/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #include "sci/sci.h" #include "sci/engine/kernel.h" #include "sci/event.h" #include "sci/resource.h" #include "sci/engine/features.h" #include "sci/engine/kernel_tables.h" #include "sci/engine/state.h" #include "sci/engine/workarounds.h" #include "common/system.h" namespace Sci { Kernel::Kernel(ResourceManager *resMan, SegManager *segMan) : _resMan(resMan), _segMan(segMan), _invalid("") { loadSelectorNames(); mapSelectors(); // Map a few special selectors for later use } Kernel::~Kernel() { for (KernelFunctionArray::iterator it = _kernelFuncs.begin(); it != _kernelFuncs.end(); ++it) { if (it->subFunctionCount) { uint16 subFunctionNr = 0; while (subFunctionNr < it->subFunctionCount) { delete[] it->subFunctions[subFunctionNr].signature; subFunctionNr++; } delete[] it->subFunctions; } delete[] it->signature; } } uint Kernel::getSelectorNamesSize() const { return _selectorNames.size(); } const Common::String &Kernel::getSelectorName(uint selector) { if (selector >= _selectorNames.size()) { // This should only occur in games w/o a selector-table // We need this for proper workaround tables // TODO: maybe check, if there is a fixed selector-table and error() out in that case for (uint loopSelector = _selectorNames.size(); loopSelector <= selector; ++loopSelector) _selectorNames.push_back(Common::String::format("", loopSelector)); } // Ensure that the selector has a name if (_selectorNames[selector].empty()) _selectorNames[selector] = Common::String::format("", selector); return _selectorNames[selector]; } uint Kernel::getKernelNamesSize() const { return _kernelNames.size(); } const Common::String &Kernel::getKernelName(uint number) const { // FIXME: The following check is a temporary workaround for an issue // leading to crashes when using the debugger's backtrace command. if (number >= _kernelNames.size()) return _invalid; return _kernelNames[number]; } int Kernel::findKernelFuncPos(Common::String kernelFuncName) { for (uint32 i = 0; i < _kernelNames.size(); i++) if (_kernelNames[i] == kernelFuncName) return i; return -1; } int Kernel::findSelector(const char *selectorName) const { for (uint pos = 0; pos < _selectorNames.size(); ++pos) { if (_selectorNames[pos] == selectorName) return pos; } debugC(kDebugLevelVM, "Could not map '%s' to any selector", selectorName); return -1; } void Kernel::loadSelectorNames() { Resource *r = _resMan->findResource(ResourceId(kResourceTypeVocab, VOCAB_RESOURCE_SELECTORS), 0); bool oldScriptHeader = (getSciVersion() == SCI_VERSION_0_EARLY); // Starting with KQ7, Mac versions have a BE name table. GK1 Mac and earlier (and all // other platforms) always use LE. bool isBE = (g_sci->getPlatform() == Common::kPlatformMacintosh && getSciVersion() >= SCI_VERSION_2_1 && g_sci->getGameId() != GID_GK1); if (!r) { // No such resource? // Check if we have a table for this game // Some demos do not have a selector table Common::StringArray staticSelectorTable = checkStaticSelectorNames(); if (staticSelectorTable.empty()) error("Kernel: Could not retrieve selector names"); else warning("No selector vocabulary found, using a static one"); for (uint32 i = 0; i < staticSelectorTable.size(); i++) { _selectorNames.push_back(staticSelectorTable[i]); if (oldScriptHeader) _selectorNames.push_back(staticSelectorTable[i]); } return; } int count = isBE ? READ_BE_UINT16(r->data) : READ_LE_UINT16(r->data) + 1; // Counter is slightly off for (int i = 0; i < count; i++) { int offset = isBE ? READ_BE_UINT16(r->data + 2 + i * 2) : READ_LE_UINT16(r->data + 2 + i * 2); int len = isBE ? READ_BE_UINT16(r->data + offset) : READ_LE_UINT16(r->data + offset); Common::String tmp((const char *)r->data + offset + 2, len); _selectorNames.push_back(tmp); //debug("%s", tmp.c_str()); // Early SCI versions used the LSB in the selector ID as a read/write // toggle. To compensate for that, we add every selector name twice. if (oldScriptHeader) _selectorNames.push_back(tmp); } } // this parses a written kernel signature into an internal memory format // [io] -> either integer or object // (io) -> optionally integer AND an object // (i) -> optional integer // . -> any type // i* -> optional multiple integers // .