, *dataptr++); // Sustain Level / Release Rate writeOPL(0x80 + regOffset, *dataptr++); writeOPL(0x83 + regOffset, *dataptr++); } // Apart from playing the note, this function also updates the variables for // primary effect 2. void AdlibDriver::noteOn(Channel &channel) { debugC(9, kDebugLevelSound, "noteOn(%lu)", (long)(&channel - _channels)); // The "note on" bit is set, and the current note is played. channel.regBx |= 0x20; writeOPL(0xB0 + _curChannel, channel.regBx); int8 shift = 9 - channel.unk33; uint16 temp = channel.regAx | (channel.regBx << 8); channel.unk37 = ((temp & 0x3FF) >> shift) & 0xFF; channel.unk38 = channel.unk36; } void AdlibDriver::adjustVolume(Channel &channel) { debugC(9, kDebugLevelSound, "adjustVolume(%lu)", (long)(&channel - _channels)); // Level Key Scaling / Total Level writeOPL(0x43 + _regOffset[_curChannel], calculateOpLevel2(channel)); if (channel.twoChan) writeOPL(0x40 + _regOffset[_curChannel], calculateOpLevel1(channel)); } // This is presumably only used for some sound effects, e.g. Malcolm blowing up // the trees in the intro (but not the effect where he "booby-traps" the big // tree) and turning Kallak to stone. Related functions and variables: // // update_setupPrimaryEffect1() // - Initialises unk29, unk30 and unk31 // - unk29 is not further modified // - unk30 is not further modified, except by update_removePrimaryEffect1() // // update_removePrimaryEffect1() // - Deinitialises unk30 // // unk29 - determines how often the notes are played // unk30 - modifies the frequency // unk31 - determines how often the notes are played void AdlibDriver::primaryEffect1(Channel &channel) { debugC(9, kDebugLevelSound, "Calling primaryEffect1 (channel: %d)", _curChannel); uint8 temp = channel.unk31; channel.unk31 += channel.unk29; if (channel.unk31 >= temp) return; // Initialise unk1 to the current frequency uint16 unk1 = ((channel.regBx & 3) << 8) | channel.regAx; // This is presumably to shift the "note on" bit so far to the left // that it won't be affected by any of the calculations below. uint16 unk2 = ((channel.regBx & 0x20) << 8) | (channel.regBx & 0x1C); int16 unk3 = (int16)channel.unk30; if (unk3 >= 0) { unk1 += unk3; if (unk1 >= 734) { // The new frequency is too high. Shift it down and go // up one octave. unk1 >>= 1; if (!(unk1 & 0x3FF)) ++unk1; unk2 = (unk2 & 0xFF00) | ((unk2 + 4) & 0xFF); unk2 &= 0xFF1C; } } else { unk1 += unk3; if (unk1 < 388) { // The new frequency is too low. Shift it up and go // down one octave. unk1 <<= 1; if (!(unk1 & 0x3FF)) --unk1; unk2 = (unk2 & 0xFF00) | ((unk2 - 4) & 0xFF); unk2 &= 0xFF1C; } } // Make sure that the new frequency is still a 10-bit value. unk1 &= 0x3FF; writeOPL(0xA0 + _curChannel, unk1 & 0xFF); channel.regAx = unk1 & 0xFF; // Shift down the "note on" bit again. uint8 value = unk1 >> 8; value |= (unk2 >> 8) & 0xFF; value |= unk2 & 0xFF; writeOPL(0xB0 + _curChannel, value); channel.regBx = value; } // This is presumably only used for some sound effects, e.g. Malcolm entering // and leaving Kallak's hut. Related functions and variables: // // update_setupPrimaryEffect2() // - Initialises unk32, unk33, unk34, unk35 and unk36 // - unk32 is not further modified // - unk33 is not further modified // - unk34 is a countdown that gets reinitialised to unk35 on zero // - unk35 is based on unk34 and not further modified // - unk36 is not further modified // // noteOn() // - Plays the current note // - Updates unk37 with a new (lower?) frequency // - Copies unk36 to unk38. The unk38 variable is a countdown. // // unk32 - determines how often the notes are played // unk33 - modifies the frequency // unk34 - countdown, updates frequency on zero // unk35 - initialiser for unk34 countdown // unk36 - initialiser for unk38 countdown // unk37 - frequency // unk38 - countdown, begins playing on zero // unk41 - determines how often the notes are played // // Note that unk41 is never initialised. Not that it should matter much, but it // is a bit sloppy. void AdlibDriver::primaryEffect2(Channel &channel) { debugC(9, kDebugLevelSound, "Calling primaryEffect2 (channel: %d)", _curChannel); if (channel.unk38) { --channel.unk38; return; } uint8 temp = channel.unk41; channel.unk41 += channel.unk32; if (channel.unk41 < temp) { uint16 unk1 = channel.unk37; if (!