/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ #include "common/file.h" #include "common/endian.h" #include "common/system.h" #include "common/util.h" #include "common/ptr.h" #include "m4/globals.h" #include "m4/graphics.h" #include "m4/sprite.h" #include "m4/m4.h" #include "m4/compression.h" namespace M4 { RGBList::RGBList(int numEntries, RGB8 *srcData, bool freeData) { _size = numEntries; assert(numEntries <= 256); if (srcData == NULL) { _data = new RGB8[numEntries]; _freeData = true; } else { _data = srcData; _freeData = freeData; } _palIndexes = new byte[numEntries]; Common::set_to(&_palIndexes[0], &_palIndexes[numEntries], 0); } RGBList::~RGBList() { if (_freeData) delete[] _data; delete[] _palIndexes; } void RGBList::setRange(int start, int count, const RGB8 *src) { assert((start + count) <= _size); Common::copy(&src[0], &src[count], &_data[start]); } /** * Creates a duplicate of the given rgb list */ RGBList *RGBList::clone() const { RGBList *dest = new RGBList(_size, _data, false); _madsVm->_palette->addRange(dest); return dest; } //-------------------------------------------------------------------------- #define VGA_COLOR_TRANS(x) (x == 0x3f ? 255 : x << 2) M4Surface::~M4Surface() { if (_rgbList) { _madsVm->_palette->deleteRange(_rgbList); delete _rgbList; } if (_ownsData) free(); } void M4Surface::loadCodesM4(Common::SeekableReadStream *source) { if (!source) { free(); return; } uint16 widthVal = source->readUint16LE(); uint16 heightVal = source->readUint16LE(); create(widthVal, heightVal, Graphics::PixelFormat::createFormatCLUT8()); source->read(pixels, widthVal * heightVal); } void M4Surface::loadCodesMads(Common::SeekableReadStream *source) { if (!source) { free(); return; } uint16 widthVal = 320; uint16 heightVal = 156; byte *walkMap = new byte[source->size()]; create(widthVal, heightVal, Graphics::PixelFormat::createFormatCLUT8()); source->read(walkMap, source->size()); byte *ptr = (byte *)getBasePtr(0, 0); for (int y = 0; y < heightVal; y++) { for (int x = 0; x < widthVal; x++) { int ofs = x + (y * widthVal); if ((walkMap[ofs / 8] << (ofs % 8)) & 0x80) *ptr++ = 1; // walkable else *ptr++ = 0; } } delete[] walkMap; } // Sprite related methods void M4Surface::vLine(int x, int y1, int y2) { Graphics::Surface::vLine(x, y1, y2, _color); } void M4Surface::hLine(int x1, int x2, int y) { Graphics::Surface::hLine(x1, y, x2, _color); } void M4Surface::vLineXor(int x, int y1, int y2) { // Clipping if (x < 0 || x >= w) return; if (y2 < y1) SWAP(y2, y1); if (y1 < 0) y1 = 0; if (y2 >= h) y2 = h - 1; byte *ptr = (byte *)getBasePtr(x, y1); while (y1++ <= y2) { *ptr ^= 0xFF; ptr += pitch; } } void M4Surface::hLineXor(int x1, int x2, int y) { // Clipping if (y < 0 || y >= h) return; if (x2 < x1) SWAP(x2, x1); if (x1 < 0) x1 = 0; if (x2 >= w) x2 = w - 1; if (x2 < x1) return; byte *ptr = (byte *)getBasePtr(x1, y); while (x1++ <= x2) *ptr++ ^= 0xFF; } void M4Surface::drawLine(int x1, int y1, int x2, int y2, byte color) { Graphics::Surface::drawLine(x1, y1, x2, y2, color); } void M4Surface::frameRect(int x1, int y1, int x2, int y2) { Graphics::Surface::frameRect(Common::Rect(x1, y1, x2, y2), _color); } void M4Surface::fillRect(int x1, int y1, int x2, int y2) { Graphics::Surface::fillRect(Common::Rect(x1, y1, x2, y2), _color); } void M4Surface::drawSprite(int x, int y, SpriteInfo &info, const Common::Rect &clipRect) { enum { kStatusSkip, kStatusScale, kStatusDraw }; // NOTE: The current clipping code assumes that the top left corner of the clip // rectangle is always 0, 0 assert(clipRect.top == 0 && clipRect.left == 0); // TODO: Put err* and scaled* into SpriteInfo int errX = info.hotX * info.scaleX % 100; int errY = info.hotY * info.scaleY % 100; int scaledWidth = scaleValue(info.width, info.scaleX, errX); int scaledHeight = scaleValue(info.height, info.scaleY, errY); /* debugCN(kDebugGraphics, "M4Surface::drawSprite() info.width = %d; info.scaleX = %d; info.height = %d; info.scaleY = %d; scaledWidth = %d; scaledHeight = %d\n", info.width, info.scaleX, info.height, info.scaleY, scaledWidth, scaledHeight); */ int clipX = 0, clipY = 0; // Clip the sprite's width and height according to the clip rectangle's dimensions // This clips the sprite to the bottom and right if (x >= 0) { scaledWidth = MIN(x + scaledWidth, clipRect.right) - x; } else { clipX = x; scaledWidth = x + scaledWidth; } if (y >= 0) { scaledHeight = MIN(y + scaledHeight, clipRect.bottom) - y; } else { clipY = y; scaledHeight = y + scaledHeight; } //debugCN(kDebugGraphics, "M4Surface::drawSprite() width = %d; height = %d; scaledWidth = %d; scaledHeight = %d\n", info.width, info.height, scaledWidth, scaledHeight); // Check if sprite is inside the screen. If it's not, there's no need to draw it if (scaledWidth + x <= 0 || scaledHeight + y <= 0) // check left and top (in case x,y are negative) return; if (scaledWidth <= 0 || scaledHeight <= 0) // check right and bottom return; int heightAmt = scaledHeight; byte *src = info.sprite->getBasePtr(); byte *dst = getBasePtr(x - info.hotX - clipX, y - info.hotY - clipY); int status = kStatusSkip; byte *scaledLineBuf = new byte[scaledWidth]; while (heightAmt > 0) { if (status == kStatusSkip) { // Skip line errY -= info.scaleY; if (errY < 0) status = kStatusScale; else src += info.width; } else { if (status == kStatusScale) { // Scale current line byte *lineDst = scaledLineBuf; int curErrX = errX; int widthVal = scaledWidth; byte *tempSrc = src; int startX = clipX; while (widthVal > 0) { byte pixel = *tempSrc++; curErrX -= info.scaleX; while (curErrX < 0) { if (startX == 0) { *lineDst++ = pixel; widthVal--; } else { startX++; } curErrX += 100; } } src += info.width; status = kStatusDraw; } if (status == kStatusDraw && clipY == 0) { // Draw previously scaled line // TODO Implement different drawing types (depth, shadow etc.) byte *tempDst = dst; for (int lineX = 0; lineX < scaledWidth; lineX++) { byte pixel = scaledLineBuf[lineX]; if (info.encoding & 0x80) { if (pixel == 0x80) { pixel = 0; } else { byte destPixel = *tempDst; byte r, g, b; r = CLIP((info.palette[destPixel].r * pixel) >> 10, 0, 31); g = CLIP((info.palette[destPixel].g * pixel) >> 10, 0, 31); b = CLIP((info.palette[destPixel].b * pixel) >> 10, 0, 31); pixel = info.inverseColorTable[(b << 10) | (g << 5) | r]; } } if (pixel) *tempDst = pixel; tempDst++; } dst += pitch; heightAmt--; // TODO depth etc. //depthAddress += Destination -> Width; errY += 100; if (errY >= 0) status = kStatusSkip; } else if (status == kStatusDraw && clipY < 0) { clipY++; errY += 100; if (errY >= 0) status = kStatusSkip; } } } delete[] scaledLineBuf; } // Surface methods void M4Surface::freeData() { } void M4Surface::clear() { Common::set_to((byte *)pixels, (byte *)pixels + w * h, _vm->_palette->BLACK); } void M4Surface::reset() { ::free(pixels); pixels = NULL; if (_rgbList) { _vm->_palette->deleteRange(_rgbList); delete _rgbList; _rgbList = NULL; } } void M4Surface::frameRect(const Common::Rect &r, uint8 color) { Graphics::Surface::frameRect(r, color); } void M4Surface::fillRect(const Common::Rect &r, uint8 color) { Graphics::Surface::fillRect(r, color); } void M4Surface::copyFrom(M4Surface *src, const Common::Rect &srcBounds, int destX, int destY, int transparentColor) { // Validation of the rectangle and position if ((destX >= w) || (destY >= h)) return; Common::Rect copyRect = srcBounds; if (destX < 0) { copyRect.left += -destX; destX = 0; } else if (destX + copyRect.width() > w) { copyRect.right -= destX + copyRect.width() - w; } if (destY < 0) { copyRect.top += -destY; destY = 0; } else if (destY + copyRect.height() > h) { copyRect.bottom -= destY + copyRect.height() - h; } if (!copyRect.isValidRect()) return; // Copy the specified area byte *data = src->getBasePtr(); byte *srcPtr = data + (src->width() * copyRect.top + copyRect.left); byte *destPtr = (byte *)pixels + (destY * width()) + destX; for (int rowCtr = 0; rowCtr < copyRect.height(); ++rowCtr) { if (transparentColor == -1) // No transparency, so copy line over Common::copy(srcPtr, srcPtr + copyRect.width(), destPtr); else { // Copy each byte one at a time checking for the transparency color for (int xCtr = 0; xCtr < copyRect.width(); ++xCtr) if (srcPtr[xCtr] != transparentColor) destPtr[xCtr] = srcPtr[xCtr]; } srcPtr += src->width(); destPtr += width(); } src->freeData(); } /** * Copies a given image onto a destination surface with scaling, transferring only pixels that meet * the specified depth requirement on a secondary surface contain depth information */ void M4Surface::copyFrom(M4Surface *src, int destX, int destY, int depth, M4Surface *depthsSurface, int scale, int transparentColor) { if (scale == 100) { // Copy the specified area Common::Rect copyRect(0, 0, src->width(), src->height()); if (destX < 0) { copyRect.left += -destX; destX = 0; } else if (destX + copyRect.width() > w) { copyRect.right -= destX + copyRect.width() - w; } if (destY < 0) { copyRect.top += -destY; destY = 0; } else if (destY + copyRect.height() > h) { copyRect.bottom -= destY + copyRect.height() - h; } if (!copyRect.isValidRect()) return; byte *data = src->getBasePtr(); byte *srcPtr = data + (src->width() * copyRect.top + copyRect.left); byte *depthsData = depthsSurface->getBasePtr(); byte *depthsPtr = depthsData + (depthsSurface->pitch * destY) + destX; byte *destPtr = (byte *)pixels + (destY * pitch) + destX; // 100% scaling variation for (int rowCtr = 0; rowCtr < copyRect.height(); ++rowCtr) { // Copy each byte one at a time checking against the depth for (int xCtr = 0; xCtr < copyRect.width(); ++xCtr) { if ((depth <= (depthsPtr[xCtr] & 0x7f)) && (srcPtr[xCtr] != transparentColor)) destPtr[xCtr] = srcPtr[xCtr]; } srcPtr += src->width(); depthsPtr += depthsSurface->width(); destPtr += width(); } src->freeData(); depthsSurface->freeData(); return; } // Start of draw logic for scaled sprites const byte *srcPixelsP = src->getBasePtr(); int destRight = this->width() - 1; int destBottom = this->height() - 1; bool normalFrame = true; // TODO: false for negative frame numbers int frameWidth = src->width(); int frameHeight = src->height(); int highestDim = MAX(frameWidth, frameHeight); bool lineDist[MADS_SURFACE_WIDTH]; int distIndex = 0; int distXCount = 0, distYCount = 0; int distCtr = 0; do { distCtr += scale; if (distCtr < 100) { lineDist[distIndex] = false; } else { lineDist[distIndex] = true; distCtr -= 100; if (distIndex < frameWidth) ++distXCount; if (distIndex < frameHeight) ++distYCount; } } while (++distIndex < highestDim); destX -= distXCount / 2; destY -= distYCount - 1; // Check x bounding area int spriteLeft = 0; int spriteWidth = distXCount; int widthAmount = destX + distXCount - 1; if (destX < 0) { spriteWidth += destX; spriteLeft -= destX; } widthAmount -= destRight; if (widthAmount > 0) spriteWidth -= widthAmount; int spriteRight = spriteLeft + spriteWidth; if (spriteWidth <= 0) return; if (!normalFrame) { destX += distXCount - 1; spriteLeft = -(distXCount - spriteRight); spriteRight = (-spriteLeft + spriteWidth); } // Check y bounding area int spriteTop = 0; int spriteHeight = distYCount; int heightAmount = destY + distYCount - 1; if (destY < 0) { spriteHeight += destY; spriteTop -= destY; } heightAmount -= destBottom; if (heightAmount > 0) spriteHeight -= heightAmount; int spriteBottom = spriteTop + spriteHeight; if (spriteHeight <= 0) return; byte *destPixelsP = this->getBasePtr(destX + spriteLeft, destY + spriteTop); const byte *depthPixelsP = depthsSurface->getBasePtr(destX + spriteLeft, destY + spriteTop); spriteLeft = (spriteLeft * (normalFrame ? 1 : -1)); // Loop through the lines of the sprite for (int yp = 0, sprY = -1; yp < frameHeight; ++yp, srcPixelsP += src->pitch) { if (!lineDist[yp]) // Not a display line, so skip it continue; // Check whether the sprite line is in the display range ++sprY; if ((sprY >= spriteBottom) || (sprY < spriteTop)) continue; // Found a line to display. Loop through the pixels const byte *srcP = srcPixelsP; const byte *depthP = depthPixelsP; byte *destP = destPixelsP; for (int xp = 0, sprX = 0; xp < frameWidth; ++xp, ++srcP) { if (xp < spriteLeft) // Not yet reached start of display area continue; if (!lineDist[sprX++]) // Not a display pixel continue; if ((*srcP != transparentColor) && (depth <= (*depthP & 0x7f))) *destP = *srcP; ++destP; ++depthP; } // Move to the next destination line destPixelsP += this->pitch; depthPixelsP += depthsSurface->pitch; } src->freeData(); depthsSurface->freeData(); this->freeData(); } void M4Surface::loadBackgroundRiddle(const char *sceneName) { char resourceName[20]; Common::SeekableReadStream *stream; // Loads a Riddle scene sprintf(resourceName, "%s.tt", sceneName); stream = _vm->_resourceManager->get(resourceName); m4LoadBackground(stream); _vm->_resourceManager->toss(resourceName); } void M4Surface::loadBackground(int sceneNumber, RGBList **palData) { if (_vm->isM4() || (_vm->getGameType() == GType_RexNebular)) { char resourceName[20]; Common::SeekableReadStream *stream; if (_vm->getGameType() == GType_RexNebular) { // Load Rex Nebular screen bool hasPalette = palData != NULL; if (!hasPalette) palData = &_rgbList; sprintf(resourceName, "rm%d.art", sceneNumber); stream = _vm->_resourceManager->get(resourceName); rexLoadBackground(stream, palData); if (!hasPalette) { _vm->_palette->addRange(_rgbList); this->translate(_rgbList); } } else { // Loads M4 game scene if (palData) *palData = NULL; sprintf(resourceName, "%i.tt", sceneNumber); stream = _vm->_resourceManager->get(resourceName); m4LoadBackground(stream); } _vm->_resourceManager->toss(resourceName); } else { madsLoadBackground(sceneNumber, palData); } } void M4Surface::madsLoadBackground(int roomNumber, RGBList **palData) { // Get a MadsPack reference to the tile set and mapping char resourceName[20]; int i; // Uncompressed tile map resource sprintf(resourceName, "rm%d.mm", roomNumber); MadsPack tileMapFile(resourceName, _vm); Common::SeekableReadStream *mapStream = tileMapFile.getItemStream(0); // Get the details of the tiles and map mapStream->readUint32LE(); int tileCountX = mapStream->readUint16LE(); int tileCountY = mapStream->readUint16LE(); int tileWidthMap = mapStream->readUint16LE(); int tileHeightMap = mapStream->readUint16LE(); int screenWidth = mapStream->readUint16LE(); int screenHeight = mapStream->readUint16LE(); int tileCountMap = tileCountX * tileCountY; delete mapStream; // Obtain tile map information typedef Common::List > TileSetList; typedef TileSetList::iterator TileSetIterator; TileSetList tileSet; uint16 *tileMap = new uint16[tileCountMap]; mapStream = tileMapFile.getItemStream(1); for (i = 0; i < tileCountMap; ++i) tileMap[i] = mapStream->readUint16LE(); delete mapStream; _vm->res()->toss(resourceName); // -------------------------------------------------------------------------------- // Tile map data, which needs to be kept compressed, as the tile offsets refer to // the compressed data. Each tile is then uncompressed separately sprintf(resourceName, "rm%d.tt", roomNumber); Common::SeekableReadStream *tileDataComp = _vm->_resourceManager->get(resourceName); MadsPack tileData(tileDataComp); Common::SeekableReadStream *tileDataUncomp = tileData.getItemStream(0); // Validate that the data matches between the tiles and tile map file and is valid int tileCount = tileDataUncomp->readUint16LE(); int tileWidth = tileDataUncomp->readUint16LE(); int tileHeight = tileDataUncomp->readUint16LE(); delete tileDataUncomp; assert(tileCountMap == tileCount); assert(tileWidth == tileWidthMap); assert(tileHeight == tileHeightMap); assert(screenWidth == _vm->_screen->width()); assert(screenHeight <= _vm->_screen->height()); // -------------------------------------------------------------------------------- // Get the palette to use tileDataUncomp = tileData.getItemStream(2); // Set palette if (!palData) { _vm->_palette->setMadsPalette(tileDataUncomp, 4); } else { int numColors; RGB8 *rgbList = _vm->_palette->decodeMadsPalette(tileDataUncomp, &numColors); *palData = new RGBList(numColors, rgbList, true); } delete tileDataUncomp; // -------------------------------------------------------------------------------- // Get tile data tileDataUncomp = tileData.getItemStream(1); FabDecompressor fab; uint32 compressedTileDataSize = 0; for (i = 0; i < tileCount; i++) { tileDataUncomp->seek(i * 4, SEEK_SET); uint32 tileOfs = tileDataUncomp->readUint32LE(); M4Surface* newTile = new M4Surface(tileWidth, tileHeight); if (i == tileCount - 1) compressedTileDataSize = tileDataComp->size() - tileOfs; else compressedTileDataSize = tileDataUncomp->readUint32LE() - tileOfs; //debugCN(kDebugGraphics, "Tile: %i, compressed size: %i\n", i, compressedTileDataSize); newTile->clear(); byte *compressedTileData = new byte[compressedTileDataSize]; tileDataComp->seek(tileData.getDataOffset() + tileOfs, SEEK_SET); tileDataComp->read(compressedTileData, compressedTileDataSize); fab.decompress(compressedTileData, compressedTileDataSize, (byte*)newTile->pixels, tileWidth * tileHeight); tileSet.push_back(TileSetList::value_type(newTile)); delete[] compressedTileData; } delete tileDataUncomp; // -------------------------------------------------------------------------------- // Loop through the mapping data to place the tiles on the screen uint16 *tIndex = &tileMap[0]; for (int y = 0; y < tileCountY; y++) { for (int x = 0; x < tileCountX; x++) { int tileIndex = *tIndex++; assert(tileIndex < tileCount); TileSetIterator tile = tileSet.begin(); for (i = 0; i < tileIndex; i++) ++tile; ((*tile).get())->copyTo(this, x * tileWidth, y * tileHeight); } } tileSet.clear(); _vm->res()->toss(resourceName); } void M4Surface::rexLoadBackground(Common::SeekableReadStream *source, RGBList **palData) { MadsPack packData(source); Common::SeekableReadStream *sourceUnc = packData.getItemStream(0); int sceneWidth = sourceUnc->readUint16LE(); int sceneHeight = sourceUnc->readUint16LE(); int sceneSize = sceneWidth * sceneHeight; // Set palette if (!palData) { _vm->_palette->setMadsPalette(sourceUnc, 4); } else { int numColors; RGB8 *rgbList = _vm->_palette->decodeMadsPalette(sourceUnc, &numColors); *palData = new RGBList(numColors, rgbList, true); } delete sourceUnc; // Get the raw data for the background sourceUnc = packData.getItemStream(1); assert((int)sourceUnc->size() >= sceneSize); create(sceneWidth, sceneHeight, Graphics::PixelFormat::createFormatCLUT8()); byte *pData = (byte *)pixels; sourceUnc->read(pData, sceneSize); freeData(); delete sourceUnc; } #undef COL_TRANS void M4Surface::m4LoadBackground(Common::SeekableReadStream *source) { M4Surface *tileBuffer = new M4Surface(); uint curTileX = 0, curTileY = 0; int clipX = 0, clipY = 0; RGB8 palette[256]; source->readUint32LE(); // magic, unused /*uint32 size =*/ source->readUint32LE(); uint32 widthVal = source->readUint32LE(); uint32 heightVal = source->readUint32LE(); uint32 tilesX = source->readUint32LE(); uint32 tilesY = source->readUint32LE(); uint32 tileWidth = source->readUint32LE(); uint32 tileHeight = source->readUint32LE(); uint8 blackIndex = 0; // Debug //debugCN(kDebugGraphics, "loadBackground(): %dx%d picture (%d bytes) - %dx%d tiles of size %dx%d\n", // widthVal, heightVal, size, tilesX, tilesY, tileWidth, tileHeight); // BGR data, which is converted to RGB8 for (uint i = 0; i < 256; i++) { palette[i].b = source->readByte() << 2; palette[i].g = source->readByte() << 2; palette[i].r = source->readByte() << 2; // FIXME - Removed u field from RGB8 as the OSystem palette is now RGB. // If this is needed, then the system setPalette() call will need changing to skip this. uint8 u = source->readByte() << 2; if (u != 0) debugC(1, kDebugGraphics, "Unused u field in Palette data non-zero: %d", u); if ((blackIndex == 0) && !palette[i].r && !palette[i].g && !palette[i].b) blackIndex = i; } _vm->_palette->setPalette(palette, 0, 256); // resize or create the surface // note that the height of the scene in game scenes is smaller than 480, as the bottom part of the // screen is the inventory assert(width() == (int)widthVal); //debugCN(kDebugGraphics, "width(): %d, widthVal: %d, height(): %d, heightVal: %d\n", width(), widthVal, height(), heightVal); tileBuffer->create(tileWidth, tileHeight, Graphics::PixelFormat::createFormatCLUT8()); for (curTileY = 0; curTileY < tilesY; curTileY++) { clipY = MIN(heightVal, (1 + curTileY) * tileHeight) - (curTileY * tileHeight); for (curTileX = 0; curTileX < tilesX; curTileX++) { clipX = MIN(widthVal, (1 + curTileX) * tileWidth) - (curTileX * tileWidth); // Read a tile and copy it to the destination surface source->read(tileBuffer->pixels, tileWidth * tileHeight); Common::Rect srcBounds(0, 0, clipX, clipY); copyFrom(tileBuffer, srcBounds, curTileX * tileWidth, curTileY * tileHeight); } } if (heightVal < (uint)height()) fillRect(Common::Rect(0, heightVal, width(), height()), blackIndex); delete tileBuffer; } void M4Surface::madsLoadInterface(const Common::String &filename) { MadsPack intFile(filename.c_str(), _vm); RGB8 *palette = new RGB8[16]; // Chunk 0, palette Common::SeekableReadStream *intStream = intFile.getItemStream(0); for (int i = 0; i < 16; i++) { palette[i].r = intStream->readByte() << 2; palette[i].g = intStream->readByte() << 2; palette[i].b = intStream->readByte() << 2; intStream->readByte(); intStream->readByte(); intStream->readByte(); } _rgbList = new RGBList(16, palette, true); delete intStream; // Chunk 1, data intStream = intFile.getItemStream(1); create(320, 44, Graphics::PixelFormat::createFormatCLUT8()); intStream->read(pixels, 320 * 44); delete intStream; // Translate the interface palette _vm->_palette->addRange(_rgbList); this->translate(_rgbList); } void M4Surface::scrollX(int xAmount) { if (xAmount == 0) return; byte buffer[80]; int direction = (xAmount > 0) ? -1 : 1; int xSize = ABS(xAmount); assert(xSize <= 80); byte *srcP = (byte *)getBasePtr(0, 0); for (int y = 0; y < height(); ++y, srcP += pitch) { if (direction < 0) { // Copy area to be overwritten Common::copy(srcP, srcP + xSize, &buffer[0]); // Shift the remainder of the line over the given area Common::copy(srcP + xSize, srcP + width(), srcP); // Move buffered area to the end of the line Common::copy(&buffer[0], &buffer[xSize], srcP + width() - xSize); } else { // Copy area to be overwritten Common::copy_backward(srcP + width() - xSize, srcP + width(), &buffer[80]); // Shift the remainder of the line over the given area Common::copy_backward(srcP, srcP + width() - xSize, srcP + width()); // Move buffered area to the start of the line Common::copy_backward(&buffer[80 - xSize], &buffer[80], srcP + xSize); } } } void M4Surface::scrollY(int yAmount) { if (yAmount == 0) return; int direction = (yAmount > 0) ? 