* -> any parameters afterwards (or none) static uint16 *parseKernelSignature(const char *kernelName, const char *writtenSig) { const char *curPos; char curChar; uint16 *result = NULL; uint16 *writePos = NULL; int size = 0; bool validType = false; bool optionalType = false; bool eitherOr = false; bool optional = false; bool hadOptional = false; // No signature given? no signature out if (!writtenSig) return NULL; // First, we check how many bytes the result will be // we also check, if the written signature makes any sense curPos = writtenSig; while (*curPos) { curChar = *curPos; switch (curChar) { case '[': // either or if (eitherOr) error("signature for k%s: '[' used within '[]'", kernelName); eitherOr = true; validType = false; break; case ']': // either or end if (!eitherOr) error("signature for k%s: ']' used without leading '['", kernelName); if (!validType) error("signature for k%s: '[]' does not surround valid type(s)", kernelName); eitherOr = false; validType = false; size++; break; case '(': // optional if (optional) error("signature for k%s: '(' used within '()' brackets", kernelName); if (eitherOr) error("signature for k%s: '(' used within '[]' brackets", kernelName); optional = true; validType = false; optionalType = false; break; case ')': // optional end if (!optional) error("signature for k%s: ')' used without leading '('", kernelName); if (!optionalType) error("signature for k%s: '()' does not to surround valid type(s)", kernelName); optional = false; validType = false; hadOptional = true; break; case '0': // allowed types case 'i': case 'o': case 'r': case 'l': case 'n': case '.': case '!': if ((hadOptional) & (!optional)) error("signature for k%s: non-optional type may not follow optional type", kernelName); validType = true; if (optional) optionalType = true; if (!eitherOr) size++; break; case '*': // accepts more of the same parameter (must be last char) if (!validType) { if ((writtenSig == curPos) || (*(curPos - 1) != ']')) error("signature for k%s: a valid type must be in front of '*'", kernelName); } if (eitherOr) error("signature for k%s: '*' may not be inside '[]'", kernelName); if (optional) { if ((*(curPos + 1) != ')') || (*(curPos + 2) != 0)) error("signature for k%s: '*' may only be used for last type", kernelName); } else { if (*(curPos + 1) != 0) error("signature for k%s: '*' may only be used for last type", kernelName); } break; default: error("signature for k%s: '%c' unknown", kernelName, *curPos); } curPos++; } uint16 signature = 0; // Now we allocate buffer with required size and fill it result = new uint16[size + 1]; writePos = result; curPos = writtenSig; do { curChar = *curPos; if (!eitherOr) { // not within either-or, check if next character forces output switch (curChar) { case 0: case '[': case '(': case ')': case 'i': case 'o': case 'r': case 'l': case 'n': case '.': case '!': // and we also got some signature pending? if (signature) { if (!