(--channel.unk34)) { unk1 ^= 0xFFFF; ++unk1; channel.unk37 = unk1; channel.unk34 = channel.unk35; } uint16 unk2 = (channel.regAx | (channel.regBx << 8)) & 0x3FF; unk2 += unk1; channel.regAx = unk2 & 0xFF; channel.regBx = (channel.regBx & 0xFC) | (unk2 >> 8); // Octave / F-Number / Key-On writeOPL(0xA0 + _curChannel, channel.regAx); writeOPL(0xB0 + _curChannel, channel.regBx); } } // I don't know where this is used. The same operation is performed several // times on the current channel, using a chunk of the _soundData[] buffer for // parameters. The parameters are used starting at the end of the chunk. // // Since we use _curRegOffset to specify the final register, it's quite // unlikely that this function is ever used to play notes. It's probably only // used to modify the sound. Another thing that supports this idea is that it // can be combined with any of the effects callbacks above. // // Related functions and variables: // // update_setupSecondaryEffect1() // - Initialies unk18, unk19, unk20, unk21, unk22 and offset // - unk19 is not further modified // - unk20 is not further modified // - unk22 is not further modified // - offset is not further modified // // unk18 - determines how often the operation is performed // unk19 - determines how often the operation is performed // unk20 - the start index into the data chunk // unk21 - the current index into the data chunk // unk22 - the operation to perform // offset - the offset to the data chunk void AdlibDriver::secondaryEffect1(Channel &channel) { debugC(9, kDebugLevelSound, "Calling secondaryEffect1 (channel: %d)", _curChannel); uint8 temp = channel.unk18; channel.unk18 += channel.unk19; if (channel.unk18 < temp) { if (--channel.unk21 < 0) { channel.unk21 = channel.unk20; } writeOPL(channel.unk22 + _curRegOffset, _soundData[channel.offset + channel.unk21]); } } uint8 AdlibDriver::calculateOpLevel1(Channel &channel) { int8 value = channel.opLevel1 & 0x3F; if (channel.twoChan) { value += channel.opExtraLevel1; value += channel.opExtraLevel2; value += channel.opExtraLevel3; } // Preserve the scaling level bits from opLevel1 return checkValue(value) | (channel.opLevel1 & 0xC0); } uint8 AdlibDriver::calculateOpLevel2(Channel &channel) { int8 value = channel.opLevel2 & 0x3F; value += channel.opExtraLevel1; value += channel.opExtraLevel2; value += channel.opExtraLevel3; // Preserve the scaling level bits from opLevel2 return checkValue(value) | (channel.opLevel2 & 0xC0); } // parser opcodes int AdlibDriver::update_setRepeat(uint8 *&dataptr, Channel &channel, uint8 value) { channel.repeatCounter = value; return 0; } int AdlibDriver::update_checkRepeat(uint8 *&dataptr, Channel &channel, uint8 value) { ++dataptr; if (--channel.repeatCounter) { int16 add = READ_LE_UINT16(dataptr - 2); dataptr += add; } return 0; } int AdlibDriver::update_setupProgram(uint8 *&dataptr, Channel &channel, uint8 value) { if (value == 0xFF) return 0; uint8 *ptr = getProgram(value); uint8 chan = *ptr++; uint8 priority = *ptr++; Channel &channel2 = _channels[chan]; if (priority >= channel2.priority) { _flagTrigger = 1; _flags |= 8; initChannel(channel2); channel2.priority = priority; channel2.dataptr = ptr; channel2.tempo = 0xFF; channel2.position = 0xFF; channel2.duration = 1; unkOutput2(chan); } return 0; } int AdlibDriver::update_setNoteSpacing(uint8 *&dataptr, Channel &channel, uint8 value) { channel.spacing1 = value; return 0; } int AdlibDriver::update_jump(uint8 *&dataptr, Channel &channel, uint8 value) { --dataptr; int16 add = READ_LE_UINT16(dataptr); dataptr += 2; dataptr += add; if (_syncJumpMask & (1 << (&channel - _channels))) channel.lock = true; return 0; } int AdlibDriver::update_jumpToSubroutine(uint8 *&dataptr, Channel &channel, uint8 value) { --dataptr; int16 add = READ_LE_UINT16(dataptr); dataptr += 2; channel.dataptrStack[channel.dataptrStackPos++] = dataptr; dataptr += add; return 0; } int AdlibDriver::update_returnFromSubroutine(uint8 *&dataptr, Channel &channel, uint8 value) { dataptr = channel.dataptrStack[--channel.dataptrStackPos]; return 0; } int AdlibDriver::update_setBaseOctave(uint8 *&dataptr, Channel &channel, uint8 value) { channel.baseOctave = value; return 0; } int AdlibDriver::update_stopChannel(uint8 *&dataptr, Channel &channel, uint8 value) { channel.priority = 0; if (_curChannel != 9) { noteOff(channel); } dataptr = 0; return 2; } int AdlibDriver::update_playRest(uint8 *&dataptr, Channel &channel, uint8 value) { setupDuration(value, channel); noteOff(channel); return (value != 0); } int AdlibDriver::update_writeAdlib(uint8 *&dataptr, Channel &channel, uint8 