1 : -1; int ySize = ABS(yAmount); assert(ySize < (height() / 2)); assert(width() == pitch); int blockSize = ySize * width(); byte *tempData = (byte *)malloc(blockSize); byte *pixelsP = (byte *)getBasePtr(0, 0); if (direction > 0) { // Buffer the lines to be overwritten byte *srcP = (byte *)getBasePtr(0, height() - ySize); Common::copy(srcP, srcP + (pitch * ySize), tempData); // Vertically shift all the lines Common::copy_backward(pixelsP, pixelsP + (pitch * (height() - ySize)), pixelsP + (pitch * height())); // Transfer the buffered lines top the top of the screen Common::copy(tempData, tempData + blockSize, pixelsP); } else { // Buffer the lines to be overwritten Common::copy(pixelsP, pixelsP + (pitch * ySize), tempData); // Vertically shift all the lines Common::copy(pixelsP + (pitch * ySize), pixelsP + (pitch * height()), pixelsP); // Transfer the buffered lines to the bottom of the screen Common::copy(tempData, tempData + blockSize, pixelsP + (pitch * (height() - ySize))); } ::free(tempData); } void M4Surface::translate(RGBList *list, bool isTransparent) { byte *p = getBasePtr(0, 0); byte *palIndexes = list->palIndexes(); for (int i = 0; i < width() * height(); ++i, ++p) { if (!isTransparent || (*p != TRANSPARENT_COLOR_INDEX)) { if (*p < list->size()) *p = palIndexes[*p]; else warning("Pal index %d exceeds list size %d", *p, list->size()); } } freeData(); } M4Surface *M4Surface::flipHorizontal() const { M4Surface *dest = new M4Surface(width(), height()); dest->_rgbList = (this->_rgbList == NULL) ? NULL : this->_rgbList->clone(); byte *destP = dest->getBasePtr(); for (int y = 0; y < height(); ++y) { const byte *srcP = getBasePtr(width() - 1, y); for (int x = 0; x < width(); ++x) *destP++ = *srcP--; } return dest; } //-------------------------------------------------------------------------- // Palette class // #define GREEN_START 32 #define NUM_GREENS 32 #define GREEN_END (GREEN_START + NUM_GREENS - 1) #define NORMAL_START 64 #define NORMAL_END 255 #define NUM_NORMAL (NORMAL_END - NORMAL_START + 1) // Support function for creating a list of palette indexes to change entries in the shaded range to static void makeTranslationList(RGB8 *palData, byte transList[NUM_GREENS]) { int i, j, minDistance; byte bestIndex; for (i = 0; i < NUM_GREENS; ++i) { bestIndex = NORMAL_START; minDistance = 255; uint8 findCol = palData[GREEN_START + i].g; // Find the closest matching palette color for (j = NORMAL_START; j <= NORMAL_END; ++j) { int greenVal = palData[j].g; if (ABS(findCol - greenVal) < minDistance) { minDistance = ABS(findCol - greenVal); bestIndex = j; } if (minDistance == 0) break; } transList[i] = bestIndex; } } // Support function for fading in or out static void fadeRange(MadsM4Engine *vm, RGB8 *srcPal, RGB8 *destPal, int startIndex, int endIndex, int numSteps, uint delayAmount) { RGB8 tempPal[256]; // perform the fade for (int stepCtr = 1; stepCtr <= numSteps; ++stepCtr) { // Delay the specified amount uint32 startTime = g_system->getMillis(); while ((g_system->getMillis() - startTime) < delayAmount) { vm->_events->handleEvents(); g_system->delayMillis(10); } for (int i = startIndex; i <= endIndex; ++i) { // Handle the intermediate rgb values for fading tempPal[i].r = (byte) (srcPal[i].r + (destPal[i].r - srcPal[i].r) * stepCtr / numSteps); tempPal[i].g = (byte) (srcPal[i].g + (destPal[i].g - srcPal[i].g) * stepCtr / numSteps); tempPal[i].b = (byte) (srcPal[i].b + (destPal[i].b - srcPal[i].b) * stepCtr / numSteps); } vm->_palette->setPalette(&tempPal[startIndex], startIndex, endIndex - startIndex + 1); vm->_viewManager->refreshAll(); } // Make sure the end palette exactly matches what is wanted vm->_palette->setPalette(&destPal[startIndex], startIndex, endIndex - startIndex + 1); } Palette::Palette(MadsM4Engine *vm) : _vm(vm) { reset(); _fading_in_progress = false; Common::set_to(&_usageCount[0], &_usageCount[256], 0); } void Palette::setPalette(const byte *colors, uint start, uint num) { g_system->getPaletteManager()->setPalette(colors, start, num); reset(); } void