(signature & SIG_MAYBE_ANY)) error("signature for k%s: invalid ('!') may only get used in combination with a real type", kernelName); if ((signature & SIG_IS_INVALID) && ((signature & SIG_MAYBE_ANY) == (SIG_TYPE_NULL | SIG_TYPE_INTEGER))) error("signature for k%s: invalid ('!') should not be used on exclusive null/integer type", kernelName); if (optional) { signature |= SIG_IS_OPTIONAL; if (curChar != ')') signature |= SIG_NEEDS_MORE; } *writePos = signature; writePos++; signature = 0; } } } switch (curChar) { case '[': // either or eitherOr = true; break; case ']': // either or end eitherOr = false; break; case '(': // optional optional = true; break; case ')': // optional end optional = false; break; case '0': if (signature & SIG_TYPE_NULL) error("signature for k%s: NULL ('0') specified more than once", kernelName); signature |= SIG_TYPE_NULL; break; case 'i': if (signature & SIG_TYPE_INTEGER) error("signature for k%s: integer ('i') specified more than once", kernelName); signature |= SIG_TYPE_INTEGER | SIG_TYPE_NULL; break; case 'o': if (signature & SIG_TYPE_OBJECT) error("signature for k%s: object ('o') specified more than once", kernelName); signature |= SIG_TYPE_OBJECT; break; case 'r': if (signature & SIG_TYPE_REFERENCE) error("signature for k%s: reference ('r') specified more than once", kernelName); signature |= SIG_TYPE_REFERENCE; break; case 'l': if (signature & SIG_TYPE_LIST) error("signature for k%s: list ('l') specified more than once", kernelName); signature |= SIG_TYPE_LIST; break; case 'n': if (signature & SIG_TYPE_NODE) error("signature for k%s: node ('n') specified more than once", kernelName); signature |= SIG_TYPE_NODE; break; case '.': if (signature & SIG_MAYBE_ANY) error("signature for k%s: maybe-any ('.') shouldn't get specified with other types in front of it", kernelName); signature |= SIG_MAYBE_ANY; break; case '!': if (signature & SIG_IS_INVALID) error("signature for k%s: invalid ('!') specified more than once", kernelName); signature |= SIG_IS_INVALID; break; case '*': // accepts more of the same parameter signature |= SIG_MORE_MAY_FOLLOW; break; default: break; } curPos++; } while (curChar); // Write terminator *writePos = 0; return result; } uint16 Kernel::findRegType(reg_t reg) { // No segment? Must be integer if (!reg.getSegment()) return SIG_TYPE_INTEGER | (reg.getOffset() ? 0 : SIG_TYPE_NULL); if (reg.getSegment() == 0xFFFF) return SIG_TYPE_UNINITIALIZED; // Otherwise it's an object SegmentObj *mobj = _segMan->getSegmentObj(reg.getSegment()); if (!mobj) return SIG_TYPE_ERROR; uint16 result = 0; if (!mobj->isValidOffset(reg.getOffset())) result |= SIG_IS_INVALID; switch (mobj->getType()) { case SEG_TYPE_SCRIPT: if (reg.getOffset() <= (*(Script *)mobj).getBufSize() && reg.getOffset() >= (uint)-SCRIPT_OBJECT_MAGIC_OFFSET && (*(Script *)mobj).offsetIsObject(reg.getOffset())) { result |= ((Script *)mobj)->getObject(reg.getOffset()) ? SIG_TYPE_OBJECT : SIG_TYPE_REFERENCE; } else result |= SIG_TYPE_REFERENCE; break; case SEG_TYPE_CLONES: result |= SIG_TYPE_OBJECT; break; case SEG_TYPE_LOCALS: case SEG_TYPE_STACK: case SEG_TYPE_DYNMEM: case SEG_TYPE_HUNK: #ifdef ENABLE_SCI32 case SEG_TYPE_ARRAY: case SEG_TYPE_STRING: #endif result |= SIG_TYPE_REFERENCE; break; case SEG_TYPE_LISTS: result |= SIG_TYPE_LIST; break; case SEG_TYPE_NODES: result |= SIG_TYPE_NODE; break; default: return SIG_TYPE_ERROR; } return result; } struct SignatureDebugType { uint16 typeCheck; const char *text; }; static const SignatureDebugType signatureDebugTypeList[] = { { SIG_TYPE_NULL, "null" }, { SIG_TYPE_INTEGER, "integer" }, { SIG_TYPE_UNINITIALIZED, "uninitialized" }, { SIG_TYPE_OBJECT, "object" }, { SIG_TYPE_REFERENCE, "reference" }, { SIG_TYPE_LIST, "list" }, { SIG_TYPE_NODE, "node" }, { SIG_TYPE_ERROR, "error" }, { SIG_IS_INVALID, "invalid" }, { 0, NULL } }; static void kernelSignatureDebugType(const uint16 type) { bool firstPrint = true; const SignatureDebugType *list = signatureDebugTypeList; while (list->typeCheck) { if (type & list->typeCheck) { if (!firstPrint) debugN(", "); debugN("%s", list->text); firstPrint = false; } list++; } } // Shows kernel call signature and current