value) { writeOPL(value, *dataptr++); return 0; } int AdlibDriver::update_setupNoteAndDuration(uint8 *&dataptr, Channel &channel, uint8 value) { setupNote(value, channel); value = *dataptr++; setupDuration(value, channel); return (value != 0); } int AdlibDriver::update_setBaseNote(uint8 *&dataptr, Channel &channel, uint8 value) { channel.baseNote = value; return 0; } int AdlibDriver::update_setupSecondaryEffect1(uint8 *&dataptr, Channel &channel, uint8 value) { channel.unk18 = value; channel.unk19 = value; channel.unk20 = channel.unk21 = *dataptr++; channel.unk22 = *dataptr++; channel.offset = READ_LE_UINT16(dataptr); dataptr += 2; channel.secondaryEffect = &AdlibDriver::secondaryEffect1; return 0; } int AdlibDriver::update_stopOtherChannel(uint8 *&dataptr, Channel &channel, uint8 value) { Channel &channel2 = _channels[value]; channel2.duration = 0; channel2.priority = 0; channel2.dataptr = 0; return 0; } int AdlibDriver::update_waitForEndOfProgram(uint8 *&dataptr, Channel &channel, uint8 value) { uint8 *ptr = getProgram(value); uint8 chan = *ptr; if (!_channels[chan].dataptr) { return 0; } dataptr -= 2; return 2; } int AdlibDriver::update_setupInstrument(uint8 *&dataptr, Channel &channel, uint8 value) { setupInstrument(_curRegOffset, getInstrument(value), channel); return 0; } int AdlibDriver::update_setupPrimaryEffect1(uint8 *&dataptr, Channel &channel, uint8 value) { channel.unk29 = value; channel.unk30 = READ_BE_UINT16(dataptr); dataptr += 2; channel.primaryEffect = &AdlibDriver::primaryEffect1; channel.unk31 = 0xFF; return 0; } int AdlibDriver::update_removePrimaryEffect1(uint8 *&dataptr, Channel &channel, uint8 value) { --dataptr; channel.primaryEffect = 0; channel.unk30 = 0; return 0; } int AdlibDriver::update_setBaseFreq(uint8 *&dataptr, Channel &channel, uint8 value) { channel.baseFreq = value; return 0; } int AdlibDriver::update_setupPrimaryEffect2(uint8 *&dataptr, Channel &channel, uint8 value) { channel.unk32 = value; channel.unk33 = *dataptr++; uint8 temp = *dataptr++; channel.unk34 = temp + 1; channel.unk35 = temp << 1; channel.unk36 = *dataptr++; channel.primaryEffect = &AdlibDriver::primaryEffect2; return 0; } int AdlibDriver::update_setPriority(uint8 *&dataptr, Channel &channel, uint8 value) { channel.priority = value; return 0; } int AdlibDriver::updateCallback23(uint8 *&dataptr, Channel &channel, uint8 value) { value >>= 1; _unkValue1 = _unkValue2 = value; _unkValue3 = 0xFF; _unkValue4 = _unkValue5 = 0; return 0; } int AdlibDriver::updateCallback24(uint8 *&dataptr, Channel &channel, uint8 value) { if (_unkValue5) { if (_unkValue4 & value) { _unkValue5 = 0; return 0; } } if (!(value & _unkValue4)) { ++_unkValue5; } dataptr -= 2; channel.duration = 1; return 2; } int AdlibDriver::update_setExtraLevel1(uint8 *&dataptr, Channel &channel, uint8 value) { channel.opExtraLevel1 = value; adjustVolume(channel); return 0; } int AdlibDriver::update_setupDuration(uint8 *&dataptr, Channel &channel, uint8 value) { setupDuration(value, channel); return (value != 0); } int AdlibDriver::update_playNote(uint8 *&dataptr, Channel &channel, uint8 value) { setupDuration(value, channel); noteOn(channel); return (value != 0); } int AdlibDriver::update_setFractionalNoteSpacing(uint8 *&dataptr, Channel &channel, uint8 value) { channel.fractionalSpacing = value & 7; return 0; } int AdlibDriver::update_setTempo(uint8 *&dataptr, Channel &channel, uint8 value) { _tempo = value; return 0; } int AdlibDriver::update_removeSecondaryEffect1(uint8 *&dataptr, Channel &channel, uint8 value) { --dataptr; channel.secondaryEffect = 0; return 0; } int AdlibDriver::update_setChannelTempo(uint8 *&dataptr, Channel &channel, uint8 value) { channel.tempo = value; return 0; } int AdlibDriver::update_setExtraLevel3(uint8 *&dataptr, Channel &channel, uint8 value) { channel.opExtraLevel3 = value; return 0; } int AdlibDriver::update_setExtraLevel2(uint8 *&dataptr, Channel &channel, uint8 value) { int channelBackUp = _curChannel; _curChannel = value; Channel &channel2 = _channels[value]; channel2.opExtraLevel2 = *dataptr++; adjustVolume(channel2); _curChannel = channelBackUp; return 0; } int AdlibDriver::update_changeExtraLevel2(uint8 *&dataptr, Channel &channel, uint8 value) { int channelBackUp = _curChannel; _curChannel = value; Channel &channel2 = _channels[value]; channel2.opExtraLevel2 += *dataptr++; adjustVolume(channel2); _curChannel = channelBackUp; return 0; } // Apart from initialising