Palette::setPalette(const RGB8 *colors, uint start, uint num) { g_system->getPaletteManager()->setPalette((const byte *)colors, start, num); reset(); } void Palette::grabPalette(byte *colors, uint start, uint num) { g_system->getPaletteManager()->grabPalette(colors, start, num); } void Palette::setEntry(uint index, uint8 r, uint8 g, uint8 b) { RGB8 c; c.r = r; c.g = g; c.b = b; g_system->getPaletteManager()->setPalette((const byte *)&c, index, 1); } uint8 Palette::palIndexFromRgb(byte r, byte g, byte b, RGB8 *paletteData) { byte index = 0; int32 minDist = 0x7fffffff; RGB8 palData[256]; int Rdiff, Gdiff, Bdiff; if (paletteData == NULL) { g_system->getPaletteManager()->grabPalette((byte *)palData, 0, 256); paletteData = &palData[0]; } for (int palIndex = 0; palIndex < 256; ++palIndex) { Rdiff = r - paletteData[palIndex].r; Gdiff = g - paletteData[palIndex].g; Bdiff = b - paletteData[palIndex].b; if (Rdiff * Rdiff + Gdiff * Gdiff + Bdiff * Bdiff < minDist) { minDist = Rdiff * Rdiff + Gdiff * Gdiff + Bdiff * Bdiff; index = (uint8)palIndex; } } return (uint8)index; } void Palette::reset() { RGB8 palData[256]; g_system->getPaletteManager()->grabPalette((byte *)palData, 0, 256); BLACK = palIndexFromRgb(0, 0, 0, palData); BLUE = palIndexFromRgb(0, 0, 255, palData); GREEN = palIndexFromRgb(0, 255, 0, palData); CYAN = palIndexFromRgb(0, 255, 255, palData); RED = palIndexFromRgb(255, 0, 0, palData); VIOLET = palIndexFromRgb(255, 0, 255, palData); BROWN = palIndexFromRgb(168, 84, 84, palData); LIGHT_GRAY = palIndexFromRgb(168, 168, 168, palData); DARK_GRAY = palIndexFromRgb(84, 84, 84, palData); LIGHT_BLUE = palIndexFromRgb(0, 0, 127, palData); LIGHT_GREEN = palIndexFromRgb(0, 127, 0, palData); LIGHT_CYAN = palIndexFromRgb(0, 127, 127, palData); LIGHT_RED = palIndexFromRgb(84, 0, 0, palData); PINK = palIndexFromRgb(84, 0, 0, palData); YELLOW = palIndexFromRgb(0, 84, 84, palData); WHITE = palIndexFromRgb(255, 255, 255, palData); } void Palette::fadeToGreen(int numSteps, uint delayAmount) { if (_fading_in_progress) return; _fading_in_progress = true; byte translationList[NUM_GREENS]; int i; byte *tempP; uint8 greenAmount = 0; RGB8 *srcPalette = (RGB8 *) &_originalPalette[0]; RGB8 *destPalette = (RGB8 *) &_fadedPalette[0]; _vm->_palette->grabPalette(srcPalette, 0, 256); // Create the destination 'greenish' palette to fade to by setting the green component // to the average of the RGB bytes, and leaving the Red and Blue parts as 0 Common::copy(&srcPalette[0], &srcPalette[256], &destPalette[0]); for (i = 32; i < 256; ++i) { byte luminance = (byte)((destPalette[i].r + destPalette[i].g + destPalette[i].b) / 3); destPalette[i].g = MIN((byte)255, luminance); destPalette[i].r = destPalette[i].b = 0; } // Handle the actual fading fadeRange(_vm, srcPalette, destPalette, 21, 255, numSteps, delayAmount); // Create a translation table to be used in translating pixels in the game surface // using palette indexes in the range the range #32-63 into values from #64-255 makeTranslationList(destPalette, translationList); // Use palette indexes from #32-63 for the range of possible shades for (i = GREEN_START; i <= GREEN_END; ++i, greenAmount += 8) { destPalette[i].g = greenAmount; destPalette[i].r = destPalette[i].b = 0; } // Remap all pixels into the #32-63 range tempP = _vm->_scene->getBasePtr(); for (int pixelCtr = 0; pixelCtr < _vm->_scene->width() * _vm->_scene->height(); ++pixelCtr, ++tempP) { // If pixel is in #32-63 range already, remap to higher palette entries if ((*tempP >= GREEN_START) && (*tempP <= GREEN_END)) *tempP = translationList[*tempP - GREEN_START]; *tempP = (uint8) (GREEN_START + (destPalette[*tempP].g >> 3)); } _vm->_palette->setPalette(&destPalette[GREEN_START], GREEN_START, NUM_GREENS); _vm->_viewManager->refreshAll(); _fading_in_progress = false; } void Palette::fadeFromGreen(int numSteps, uint delayAmount, bool fadeToBlack) { if (_fading_in_progress) return; _fading_in_progress = true; RGB8 blackPalette[256]; RGB8 *fadedPalette = (RGB8 *) &_fadedPalette[0]; RGB8 *destPalette = (RGB8 *) &_originalPalette[0]; if (fadeToBlack) { Common::set_to((byte *)&blackPalette[0], (byte *)&blackPalette[256], 0); destPalette = &blackPalette[0]; } // Initially restore the faded palette _vm->_palette->setPalette(fadedPalette, 0, 256); _vm->_viewManager->refreshAll(); // Restore the pixel data from the original screen _vm->_scene->update(); // Handle the