arguments for debugging purposes void Kernel::signatureDebug(const uint16 *sig, int argc, const reg_t *argv) { int argnr = 0; while (*sig || argc) { debugN("parameter %d: ", argnr++); if (argc) { reg_t parameter = *argv; debugN("%04x:%04x (", PRINT_REG(parameter)); int regType = findRegType(parameter); if (regType) kernelSignatureDebugType(regType); else debugN("unknown type of %04x:%04x", PRINT_REG(parameter)); debugN(")"); argv++; argc--; } else { debugN("not passed"); } if (*sig) { const uint16 signature = *sig; if ((signature & SIG_MAYBE_ANY) == SIG_MAYBE_ANY) { debugN(", may be any"); } else { debugN(", should be "); kernelSignatureDebugType(signature); } if (signature & SIG_IS_OPTIONAL) debugN(" (optional)"); if (signature & SIG_NEEDS_MORE) debugN(" (needs more)"); if (signature & SIG_MORE_MAY_FOLLOW) debugN(" (more may follow)"); sig++; } debugN("\n"); } } bool Kernel::signatureMatch(const uint16 *sig, int argc, const reg_t *argv) { uint16 nextSig = *sig; uint16 curSig = nextSig; while (nextSig && argc) { curSig = nextSig; int type = findRegType(*argv); if ((type & SIG_IS_INVALID) && (!(curSig & SIG_IS_INVALID))) return false; // pointer is invalid and signature doesn't allow that? if (!((type & ~SIG_IS_INVALID) & curSig)) { if ((type & ~SIG_IS_INVALID) == SIG_TYPE_ERROR && (curSig & SIG_IS_INVALID)) { // Type is unknown (error - usually because of a deallocated object or // stale pointer) and the signature allows invalid pointers. In this case, // ignore the invalid pointer. } else { return false; // type mismatch } } if (!(curSig & SIG_MORE_MAY_FOLLOW)) { sig++; nextSig = *sig; } else { nextSig |= SIG_IS_OPTIONAL; // more may follow -> assumes followers are optional } argv++; argc--; } // Too many arguments? if (argc) return false; // Signature end reached? if (nextSig == 0) return true; // current parameter is optional? if (curSig & SIG_IS_OPTIONAL) { // yes, check if nothing more is required if (!(curSig & SIG_NEEDS_MORE)) return true; } else { // no, check if next parameter is optional if (nextSig & SIG_IS_OPTIONAL) return true; } // Too few arguments or more optional arguments required return false; } void Kernel::mapFunctions() { int mapped = 0; int ignored = 0; uint functionCount = _kernelNames.size(); byte platformMask = 0; SciVersion myVersion = getSciVersion(); switch (g_sci->getPlatform()) { case Common::kPlatformPC: case Common::kPlatformFMTowns: platformMask = SIGFOR_DOS; break; case Common::kPlatformPC98: platformMask = SIGFOR_PC98; break; case Common::kPlatformWindows: platformMask = SIGFOR_WIN; break; case Common::kPlatformMacintosh: platformMask = SIGFOR_MAC; break; case Common::kPlatformAmiga: platformMask = SIGFOR_AMIGA; break; case Common::kPlatformAtariST: platformMask = SIGFOR_ATARI; break; default: break; } _kernelFuncs.resize(functionCount); for (uint id = 0; id < functionCount; id++) { // First, get the name, if known, of the kernel function with number functnr Common::String kernelName = _kernelNames[id]; // Reset the table entry _kernelFuncs[id].function = NULL; _kernelFuncs[id].signature = NULL; _kernelFuncs[id].name = NULL; _kernelFuncs[id].workarounds = NULL; _kernelFuncs[id].subFunctions = NULL; _kernelFuncs[id].subFunctionCount = 0; _kernelFuncs[id].debugLogging = false; if (kernelName.empty()) { // No name was given -> must be an unknown opcode warning("Kernel function %x unknown", id); continue; } // Don't map dummy functions - they will never be called if (kernelName == "Dummy") { _kernelFuncs[id].function = kDummy; continue; } // If the name is known, look it up in s_kernelMap. This table // maps kernel func names to actual function (pointers). SciKernelMapEntry *kernelMap = s_kernelMap; bool nameMatch = false; while (kernelMap->name) { if (kernelName == kernelMap->name) { if ((kernelMap->fromVersion == SCI_VERSION_NONE) || (kernelMap->fromVersion <= myVersion)) if ((kernelMap->toVersion == SCI_VERSION_NONE) || (kernelMap->toVersion >= myVersion)) if (platformMask & kernelMap->forPlatform) break; nameMatch = true; } kernelMap++; } if (kernelMap->name) { // A match was found _kernelFuncs[id].function = kernelMap->function; _kernelFuncs[id].name = kernelMap->name; _kernelFuncs[id].signature = parseKernelSignature(kernelMap->name, kernelMap->signature); _kernelFuncs[id].workarounds = kernelMap->workarounds; if (kernelMap->subFunctions) { // Get version for subfunction identification SciVersion mySubVersion = (SciVersion)kernelMap->function(NULL, 0, NULL).getOffset(); // Now check whats the highest subfunction-id for this version const SciKernelMapSubEntry *kernelSubMap = kernelMap->subFunctions; uint16 subFunctionCount = 0; while (kernelSubMap->function) { if ((kernelSubMap->fromVersion == SCI_VERSION_NONE) || (kernelSubMap->fromVersion <= mySubVersion)) if ((kernelSubMap->toVersion == SCI_VERSION_NONE) || (kernelSubMap->toVersion >= mySubVersion)) if (subFunctionCount <= kernelSubMap->id) subFunctionCount = kernelSubMap->id + 1; kernelSubMap++; } if (!subFunctionCount) error("k%s[%x]: no subfunctions found for requested version", kernelName.c_str(), id); // Now allocate required memory and go through it again _kernelFuncs[id].subFunctionCount = subFunctionCount; KernelSubFunction *subFunctions = new KernelSubFunction[subFunctionCount]; _kernelFuncs[id].subFunctions = subFunctions; memset(subFunctions, 0, sizeof(KernelSubFunction) * subFunctionCount); // And fill this info out kernelSubMap = kernelMap->subFunctions; uint kernelSubNr = 0; while (kernelSubMap->function) { if ((kernelSubMap->fromVersion == SCI_VERSION_NONE) || (kernelSubMap->fromVersion <= mySubVersion)) if ((kernelSubMap->toVersion == SCI_VERSION_NONE) || (kernelSubMap->toVersion >= mySubVersion)) { uint subId = kernelSubMap->id; if (!subFunctions[subId].function) { subFunctions[subId].function = kernelSubMap->function; subFunctions[subId].name = kernelSubMap->name; subFunctions[subId].workarounds = kernelSubMap->workarounds; if (kernelSubMap->signature) { subFunctions[subId].signature = parseKernelSignature(kernelSubMap->name, kernelSubMap->signature); } else { // we go back the submap to find the previous signature for that kernel call const SciKernelMapSubEntry *kernelSubMapBack = kernelSubMap; uint kernelSubLeft = kernelSubNr; while (kernelSubLeft) { kernelSubLeft--; kernelSubMapBack--; if (kernelSubMapBack->name == kernelSubMap->name) { if (kernelSubMapBack->signature) { subFunctions[subId].signature = parseKernelSignature(kernelSubMap->name, kernelSubMapBack->signature); break; } } } if (!subFunctions[subId].signature) error("k%s: no previous signatures", kernelSubMap->name); } } } kernelSubMap++; kernelSubNr++; } } ++mapped; } else { if (nameMatch) error("k%s[%x]: not found for this version/platform", kernelName.c_str(), id); // No match but a name was given -> stub warning("k%s[%x]: unmapped", kernelName.c_str(), id); _kernelFuncs[id].function = kStub; } } // for all functions requesting to be mapped debugC(kDebugLevelVM, "Handled %d/%d kernel functions, mapping %d and ignoring %d.", mapped + ignored, _kernelNames.size(), mapped, ignored); return; } bool Kernel::debugSetFunction(const char *kernelName, int logging, int breakpoint) { if (strcmp(kernelName, "*")) { for (uint id = 0; id < _kernelFuncs.size(); id++) { if (_kernelFuncs[id].name) { if (strcmp(kernelName, _kernelFuncs[id].name) == 0) { if (_kernelFuncs[id].subFunctions) { // sub-functions available and main name matched, in that case set logging of all sub-functions KernelSubFunction *kernelSubCall = _kernelFuncs[id].subFunctions; uint