to zero, these two functions are the only ones that // modify _vibratoAndAMDepthBits. int AdlibDriver::update_setAMDepth(uint8 *&dataptr, Channel &channel, uint8 value) { if (value & 1) _vibratoAndAMDepthBits |= 0x80; else _vibratoAndAMDepthBits &= 0x7F; writeOPL(0xBD, _vibratoAndAMDepthBits); return 0; } int AdlibDriver::update_setVibratoDepth(uint8 *&dataptr, Channel &channel, uint8 value) { if (value & 1) _vibratoAndAMDepthBits |= 0x40; else _vibratoAndAMDepthBits &= 0xBF; writeOPL(0xBD, _vibratoAndAMDepthBits); return 0; } int AdlibDriver::update_changeExtraLevel1(uint8 *&dataptr, Channel &channel, uint8 value) { channel.opExtraLevel1 += value; adjustVolume(channel); return 0; } int AdlibDriver::updateCallback38(uint8 *&dataptr, Channel &channel, uint8 value) { int channelBackUp = _curChannel; _curChannel = value; Channel &channel2 = _channels[value]; channel2.duration = channel2.priority = 0; channel2.dataptr = 0; channel2.opExtraLevel2 = 0; if (value != 9) { uint8 outValue = _regOffset[value]; // Feedback strength / Connection type writeOPL(0xC0 + _curChannel, 0x00); // Key scaling level / Operator output level writeOPL(0x43 + outValue, 0x3F); // Sustain Level / Release Rate writeOPL(0x83 + outValue, 0xFF); // Key On / Octave / Frequency writeOPL(0xB0 + _curChannel, 0x00); } _curChannel = channelBackUp; return 0; } int AdlibDriver::updateCallback39(uint8 *&dataptr, Channel &channel, uint8 value) { uint16 unk = *dataptr++; unk |= value << 8; unk &= getRandomNr(); uint16 unk2 = ((channel.regBx & 0x1F) << 8) | channel.regAx; unk2 += unk; unk2 |= ((channel.regBx & 0x20) << 8); // Frequency writeOPL(0xA0 + _curChannel, unk2 & 0xFF); // Key On / Octave / Frequency writeOPL(0xB0 + _curChannel, (unk2 & 0xFF00) >> 8); return 0; } int AdlibDriver::update_removePrimaryEffect2(uint8 *&dataptr, Channel &channel, uint8 value) { --dataptr; channel.primaryEffect = 0; return 0; } int AdlibDriver::updateCallback41(uint8 *&dataptr, Channel &channel, uint8 value) { channel.unk16 = value; setupNote(channel.rawNote, channel, true); return 0; } int AdlibDriver::update_resetToGlobalTempo(uint8 *&dataptr, Channel &channel, uint8 value) { --dataptr; channel.tempo = _tempo; return 0; } int AdlibDriver::update_nop1(uint8 *&dataptr, Channel &channel, uint8 value) { --dataptr; return 0; } int AdlibDriver::update_setDurationRandomness(uint8 *&dataptr, Channel &channel, uint8 value) { channel.durationRandomness = value; return 0; } int AdlibDriver::update_changeChannelTempo(uint8 *&dataptr, Channel &channel, uint8 value) { int tempo = channel.tempo + (int8)value; if (tempo <= 0) tempo = 1; else if (tempo > 255) tempo = 255; channel.tempo = tempo; return 0; } int AdlibDriver::updateCallback46(uint8 *&dataptr, Channel &channel, uint8 value) { uint8 entry = *dataptr++; _tablePtr1 = _unkTable2[entry++]; _tablePtr2 = _unkTable2[entry]; if (value == 2) { // Frequency writeOPL(0xA0, _tablePtr2[0]); } return 0; } // TODO: This is really the same as update_nop1(), so they should be combined // into one single update_nop(). int AdlibDriver::update_nop2(uint8 *&dataptr, Channel &channel, uint8 value) { --dataptr; return 0; } int AdlibDriver::update_setupRhythmSection(uint8 *&dataptr, Channel &channel, uint8 value) { int channelBackUp = _curChannel; int regOffsetBackUp = _curRegOffset; _curChannel = 6; _curRegOffset = _regOffset[6]; setupInstrument(_curRegOffset, getInstrument(value), channel); _unkValue6 = channel.opLevel2; _curChannel = 7; _curRegOffset = _regOffset[7]; setupInstrument(_curRegOffset, getInstrument(*dataptr++), channel); _unkValue7 = channel.opLevel1; _unkValue8 = channel.opLevel2; _curChannel = 8; _curRegOffset = _regOffset[8]; setupInstrument(_curRegOffset, getInstrument(*dataptr++), channel); _unkValue9 = channel.opLevel1; _unkValue10 = channel.opLevel2; // Octave / F-Number / Key-On for channels 6, 7 and 8 _channels[6].regBx = *dataptr++ & 0x2F; writeOPL(0xB6, _channels[6].regBx); writeOPL(0xA6, *dataptr++); _channels[7].regBx = *dataptr++ & 0x2F; writeOPL(0xB7, _channels[7].regBx); writeOPL(0xA7, *dataptr++); _channels[8].regBx = *dataptr++ & 0x2F; writeOPL(0xB8, _channels[8].regBx); writeOPL(0xA8, *dataptr++); _rhythmSectionBits = 0x20; _curRegOffset = regOffsetBackUp; _curChannel = channelBackUp; return 0; } int AdlibDriver::update_playRhythmSection(uint8 *&dataptr, Channel &channel, uint8 value) { // Any instrument that we want to play, and which was already playing, // is