actual fading fadeRange(_vm, fadedPalette, destPalette, GREEN_START, NORMAL_END, numSteps, delayAmount); _fading_in_progress = false; } void Palette::fadeIn(int numSteps, uint delayAmount, RGBList *destPalette) { fadeIn(numSteps, delayAmount, destPalette->data(), destPalette->size()); } void Palette::fadeIn(int numSteps, uint delayAmount, RGB8 *destPalette, int numColors) { if (_fading_in_progress) return; _fading_in_progress = true; RGB8 blackPalette[256]; Common::set_to((byte *)&blackPalette[0], (byte *)&blackPalette[256], 0); // Initially set the black palette _vm->_palette->setPalette(blackPalette, 0, numColors); // Handle the actual fading fadeRange(_vm, blackPalette, destPalette, 0, numColors - 1, numSteps, delayAmount); _fading_in_progress = false; } RGB8 *Palette::decodeMadsPalette(Common::SeekableReadStream *palStream, int *numColors) { *numColors = palStream->readUint16LE(); assert(*numColors <= 252); RGB8 *palData = new RGB8[*numColors]; Common::set_to((byte *)&palData[0], (byte *)&palData[*numColors], 0); for (int i = 0; i < *numColors; ++i) { byte r = palStream->readByte(); byte g = palStream->readByte(); byte b = palStream->readByte(); palData[i].r = VGA_COLOR_TRANS(r); palData[i].g = VGA_COLOR_TRANS(g); palData[i].b = VGA_COLOR_TRANS(b); // The next 3 bytes are unused palStream->skip(3); } return palData; } int Palette::setMadsPalette(Common::SeekableReadStream *palStream, int indexStart) { int colorCount; RGB8 *palData = Palette::decodeMadsPalette(palStream, &colorCount); _vm->_palette->setPalette(palData, indexStart, colorCount); delete palData; return colorCount; } void Palette::setMadsSystemPalette() { // Rex Nebular default system palette resetColorCounts(); RGB8 palData[4]; palData[0].r = palData[0].g = palData[0].b = 0; palData[1].r = palData[1].g = palData[1].b = 0x54; palData[2].r = palData[2].g = palData[2].b = 0xb4; palData[3].r = palData[3].g = palData[3].b = 0xff; setPalette(palData, 0, 4); blockRange(0, 4); } void Palette::resetColorCounts() { Common::set_to(&_usageCount[0], &_usageCount[256], 0); } void Palette::blockRange(int startIndex, int size) { // Use a reference count of -1 to signal a palette index shouldn't be used Common::set_to(&_usageCount[startIndex], &_usageCount[startIndex + size], -1); } void Palette::addRange(RGBList *list) { RGB8 *data = list->data(); byte *palIndexes = list->palIndexes(); RGB8 palData[256]; g_system->getPaletteManager()->grabPalette((byte *)&palData[0], 0, 256); bool paletteChanged = false; for (int colIndex = 0; colIndex < list->size(); ++colIndex) { // Scan through for an existing copy of the RGB value int palIndex = -1; while (++palIndex < 256) { if (_usageCount[palIndex] <= 0) // Palette index is to be skipped continue; if ((palData[palIndex].r == data[colIndex].r) && (palData[palIndex].g == data[colIndex].g) && (palData[palIndex].b == data[colIndex].b)) // Match found break; } if (palIndex == 256) { // No match found, so find a free slot to use palIndex = -1; while (++palIndex < 256) { if (_usageCount[palIndex] == 0) break; } if (palIndex == 256) error("addRange - Ran out of palette space to allocate"); palData[palIndex].r = data[colIndex].r; palData[palIndex].g = data[colIndex].g; palData[palIndex].b = data[colIndex].b; paletteChanged = true; } palIndexes[colIndex] = palIndex; ++_usageCount[palIndex]; } if (paletteChanged) { g_system->getPaletteManager()->setPalette((byte *)&palData[0], 0, 256); reset(); } } void Palette::deleteRange(RGBList *list) { // Release the reference count on each of the palette entries for (int colIndex = 0; colIndex < list->size(); ++colIndex) { int palIndex = list->palIndexes()[colIndex]; assert(_usageCount[palIndex] > 0); --_usageCount[palIndex]; } } void Palette::deleteAllRanges() { for (int colIndex = 0; colIndex < 255; ++colIndex) _usageCount[colIndex] = 0; } //-------------------------------------------------------------------------- // Support methods void decompressRle(byte *rleData, int rleSize, byte *celData, int w, int h) { byte *src = rleData; byte *dst = celData; byte len; while (1) { len = *src++; if (len == 0) { len = *src++; if (len <= 2) { if (len == 1) // end of sprite marker break; } else { while (len--) *dst++ = *src++; } } else { while (len--) *dst++ = *src; src++; } } } int scaleValue(int value, int scale, int err) { int scaled = 0; while (value--) { err -= scale; while (err < 0) { scaled++; err += 100; } } return scaled; } } // End of namespace M4