kernelSubCallCount = _kernelFuncs[id].subFunctionCount; for (uint subId = 0; subId < kernelSubCallCount; subId++) { if (kernelSubCall->function) { if (logging != -1) kernelSubCall->debugLogging = logging == 1 ? true : false; if (breakpoint != -1) kernelSubCall->debugBreakpoint = breakpoint == 1 ? true : false; } kernelSubCall++; } return true; } // function name matched, set for this one and exit if (logging != -1) _kernelFuncs[id].debugLogging = logging == 1 ? true : false; if (breakpoint != -1) _kernelFuncs[id].debugBreakpoint = breakpoint == 1 ? true : false; return true; } else { // main name was not matched if (_kernelFuncs[id].subFunctions) { // Sub-Functions available KernelSubFunction *kernelSubCall = _kernelFuncs[id].subFunctions; uint kernelSubCallCount = _kernelFuncs[id].subFunctionCount; for (uint subId = 0; subId < kernelSubCallCount; subId++) { if (kernelSubCall->function) { if (strcmp(kernelName, kernelSubCall->name) == 0) { // sub-function name matched, set for this one and exit if (logging != -1) kernelSubCall->debugLogging = logging == 1 ? true : false; if (breakpoint != -1) kernelSubCall->debugBreakpoint = breakpoint == 1 ? true : false; return true; } } kernelSubCall++; } } } } } return false; } // Set debugLogging for all calls for (uint id = 0; id < _kernelFuncs.size(); id++) { if (_kernelFuncs[id].name) { if (!_kernelFuncs[id].subFunctions) { // No sub-functions, enable actual kernel function if (logging != -1) _kernelFuncs[id].debugLogging = logging == 1 ? true : false; if (breakpoint != -1) _kernelFuncs[id].debugBreakpoint = breakpoint == 1 ? true : false; } else { // Sub-Functions available, enable those too KernelSubFunction *kernelSubCall = _kernelFuncs[id].subFunctions; uint kernelSubCallCount = _kernelFuncs[id].subFunctionCount; for (uint subId = 0; subId < kernelSubCallCount; subId++) { if (kernelSubCall->function) { if (logging != -1) kernelSubCall->debugLogging = logging == 1 ? true : false; if (breakpoint != -1) kernelSubCall->debugBreakpoint = breakpoint == 1 ? true : false; } kernelSubCall++; } } } } return true; } void Kernel::setDefaultKernelNames(GameFeatures *features) { _kernelNames = Common::StringArray(s_defaultKernelNames, ARRAYSIZE(s_defaultKernelNames)); // Some (later) SCI versions replaced CanBeHere by CantBeHere // If vocab.999 exists, the kernel function is still named CanBeHere if (_selectorCache.cantBeHere != -1) _kernelNames[0x4d] = "CantBeHere"; switch (getSciVersion()) { case SCI_VERSION_0_EARLY: case SCI_VERSION_0_LATE: // Insert SCI0 file functions after SetCursor (0x28) _kernelNames.insert_at(0x29, "FOpen"); _kernelNames.insert_at(0x2A, "FPuts"); _kernelNames.insert_at(0x2B, "FGets"); _kernelNames.insert_at(0x2C, "FClose"); // Function 0x55 is DoAvoider _kernelNames[0x55] = "DoAvoider"; // Cut off unused functions _kernelNames.resize(0x72); break; case SCI_VERSION_01: // Multilingual SCI01 games have StrSplit as function 0x78 _kernelNames[0x78] = "StrSplit"; // Cut off unused functions _kernelNames.resize(0x79); break; case SCI_VERSION_1_LATE: _kernelNames[0x71] = "MoveCursor"; break; case SCI_VERSION_1_1: // In SCI1.1, kSetSynonyms is an empty function _kernelNames[0x26] = "Empty"; if (g_sci->getGameId() == GID_KQ6) { // In the Windows version of KQ6 CD, the empty kSetSynonyms // function has been replaced with kPortrait. In KQ6 Mac, // kPlayBack has been replaced by kShowMovie. if (g_sci->getPlatform() == Common::kPlatformWindows) _kernelNames[0x26] = "Portrait"; else if (g_sci->getPlatform() == Common::kPlatformMacintosh) _kernelNames[0x84] = "ShowMovie"; } else if (g_sci->getGameId() == GID_QFG4 && g_sci->isDemo()) { _kernelNames[0x7b] = "RemapColors"; // QFG4 Demo has this SCI2 function instead of StrSplit } _kernelNames[0x71] = "PalVary"; // At