temporarily keyed off. Instruments that were off already, or // which we don't want to play, retain their old on/off status. This is // probably so that the instrument's envelope is played from its // beginning again... writeOPL(0xBD, (_rhythmSectionBits & ~(value & 0x1F)) | 0x20); // ...but since we only set the rhythm instrument bits, and never clear // them (until the entire rhythm section is disabled), I'm not sure how // useful the cleverness above is. We could perhaps simply turn off all // the rhythm instruments instead. _rhythmSectionBits |= value; writeOPL(0xBD, _vibratoAndAMDepthBits | 0x20 | _rhythmSectionBits); return 0; } int AdlibDriver::update_removeRhythmSection(uint8 *&dataptr, Channel &channel, uint8 value) { --dataptr; _rhythmSectionBits = 0; // All the rhythm bits are cleared. The AM and Vibrato depth bits // remain unchanged. writeOPL(0xBD, _vibratoAndAMDepthBits); return 0; } int AdlibDriver::updateCallback51(uint8 *&dataptr, Channel &channel, uint8 value) { uint8 value2 = *dataptr++; if (value & 1) { _unkValue12 = value2; // Channel 7, op1: Level Key Scaling / Total Level writeOPL(0x51, checkValue(value2 + _unkValue7 + _unkValue11 + _unkValue12)); } if (value & 2) { _unkValue14 = value2; // Channel 8, op2: Level Key Scaling / Total Level writeOPL(0x55, checkValue(value2 + _unkValue10 + _unkValue13 + _unkValue14)); } if (value & 4) { _unkValue15 = value2; // Channel 8, op1: Level Key Scaling / Total Level writeOPL(0x52, checkValue(value2 + _unkValue9 + _unkValue16 + _unkValue15)); } if (value & 8) { _unkValue18 = value2; // Channel 7, op2: Level Key Scaling / Total Level writeOPL(0x54, checkValue(value2 + _unkValue8 + _unkValue17 + _unkValue18)); } if (value & 16) { _unkValue20 = value2; // Channel 6, op2: Level Key Scaling / Total Level writeOPL(0x53, checkValue(value2 + _unkValue6 + _unkValue19 + _unkValue20)); } return 0; } int AdlibDriver::updateCallback52(uint8 *&dataptr, Channel &channel, uint8 value) { uint8 value2 = *dataptr++; if (value & 1) { _unkValue11 = checkValue(value2 + _unkValue7 + _unkValue11 + _unkValue12); // Channel 7, op1: Level Key Scaling / Total Level writeOPL(0x51, _unkValue11); } if (value & 2) { _unkValue13 = checkValue(value2 + _unkValue10 + _unkValue13 + _unkValue14); // Channel 8, op2: Level Key Scaling / Total Level writeOPL(0x55, _unkValue13); } if (value & 4) { _unkValue16 = checkValue(value2 + _unkValue9 + _unkValue16 + _unkValue15); // Channel 8, op1: Level Key Scaling / Total Level writeOPL(0x52, _unkValue16); } if (value & 8) { _unkValue17 = checkValue(value2 + _unkValue8 + _unkValue17 + _unkValue18); // Channel 7, op2: Level Key Scaling / Total Level writeOPL(0x54, _unkValue17); } if (value & 16) { _unkValue19 = checkValue(value2 + _unkValue6 + _unkValue19 + _unkValue20); // Channel 6, op2: Level Key Scaling / Total Level writeOPL(0x53, _unkValue19); } return 0; } int AdlibDriver::updateCallback53(uint8 *&dataptr, Channel &channel, uint8 value) { uint8 value2 = *dataptr++; if (value & 1) { _unkValue11 = value2; // Channel 7, op1: Level Key Scaling / Total Level writeOPL(0x51, checkValue(value2 + _unkValue7 + _unkValue12)); } if (value & 2) { _unkValue13 = value2; // Channel 8, op2: Level Key Scaling / Total Level writeOPL(0x55, checkValue(value2 + _unkValue10 + _unkValue14)); } if (value & 4) { _unkValue16 = value2; // Channel 8, op1: Level Key Scaling / Total Level writeOPL(0x52, checkValue(value2 + _unkValue9 + _unkValue15)); } if (value & 8) { _unkValue17 = value2; // Channel 7, op2: Level Key Scaling / Total Level writeOPL(0x54, checkValue(value2 + _unkValue8 + _unkValue18)); } if (value & 16) { _unkValue19 = value2; // Channel 6, op2: Level Key Scaling / Total Level writeOPL(0x53, checkValue(value2 + _unkValue6 + _unkValue20)); } return 0; } int AdlibDriver::update_setSoundTrigger(uint8 *&dataptr, Channel &channel, uint8 value) { _soundTrigger = value; return 0; } int AdlibDriver::update_setTempoReset(uint8 *&dataptr, Channel &channel, uint8 value) { channel.tempoReset = value; return 0; } int AdlibDriver::updateCallback56(uint8 *&dataptr, Channel &channel, uint8 value) { channel.unk39 = value; channel.unk40 = *dataptr++; return 0; } // static res #define COMMAND(x) { &AdlibDriver::x, #x } void AdlibDriver::setupOpcodeList() { static const OpcodeEntry opcodeList[] = { COMMAND(snd_ret0x100), COMMAND(snd_ret0x1983), COMMAND(snd_initDriver), COMMAND(snd_deinitDriver), COMMAND(snd_setSoundData), COMMAND(snd_unkOpcode1), COMMAND(snd_startSong), COMMAND(snd_unkOpcode2), COMMAND(snd_unkOpcode3), COMMAND(snd_readByte), COMMAND(snd_writeByte), COMMAND(snd_getSoundTrigger), COMMAND(snd_unkOpcode4), COMMAND(snd_dummy), COMMAND(snd_getNullvar4), COMMAND(snd_setNullvar3), COMMAND(snd_setFlag), COMMAND(snd_clearFlag) }; _opcodeList = opcodeList; _opcodesEntries = ARRAYSIZE(opcodeList); } void AdlibDriver::setupParserOpcodeTable() { static const ParserOpcode parserOpcodeTable[] = { // 0 COMMAND(update_setRepeat), COMMAND(update_checkRepeat), COMMAND(update_setupProgram), COMMAND(update_setNoteSpacing), // 4 COMMAND(update_jump), COMMAND(update_jumpToSubroutine), COMMAND(update_returnFromSubroutine), COMMAND(update_setBaseOctave), // 8 COMMAND(update_stopChannel), COMMAND(update_playRest), COMMAND(update_writeAdlib), COMMAND(update_setupNoteAndDuration), // 12 COMMAND(update_setBaseNote), COMMAND(update_setupSecondaryEffect1), COMMAND(update_stopOtherChannel), COMMAND(update_waitForEndOfProgram), // 16 COMMAND(update_setupInstrument), COMMAND(update_setupPrimaryEffect1), COMMAND(update_removePrimaryEffect1), COMMAND(update_setBaseFreq), // 20 COMMAND(update_stopChannel), COMMAND(update_setupPrimaryEffect2), COMMAND(update_stopChannel), COMMAND(update_stopChannel), // 24 COMMAND(update_stopChannel), COMMAND(update_stopChannel), COMMAND(update_setPriority), COMMAND(update_stopChannel), // 28 COMMAND(updateCallback23), COMMAND(updateCallback24), COMMAND(update_setExtraLevel1), COMMAND(update_stopChannel), // 32 COMMAND(update_setupDuration), COMMAND(update_playNote), COMMAND(update_stopChannel), COMMAND(update_stopChannel), // 36 COMMAND(update_setFractionalNoteSpacing), COMMAND(update_stopChannel), COMMAND(update_setTempo), COMMAND(update_removeSecondaryEffect1), // 40 COMMAND(update_stopChannel), COMMAND(update_setChannelTempo), COMMAND(update_stopChannel), COMMAND(update_setExtraLevel3), // 44 COMMAND(update_setExtraLevel2), COMMAND(update_changeExtraLevel2), COMMAND(update_setAMDepth), COMMAND(update_setVibratoDepth), // 48 COMMAND(update_changeExtraLevel1), COMMAND(update_stopChannel), COMMAND(update_stopChannel), COMMAND(updateCallback38), // 52 COMMAND(update_stopChannel), COMMAND(updateCallback39), COMMAND(update_removePrimaryEffect2), COMMAND(update_stopChannel), // 56 COMMAND(update_stopChannel), COMMAND(updateCallback41), COMMAND(update_resetToGlobalTempo), COMMAND(update_nop1), // 60 COMMAND(update_setDurationRandomness), COMMAND(update_changeChannelTempo), COMMAND(update_stopChannel), COMMAND(updateCallback46), // 64 COMMAND(update_nop2), COMMAND(update_setupRhythmSection), COMMAND(update_playRhythmSection), COMMAND(update_removeRhythmSection), // 68 COMMAND(updateCallback51), COMMAND(updateCallback52), COMMAND(updateCallback53), COMMAND(update_setSoundTrigger), // 72 COMMAND(update_setTempoReset), COMMAND(updateCallback56), COMMAND(update_stopChannel) }; _parserOpcodeTable = parserOpcodeTable; _parserOpcodeTableSize = ARRAYSIZE(parserOpcodeTable); } #undef COMMAND // This table holds the register offset for operator 1 for each of the nine // channels. To get the register offset for operator 2, simply add 3. const uint8 AdlibDriver::_regOffset[] = { 0x00, 0x01, 0x02, 0x08, 0x09, 0x0A, 0x10, 0x11, 0x12 }; // Given the size of this table, and the range of its values, it's probably the // F-Numbers (10 bits) for the notes of the 12-tone scale. However, it does not // match the table in the Adlib documentation I've seen. const uint16 AdlibDriver::_unkTable[] = { 0x0134, 0x0147, 0x015A, 0x016F, 0x0184, 0x019C, 0x01B4, 0x01CE, 0x01E9, 0x0207, 0x0225, 0x0246 }; // These tables are currently only used by updateCallback46(), which only ever // uses the first element of one of the sub-tables. const uint8 *AdlibDriver::_unkTable2[] = { AdlibDriver::_unkTable2_1, AdlibDriver::_unkTable2_2, AdlibDriver::_unkTable2_1, AdlibDriver::_unkTable2_2, AdlibDriver::_unkTable2_3, AdlibDriver::_unkTable2_2 }; const uint8 AdlibDriver::_unkTable2_1[] = { 0x50, 0x50, 0x4F, 0x4F, 0x4E, 0x4E, 0x4D, 0x4D, 0x4C, 0x4C, 0x4B, 0x4B, 0x4A, 0x4A, 0x49, 0x49, 0x48, 0x48, 0x47, 0x47, 0x46, 0x46, 0x45, 0x45, 0x44, 0x44, 0x43, 0x43, 0x42, 0x42, 0x41, 0x41, 0x40, 0x40, 0x3F, 0x3F, 0x3E, 0x3E, 0x3D, 0x3D, 0x3C, 0x3C, 0x3B, 0x3B, 0x3A, 0x3A, 0x39, 0x39, 0x38, 0x38, 0x37, 0x37, 0x36, 0x36, 0x35, 0x35, 0x34, 0x34, 0x33, 0x33, 0x32, 0x32, 0x31, 0x31, 0x30, 0x30, 0x2F, 0x2F, 0x2E, 0x2E, 0x2D, 0x2D, 