least EcoQuest 1 demo uses kGetMessage instead of kMessage. // Detect which function to use. if (features->detectMessageFunctionType() == SCI_VERSION_1_1) _kernelNames[0x7c] = "Message"; break; default: // Use default table for the other versions break; } } #ifdef ENABLE_SCI32 enum { kKernelEntriesSci2 = 0x8b, kKernelEntriesGk2Demo = 0xa0, kKernelEntriesSci21 = 0x9d, kKernelEntriesSci3 = 0xa1 }; void Kernel::setKernelNamesSci2() { _kernelNames = Common::StringArray(sci2_default_knames, kKernelEntriesSci2); } void Kernel::setKernelNamesSci21(GameFeatures *features) { // Some SCI games use a modified SCI2 kernel table instead of the // SCI2.1 kernel table. We detect which version to use based on // how kDoSound is called from Sound::play(). // Known games that use this: // GK2 demo // KQ7 1.4 // PQ4 SWAT demo // LSL6 // PQ4CD // QFG4CD // This is interesting because they all have the same interpreter // version (2.100.002), yet they would not be compatible with other // games of the same interpreter. if (getSciVersion() != SCI_VERSION_3 && features->detectSci21KernelType() == SCI_VERSION_2) { _kernelNames = Common::StringArray(sci2_default_knames, kKernelEntriesGk2Demo); // OnMe is IsOnMe here, but they should be compatible _kernelNames[0x23] = "Robot"; // Graph in SCI2 _kernelNames[0x2e] = "Priority"; // DisposeTextBitmap in SCI2 } else if (getSciVersion() != SCI_VERSION_3) { _kernelNames = Common::StringArray(sci21_default_knames, kKernelEntriesSci21); } else if (getSciVersion() == SCI_VERSION_3) { _kernelNames = Common::StringArray(sci21_default_knames, kKernelEntriesSci3); } } #endif void Kernel::loadKernelNames(GameFeatures *features) { _kernelNames.clear(); #ifdef ENABLE_SCI32 if (getSciVersion() >= SCI_VERSION_2_1) setKernelNamesSci21(features); else if (getSciVersion() == SCI_VERSION_2) setKernelNamesSci2(); else #endif setDefaultKernelNames(features); mapFunctions(); } Common::String Kernel::lookupText(reg_t address, int index) { char *seeker; Resource *textres; if (address.getSegment()) return _segMan->getString(address); int textlen; int _index = index; textres = _resMan->findResource(ResourceId(kResourceTypeText, address.getOffset()), 0); if (!textres) { error("text.%03d not found", address.getOffset()); return NULL; /* Will probably segfault */ } textlen = textres->size; seeker = (char *) textres->data; while (index--) while ((textlen--) && (*seeker++)) ; if (textlen) return seeker; error("Index %d out of bounds in text.%03d", _index, address.getOffset()); return NULL; } // TODO: script_adjust_opcode_formats should probably be part of the // constructor (?) of a VirtualMachine or a ScriptManager class. void script_adjust_opcode_formats() { g_sci->_opcode_formats = new opcode_format[128][4]; memcpy(g_sci->_opcode_formats, g_base_opcode_formats, 128*4*sizeof(opcode_format)); if (g_sci->_features->detectLofsType() != SCI_VERSION_0_EARLY) { g_sci->_opcode_formats[op_lofsa][0] = Script_Offset; g_sci->_opcode_formats[op_lofss][0] = Script_Offset; } #ifdef ENABLE_SCI32 // In SCI32, some arguments are now words instead of bytes if (getSciVersion() >= SCI_VERSION_2) { g_sci->_opcode_formats[op_calle][2] = Script_Word; g_sci->_opcode_formats[op_callk][1] = Script_Word; g_sci->_opcode_formats[op_super][1] = Script_Word; g_sci->_opcode_formats[op_send][0] = Script_Word; g_sci->_opcode_formats[op_self][0] = Script_Word; g_sci->_opcode_formats[op_call][1] = Script_Word; g_sci->_opcode_formats[op_callb][1] = Script_Word; } if (getSciVersion() >= SCI_VERSION_3) { // TODO: There are also opcodes in // here to get the superclass, and possibly the species too. g_sci->_opcode_formats[0x4d/2][0] = Script_None; g_sci->_opcode_formats[0x4e/2][0] = Script_None; } #endif } } // End of namespace Sci