0x2C, 0x2C, 0x2B, 0x2B, 0x2A, 0x2A, 0x29, 0x29, 0x28, 0x28, 0x27, 0x27, 0x26, 0x26, 0x25, 0x25, 0x24, 0x24, 0x23, 0x23, 0x22, 0x22, 0x21, 0x21, 0x20, 0x20, 0x1F, 0x1F, 0x1E, 0x1E, 0x1D, 0x1D, 0x1C, 0x1C, 0x1B, 0x1B, 0x1A, 0x1A, 0x19, 0x19, 0x18, 0x18, 0x17, 0x17, 0x16, 0x16, 0x15, 0x15, 0x14, 0x14, 0x13, 0x13, 0x12, 0x12, 0x11, 0x11, 0x10, 0x10 }; // no don't ask me WHY this table exsits! const uint8 AdlibDriver::_unkTable2_2[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x6F, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F }; const uint8 AdlibDriver::_unkTable2_3[] = { 0x40, 0x40, 0x40, 0x3F, 0x3F, 0x3F, 0x3E, 0x3E, 0x3E, 0x3D, 0x3D, 0x3D, 0x3C, 0x3C, 0x3C, 0x3B, 0x3B, 0x3B, 0x3A, 0x3A, 0x3A, 0x39, 0x39, 0x39, 0x38, 0x38, 0x38, 0x37, 0x37, 0x37, 0x36, 0x36, 0x36, 0x35, 0x35, 0x35, 0x34, 0x34, 0x34, 0x33, 0x33, 0x33, 0x32, 0x32, 0x32, 0x31, 0x31, 0x31, 0x30, 0x30, 0x30, 0x2F, 0x2F, 0x2F, 0x2E, 0x2E, 0x2E, 0x2D, 0x2D, 0x2D, 0x2C, 0x2C, 0x2C, 0x2B, 0x2B, 0x2B, 0x2A, 0x2A, 0x2A, 0x29, 0x29, 0x29, 0x28, 0x28, 0x28, 0x27, 0x27, 0x27, 0x26, 0x26, 0x26, 0x25, 0x25, 0x25, 0x24, 0x24, 0x24, 0x23, 0x23, 0x23, 0x22, 0x22, 0x22, 0x21, 0x21, 0x21, 0x20, 0x20, 0x20, 0x1F, 0x1F, 0x1F, 0x1E, 0x1E, 0x1E, 0x1D, 0x1D, 0x1D, 0x1C, 0x1C, 0x1C, 0x1B, 0x1B, 0x1B, 0x1A, 0x1A, 0x1A, 0x19, 0x19, 0x19, 0x18, 0x18, 0x18, 0x17, 0x17, 0x17, 0x16, 0x16, 0x16, 0x15 }; // This table is used to modify the frequency of the notes, depending on the // note value and unk16. In theory, we could very well try to access memory // outside this table, but in reality that probably won't happen. // // This could be some sort of pitch bend, but I have yet to see it used for // anything so it's hard to say. const uint8 AdlibDriver::_unkTables[][32] = { // 0 { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21 }, // 1 { 0x00, 0x01, 0x02, 0x03, 0x04, 0x06, 0x07, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x22, 0x24 }, // 2 { 0x00, 0x01, 0x02, 0x03, 0x04, 0x06, 0x08, 0x09, 0x0A, 0x0C, 0x0D, 0x0E, 0x0F, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x19, 0x1A, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, 0x24, 0x25, 0x26 }, // 3 { 0x00, 0x01, 0x02, 0x03, 0x04, 0x06, 0x08, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x1A, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x23, 0x25, 0x27, 0x28 }, // 4 { 0x00, 0x01, 0x02, 0x03, 0x04, 0x06, 0x08, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x11, 0x13, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1B, 0x1D, 0x1F, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x28, 0x2A }, // 5 { 0x00, 0x01, 0x02, 0x03, 0x05, 0x07, 0x09, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x13, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1B, 0x1D, 0x1F, 0x20, 0x21, 0x22, 0x23, 0x25, 0x27, 0x29, 0x2B, 0x2D }, // 6 { 0x00, 0x01, 0x02, 0x03, 0x05, 0x07, 0x09, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x13, 0x15, 0x16, 0x17, 0x18, 0x1A, 0x1C, 0x1E, 0x21, 0x24, 0x25, 0x26, 0x27, 0x29, 0x2B, 0x2D, 0x2F, 0x30 }, // 7 { 0x00, 0x01, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x13, 0x15, 0x18, 0x19, 0x1A, 0x1C, 0x1D, 0x1F, 0x21, 0x23, 0x25, 0x26, 0x27, 0x29, 0x2B, 0x2D, 0x2F, 0x30, 0x32 }, // 8 { 0x00, 0x01, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x14, 0x17, 0x1A, 0x19, 0x1A, 0x1C, 0x1E, 0x20, 0x22, 0x25, 0x28, 0x29, 0x2A, 0x2B, 0x2D, 0x2F, 0x31, 0x33, 0x35 }, // 9 { 0x00, 0x01, 0x03, 0x05, 0x07, 0x09, 0x0B, 0x0E, 0x0F, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x20, 0x22, 0x24, 0x26, 0x29, 0x2A, 0x2C, 0x2E, 0x30, 0x32, 0x34, 0x36, 0x39 }, // 10 { 0x00, 0x01, 0x03, 0x05, 0x07, 0x09, 0x0B, 0x0E, 0x0F, 0x10, 0x12, 0x14, 0x16, 0x19, 0x1B, 0x1E, 0x1F, 0x21, 0x23, 0x25, 0x27, 0x29, 0x2B, 0x2D, 0x2E, 0x2F, 0x31, 0x32, 0x34, 0x36, 0x39, 0x3C }, // 11 { 0x00, 0x01, 0x03, 0x05, 0x07, 0x0A, 0x0C, 0x0F, 0x10, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1B, 0x1E, 0x1F, 0x20, 0x22, 0x24, 0x26, 0x28, 0x2B, 0x2E, 0x2F, 0x30, 0x32, 0x34, 0x36, 0x39, 0x3C, 0x3F }, // 12 { 0x00, 0x02, 0x04, 0x06, 0x08, 0x0B, 0x0D, 0x10, 0x11, 0x12, 0x14, 0x16, 0x18, 0x1B, 0x1E, 0x21, 0x22, 0x23, 0x25, 0x27, 0x29, 0x2C, 0x2F, 0x32, 0x33, 0x34, 0x36, 0x38, 0x3B, 0x34, 0x41, 0x44 }, // 13 { 0x00, 0x02, 0x04, 0x06, 0x08, 0x0B, 0x0D, 0x11, 0x12, 0x13, 0x15, 0x17, 0x1A, 0x1D, 0x20, 0x23, 0x24, 0x25, 0x27, 0x29, 0x2C, 0x2F, 0x32, 0x35, 0x36, 0x37, 0x39, 0x3B, 0x3E, 0x41, 0x44, 0x47 } }; #pragma mark - // At the time of writing, the only known case where Kyra 1 uses sound triggers // is in the castle, to cycle between three different songs. const int SoundAdlibPC::_kyra1SoundTriggers[] = { 0, 4, 5, 3 }; const int SoundAdlibPC::_kyra1NumSoundTriggers = ARRAYSIZE(SoundAdlibPC::_kyra1SoundTriggers); SoundAdlibPC::SoundAdlibPC(KyraEngine *engine, Audio::Mixer *mixer) : Sound(engine, mixer), _driver(0), _trackEntries(), _soundDataPtr(0) { memset(_trackEntries, 0, sizeof(_trackEntries)); _driver = new AdlibDriver(mixer); assert(_driver); _sfxPlayingSound = -1; _soundFileLoaded = ""; _soundTriggers = _kyra1SoundTriggers; _numSoundTriggers = _kyra1NumSoundTriggers; } SoundAdlibPC::~SoundAdlibPC() { delete [] _soundDataPtr; delete _driver; } bool SoundAdlibPC::init() { _driver->callback(2); _driver->callback(16, int(4)); return true; } void SoundAdlibPC::process() { uint8 trigger = _driver->callback(11); if (trigger < _numSoundTriggers) { int soundId = _soundTriggers[trigger]; if (soundId) { playTrack(soundId); } } else { warning("Unknown sound trigger %d", trigger); // TODO: At this point, we really want to clear the trigger... } } void SoundAdlibPC::setVolume(int volume) { } int SoundAdlibPC::getVolume() { return 0; } void SoundAdlibPC::loadMusicFile(const char *file) { loadSoundFile(file); } void SoundAdlibPC::playTrack(uint8 track) { if (_musicEnabled) { // WORKAROUND: There is a bug in the Kyra 1 "Pool of Sorrow" // music which causes the channels to get progressively out of // sync for each loop. To avoid that, we declare that all four // of the song channels have to jump "in sync". if (track == 4 && _soundFileLoaded == "KYRA1B") _driver->setSyncJumpMask(0x000F); else _driver->setSyncJumpMask(0); play(track); } } void SoundAdlibPC::haltTrack() { unk1(); unk2(); //_engine->_system->delayMillis(3 * 60); } void SoundAdlibPC::playSoundEffect(uint8 track) { if (_sfxEnabled) play(track); } void SoundAdlibPC::play(uint8 track) { uint8 soundId = _trackEntries[track]; if ((int8)soundId == -1 || !_soundDataPtr) return; soundId &= 0xFF; while ((_driver->callback(16, 0) & 8)) { // We call the system delay and not the game delay to avoid concurrency issues. _engine->_system->delayMillis(10); } if (_sfxPlayingSound != -1) { // Restore the sounds's normal values. _driver->callback(10, _sfxPlayingSound, int(1), int(_sfxPriority)); _driver->callback(10, _sfxPlayingSound, int(3), int(_sfxFourthByteOfSong)); _sfxPlayingSound = -1; } int chan = _driver->callback(9, soundId, int(0)); if (chan != 9) { _sfxPlayingSound = soundId; _sfxPriority = _driver->callback(9, soundId, int(1)); _sfxFourthByteOfSong = _driver->callback(9, soundId, int(3)); // In the cases I've seen, the mysterious fourth byte has been // the parameter for the update_setExtraLevel3() callback. // // The extra level is part of the channels "total level", which // is a six-bit value where larger values means softer volume. // // So what seems to be happening here is that sounds which are // started by this function are given a slightly lower priority // and a slightly higher (i.e. softer) extra level 3 than they // would have if they were started from anywhere else. Strange. int newVal = ((((-_sfxFourthByteOfSong) + 63) * 0xFF) >> 8) & 0xFF; newVal = -newVal + 63; _driver->callback(10, soundId, int(3), newVal); newVal = ((_sfxPriority * 0xFF) >> 8) & 0xFF; _driver->callback(10, soundId, int(1), newVal); } _driver->callback(6, soundId); } void SoundAdlibPC::beginFadeOut() { playSoundEffect(1); } void SoundAdlibPC::loadSoundFile(const char *file) { if (_soundFileLoaded == file) return; if (_soundDataPtr) { haltTrack(); } uint8 *file_data = 0; uint32 file_size = 0; char filename[25]; sprintf(filename, "%s.ADL", file); file_data = _engine->resource()->fileData(filename, &file_size); if (!file_data) { warning("Couldn't find music file: '%s'", filename); return; } unk2(); unk1(); _driver->callback(8, int(-1)); _soundDataPtr = 0; uint8 *p = file_data; memcpy(_trackEntries, p, 120*sizeof(uint8)); p += 120; int soundDataSize = file_size - 120; _soundDataPtr = new uint8[soundDataSize]; assert(_soundDataPtr); memcpy(_soundDataPtr, p, soundDataSize*sizeof(uint8)); delete [] file_data; file_data = p = 0; file_size = 0; _driver->callback(4, _soundDataPtr); _soundFileLoaded = file; } void SoundAdlibPC::unk1() { playSoundEffect(0); //_engine->_system->delayMillis(5 * 60); } void SoundAdlibPC::unk2() { playSoundEffect(0); } } // end of namespace Kyra