/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #include "sci/engine/features.h" #include "sci/engine/state.h" #include "sci/engine/selector.h" #include "sci/engine/kernel.h" namespace Sci { //#define CHECK_LISTS // adds sanity checking for lists and errors out when problems are found #ifdef CHECK_LISTS static bool isSaneNodePointer(SegManager *segMan, reg_t addr) { bool havePrev = false; reg_t prev = addr; do { Node *node = segMan->lookupNode(addr, false); if (!node) { if ((g_sci->getGameId() == GID_ICEMAN) && (g_sci->getEngineState()->currentRoomNumber() == 40)) { // ICEMAN: when plotting course, unDrawLast is called by startPlot::changeState // there is no previous entry so we get 0 in here } else if ((g_sci->getGameId() == GID_HOYLE1) && (g_sci->getEngineState()->currentRoomNumber() == 3)) { // HOYLE1: after sorting cards in hearts, in the next round // we get an invalid node - bug #3038433 } else { error("isSaneNodePointer: Node at %04x:%04x wasn't found", PRINT_REG(addr)); } return false; } if (havePrev && node->pred != prev) { error("isSaneNodePointer: Node at %04x:%04x points to invalid predecessor %04x:%04x (should be %04x:%04x)", PRINT_REG(addr), PRINT_REG(node->pred), PRINT_REG(prev)); //node->pred = prev; // fix the problem in the node return false; } prev = addr; addr = node->succ; havePrev = true; } while (!addr.isNull()); return true; } static void checkListPointer(SegManager *segMan, reg_t addr) { List *list = segMan->lookupList(addr); if (!list) { error("checkListPointer (list %04x:%04x): The requested list wasn't found", PRINT_REG(addr)); return; } if (list->first.isNull() && list->last.isNull()) { // Empty list is fine } else if (!list->first.isNull() && !list->last.isNull()) { // Normal list Node *node_a = segMan->lookupNode(list->first, false); Node *node_z = segMan->lookupNode(list->last, false); if (!node_a) { error("checkListPointer (list %04x:%04x): missing first node", PRINT_REG(addr)); return; } if (!node_z) { error("checkListPointer (list %04x:%04x): missing last node", PRINT_REG(addr)); return; } if (!node_a->pred.isNull()) { error("checkListPointer (list %04x:%04x): First node of the list points to a predecessor node", PRINT_REG(addr)); //node_a->pred = NULL_REG; // fix the problem in the node return; } if (!node_z->succ.isNull()) { error("checkListPointer (list %04x:%04x): Last node of the list points to a successor node", PRINT_REG(addr)); //node_z->succ = NULL_REG; // fix the problem in the node return; } isSaneNodePointer(segMan, list->first); } else { // Not sane list... it's missing pointers to the first or last element if (list->first.isNull()) error("checkListPointer (list %04x:%04x): missing pointer to first element", PRINT_REG(addr)); if (list->last.isNull()) error("checkListPointer (list %04x:%04x): missing pointer to last element", PRINT_REG(addr)); } } #endif reg_t kNewList(EngineState *s, int argc, reg_t *argv) { reg_t listRef; List *list = s->_segMan->allocateList(&listRef); list->first = list->last = NULL_REG; debugC(kDebugLevelNodes, "New listRef at %04x:%04x", PRINT_REG(listRef)); return listRef; // Return list base address } reg_t kDisposeList(EngineState *s, int argc, reg_t *argv) { // This function is not needed in ScummVM. The garbage collector // cleans up unused objects automatically return s->r_acc; } reg_t kNewNode(EngineState *s, int argc, reg_t *argv) { reg_t nodeValue = argv[0]; // Some SCI32 games call this with 1 parameter (e.g. the demo of Phantasmagoria). // Set the key to be the same as the value in this case reg_t nodeKey = (argc == 2) ? argv[1] : argv[0]; s->r_acc = s->_segMan->newNode(nodeValue, nodeKey); debugC(kDebugLevelNodes, "New nodeRef at %04x:%04x", PRINT_REG(s->r_acc)); return s->r_acc; } reg_t kFirstNode(EngineState *s, int argc, reg_t *argv) { if (argv[0].isNull()) return NULL_REG; List *list = s->_segMan->lookupList(argv[0]); if (list) { #ifdef CHECK_LISTS checkListPointer(s->_segMan, argv[0]); #endif return list->first; } else { return NULL_REG; } } reg_t kLastNode(EngineState *s, int argc, reg_t *argv) { if (argv[0].isNull()) return NULL_REG; List *list = s->_segMan->lookupList(argv[0]); if (list) { #ifdef CHECK_LISTS checkListPointer(s->_segMan, argv[0]); #endif return list->last; } else { return NULL_REG; } } reg_t kEmptyList(EngineState *s, int argc, reg_t *argv) { if (argv[0].isNull()) return NULL_REG; List *list = s->_segMan->lookupList(argv[0]); #ifdef CHECK_LISTS checkListPointer(s->_segMan, argv[0]); #endif return make_reg(0, ((list) ? list->first.isNull() : 0)); } static void addToFront(EngineState *s, reg_t listRef, reg_t nodeRef) { List *list = s->_segMan->lookupList(listRef); Node *newNode = s->_segMan->lookupNode(nodeRef); debugC(kDebugLevelNodes, "Adding node %04x:%04x to end of list %04x:%04x", PRINT_REG(nodeRef), PRINT_REG(listRef)); if (!newNode) error("Attempt to add non-node (%04x:%04x) to list at %04x:%04x", PRINT_REG(nodeRef), PRINT_REG(listRef)); #ifdef CHECK_LISTS checkListPointer(s->_segMan, listRef); #endif newNode->pred = NULL_REG; newNode->succ = list->first; // Set node to be the first and last node if it's the only node of the list if (list->first.isNull()) list->last = nodeRef; else { Node *oldNode = s->_segMan->lookupNode(list->first); oldNode->pred = nodeRef; } list->first = nodeRef; } static void addToEnd(EngineState *s, reg_t listRef, reg_t nodeRef) { List *list = s->_segMan->lookupList(listRef); Node *newNode = s->_segMan->lookupNode(nodeRef); debugC(kDebugLevelNodes, "Adding node %04x:%04x to end of list %04x:%04x", PRINT_REG(nodeRef), PRINT_REG(listRef)); if (!newNode) error("Attempt to add non-node (%04x:%04x) to list at %04x:%04x", PRINT_REG(nodeRef), PRINT_REG(listRef)); #ifdef CHECK_LISTS checkListPointer(s->_segMan, listRef); #endif newNode->pred = list->last; newNode->succ = NULL_REG; // Set node to be the first and last node if it's the only node of the list if (list->last.isNull()) list->first = nodeRef; else { Node *old_n = s->_segMan->lookupNode(list->last); old_n->succ = nodeRef; } list->last = nodeRef; } reg_t kNextNode(EngineState *s, int argc, reg_t *argv) { Node *n = s->_segMan->lookupNode(argv[0]); #ifdef CHECK_LISTS if (!isSaneNodePointer(s->_segMan, argv[0])) return NULL_REG; #endif return n->succ; } reg_t kPrevNode(EngineState *s, int argc, reg_t *argv) { Node *n = s->_segMan->lookupNode(argv[0]); #ifdef CHECK_LISTS if (!isSaneNodePointer(s->_segMan, argv[0])) return NULL_REG; #endif return n->pred; } reg_t kNodeValue(EngineState *s, int argc, reg_t *argv) { Node *n = s->_segMan->lookupNode(argv[0]); #ifdef CHECK_LISTS if (!isSaneNodePointer(s->_segMan, argv[0])) return NULL_REG; #endif // ICEMAN: when plotting a course in room 40, unDrawLast is called by // startPlot::changeState, but there is no previous entry, so we get 0 here return n ? n->value : NULL_REG; } reg_t kAddToFront(EngineState *s, int argc, reg_t *argv) { addToFront(s, argv[0], argv[1]); if (argc == 3) s->_segMan->lookupNode(argv[1])->key = argv[2]; return s->r_acc; } reg_t kAddToEnd(EngineState *s, int argc, reg_t *argv) { addToEnd(s, argv[0], argv[1]); if (argc == 3) s->_segMan->lookupNode(argv[1])->key = argv[2]; return s->r_acc; } reg_t kAddAfter(EngineState *s, int argc, reg_t *argv) { List *list = s->_segMan->lookupList(argv[0]); Node *firstnode = argv[1].isNull() ? NULL : s->_segMan->lookupNode(argv[1]); Node *newnode = s->_segMan->lookupNode(argv[2]); #ifdef CHECK_LISTS checkListPointer(s->_segMan, argv[0]); #endif if (!newnode) { error("New 'node' %04x:%04x is not a node", PRINT_REG(argv[2])); return NULL_REG; } if (argc != 3 && argc != 4) { error("kAddAfter: Haven't got 3 or 4 arguments, aborting"); return NULL_REG; } if (argc == 4) newnode->key = argv[3]; if (firstnode) { // We're really appending after reg_t oldnext = firstnode->succ; newnode->pred = argv[1]; firstnode->succ = argv[2]; newnode->succ = oldnext; if (oldnext.isNull()) // Appended after last node? // Set new node as last list node list->last = argv[2]; else s->_segMan->lookupNode(oldnext)->pred = argv[2]; } else { // !firstnode addToFront(s, argv[0], argv[2]); // Set as initial list node } return s->r_acc; } reg_t kFindKey(EngineState *s, int argc, reg_t *argv) { reg_t node_pos; reg_t key = argv[1]; reg_t list_pos = argv[0]; debugC(kDebugLevelNodes, "Looking for key %04x:%04x in list %04x:%04x", PRINT_REG(key), PRINT_REG(list_pos)); #ifdef CHECK_LISTS checkListPointer(s->_segMan, argv[0]); #endif node_pos = s->_segMan->lookupList(list_pos)->first; debugC(kDebugLevelNodes, "First node at %04x:%04x", PRINT_REG(node_pos)); while (!node_pos.isNull()) { Node *n = s->_segMan->lookupNode(node_pos); if (n->key == key) { debugC(kDebugLevelNodes, " Found key at %04x:%04x", PRINT_REG(node_pos)); return node_pos; } node_pos = n->succ; debugC(kDebugLevelNodes, "NextNode at %04x:%04x", PRINT_REG(node_pos)); } debugC(kDebugLevelNodes, "Looking for key without success"); return NULL_REG; } reg_t kDeleteKey(EngineState *s, int argc, reg_t *argv) { reg_t node_pos = kFindKey(s, 2, argv); Node *n; List *list = s->_segMan->lookupList(argv[0]); if (node_pos.isNull()) return NULL_REG; // Signal failure n = s->_segMan->lookupNode(node_pos); if (list->first == node_pos) list->first = n->succ; if (list->last == node_pos) list->last = n->pred; if (!n->pred.isNull()) s->_segMan->lookupNode(n->pred)->succ = n->succ; if (!n->succ.isNull()) s->_segMan->lookupNode(n->succ)->pred = n->pred; // Erase references to the predecessor and successor nodes, as the game // scripts could reference the node itself again. // Happens in the intro of QFG1 and in Longbow, when exiting the cave. n->pred = NULL_REG; n->succ = NULL_REG; return make_reg(0, 1); // Signal success } struct sort_temp_t { reg_t key, value; reg_t order; }; int sort_temp_cmp(const void *p1, const void *p2) { const sort_temp_t *st1 = (const sort_temp_t *)p1; const sort_temp_t *st2 = (const sort_temp_t *)p2; if (st1->order.segment < st2->order.segment || (st1->order.segment == st2->order.segment && st1->order.offset < st2->order.offset)) return -1; if (st1->order.segment > st2->order.segment || (st1->order.segment == st2->order.segment && st1->order.offset > st2->order.offset)) return 1; return 0; } reg_t kSort(EngineState *s, int argc, reg_t *argv) { SegManager *segMan = s->_segMan; reg_t source = argv[0]; reg_t dest = argv[1]; reg_t order_func = argv[2]; int input_size = (int16)readSelectorValue(segMan, source, SELECTOR(size)); reg_t input_data = readSelector(segMan, source, SELECTOR(elements)); reg_t output_data = readSelector(segMan, dest, SELECTOR(elements)); List *list; Node *node; if (!input_size) return s->r_acc; if (output_data.isNull()) { list = s->_segMan->allocateList(&output_data); list->first = list->last = NULL_REG; writeSelector(segMan, dest, SELECTOR(elements), output_data); } writeSelectorValue(segMan, dest, SELECTOR(size), input_size); list = s->_segMan->lookupList(input_data); node = s->_segMan->lookupNode(list->first); sort_temp_t *temp_array = (sort_temp_t *)malloc(sizeof(sort_temp_t) * input_size); int i = 0; while (node) { reg_t params[1] = { node->value }; invokeSelector(s, order_func, SELECTOR(doit), argc, argv, 1, params); temp_array[i].key = node->key; temp_array[i].value = node->value; temp_array[i].order = s->r_acc; i++; node = s->_segMan->lookupNode(node->succ); } qsort(temp_array, input_size, sizeof(sort_temp_t), sort_temp_cmp); for (i = 0;i < input_size;i++) { reg_t lNode = s->_segMan->newNode(temp_array[i].value, temp_array[i].key); addToEnd(s, output_data, lNode); } free(temp_array); return s->r_acc; } // SCI32 list functions #ifdef ENABLE_SCI32 reg_t kListAt(EngineState *s, int argc, reg_t *argv) { if (argc != 2) { error("kListAt called with %d parameters", argc); return NULL_REG; } List *list = s->_segMan->lookupList(argv[0]); reg_t curAddress = list->first; if (list->first.isNull()) { error("kListAt tried to reference empty list (%04x:%04x)", PRINT_REG(argv[0])); return NULL_REG; } Node *curNode = s->_segMan->lookupNode(curAddress); reg_t curObject = curNode->value; int16 listIndex = argv[1].toUint16(); int curIndex = 0; while (curIndex != listIndex) { if (curNode->succ.isNull()) { // end of the list? return NULL_REG; } curAddress = curNode->succ; curNode = s->_segMan->lookupNode(curAddress); curObject = curNode->value; curIndex++; } return curObject; } reg_t kListIndexOf(EngineState *s, int argc, reg_t *argv) { List *list = s->_segMan->lookupList(argv[0]); reg_t curAddress = list->first; Node *curNode = s->_segMan->lookupNode(curAddress); reg_t curObject; uint16 curIndex = 0; while (curNode) { curObject = curNode->value; if (curObject == argv[1]) return make_reg(0, curIndex); curAddress = curNode->succ; curNode = s->_segMan->lookupNode(curAddress); curIndex++; } return SIGNAL_REG; } reg_t kListEachElementDo(EngineState *s, int argc, reg_t *argv) { List *list = s->_segMan->lookupList(argv[0]); Node *curNode = s->_segMan->lookupNode(list->first); reg_t curObject; Selector slc = argv[1].toUint16(); ObjVarRef address; while (curNode) { // We get the next node here as the current node might be gone after the invoke reg_t nextNode = curNode->succ; curObject = curNode->value; // First, check if the target selector is a variable if (lookupSelector(s->_segMan, curObject, slc, &address, NULL) == kSelectorVariable) { // This can only happen with 3 params (list, target selector, variable) if (argc != 3) { error("kListEachElementDo: Attempted to modify a variable selector with %d params", argc); } else { writeSelector(s->_segMan, curObject, slc, argv[2]); } } else { invokeSelector(s, curObject, slc, argc, argv, argc - 2, argv + 2); } curNode = s->_segMan->lookupNode(nextNode); } return s->r_acc; } reg_t kListFirstTrue(EngineState *s, int argc, reg_t *argv) { List *list = s->_segMan->lookupList(argv[0]); Node *curNode = s->_segMan->lookupNode(list->first); reg_t curObject; Selector slc = argv[1].toUint16(); ObjVarRef address; s->r_acc = NULL_REG; // reset the accumulator while (curNode) { reg_t nextNode = curNode->succ; curObject = curNode->value; // First, check if the target selector is a variable if (lookupSelector(s->_segMan, curObject, slc, &address, NULL) == kSelectorVariable) { // If it's a variable selector, check its value. // Example: script 64893 in Torin, MenuHandler::isHilited checks // all children for variable selector 0x03ba (bHilited). if (!readSelector(s->_segMan, curObject, slc).isNull()) return curObject; } else { invokeSelector(s, curObject, slc, argc, argv, argc - 2, argv + 2); // Check if the result is true if (!s->r_acc.isNull()) return curObject; } curNode = s->_segMan->lookupNode(nextNode); } // No selector returned true return NULL_REG; } reg_t kListAllTrue(EngineState *s, int argc, reg_t *argv) { List *list = s->_segMan->lookupList(argv[0]); Node *curNode = s->_segMan->lookupNode(list->first); reg_t curObject; Selector slc = argv[1].toUint16(); ObjVarRef address; s->r_acc = make_reg(0, 1); // reset the accumulator while (curNode) { reg_t nextNode = curNode->succ; curObject = curNode->value; // First, check if the target selector is a variable if (lookupSelector(s->_segMan, curObject, slc, &address, NULL) == kSelectorVariable) { // If it's a variable selector, check its value s->r_acc = readSelector(s->_segMan, curObject, slc); } else { invokeSelector(s, curObject, slc, argc, argv, argc - 2, argv + 2); } // Check if the result isn't true if (s->r_acc.isNull()) break; curNode = s->_segMan->lookupNode(nextNode); } return s->r_acc; } reg_t kList(EngineState *s, int argc, reg_t *argv) { if (!s) return make_reg(0, getSciVersion()); error("not supposed to call this"); } reg_t kAddBefore(EngineState *s, int argc, reg_t *argv) { error("Unimplemented function kAddBefore called"); return s->r_acc; } reg_t kMoveToFront(EngineState *s, int argc, reg_t *argv) { error("Unimplemented function kMoveToFront called"); return s->r_acc; } reg_t kMoveToEnd(EngineState *s, int argc, reg_t *argv) { error("Unimplemented function kMoveToEnd called"); return s->r_acc; } reg_t kArray(EngineState *s, int argc, reg_t *argv) { uint16 op = argv[0].toUint16(); // Use kString when accessing strings // This is possible, as strings inherit from arrays // and in this case (type 3) arrays are of type char *. // kString is almost exactly the same as kArray, so // this call is possible // TODO: we need to either merge SCI2 strings and // arrays together, and in the future merge them with // the SCI1 strings and arrays in the segment manager if (op == 0) { // New, check if the target type is 3 (string) if (argv[2].toUint16() == 3) return kString(s, argc, argv); } else { if (s->_segMan->getSegmentType(argv[1].segment) == SEG_TYPE_STRING || s->_segMan->getSegmentType(argv[1].segment) == SEG_TYPE_SCRIPT) { return kString(s, argc, argv); } #if 0 if (op == 6) { if (s->_segMan->getSegmentType(argv[3].segment) == SEG_TYPE_STRING || s->_segMan->getSegmentType(argv[3].segment) == SEG_TYPE_SCRIPT) { return kString(s, argc, argv); } } #endif } switch (op) { case 0: { // New reg_t arrayHandle; SciArray *array = s->_segMan->allocateArray(&arrayHandle); array->setType(argv[2].toUint16()); array->setSize(argv[1].toUint16()); return arrayHandle; } case 1: { // Size SciArray *array = s->_segMan->lookupArray(argv[1]); return make_reg(0, array->getSize()); } case 2: { // At (return value at an index) SciArray *array = s->_segMan->lookupArray(argv[1]); if (g_sci->getGameId() == GID_PHANTASMAGORIA2) { // HACK: Phantasmagoria 2 keeps trying to access past the end of an // array when it starts. I'm assuming it's trying to see where the // array ends, or tries to resize it. Adjust the array size // accordingly, and return NULL for now. if (array->getSize() == argv[2].toUint16()) { array->setSize(argv[2].toUint16()); return NULL_REG; } } return array->getValue(argv[2].toUint16()); } case 3: { // Atput (put value at an index) SciArray *array = s->_segMan->lookupArray(argv[1]); uint32 index = argv[2].toUint16(); uint32 count = argc - 3; if (index + count > 65535) break; if (array->getSize() < index + count) array->setSize(index + count); for (uint16 i = 0; i < count; i++) array->setValue(i + index, argv[i + 3]); return argv[1]; // We also have to return the handle } case 4: // Free // Freeing of arrays is handled by the garbage collector return s->r_acc; case 5: { // Fill SciArray *array = s->_segMan->lookupArray(argv[1]); uint16 index = argv[2].toUint16(); // A count of -1 means fill the rest of the array uint16 count = argv[3].toSint16() == -1 ? array->getSize() - index : argv[3].toUint16(); uint16 arraySize = array->getSize(); if (arraySize < index + count) array->setSize(index + count); for (uint16 i = 0; i < count; i++) array->setValue(i + index, argv[4]); return argv[1]; } case 6: { // Cpy if (argv[1].isNull() || argv[3].isNull()) { if (getSciVersion() == SCI_VERSION_3) { // FIXME: Happens in SCI3, probably because of a missing kernel function. warning("kArray(Cpy): Request to copy from or to a null pointer"); return NULL_REG; } else { // SCI2-2.1: error out error("kArray(Cpy): Request to copy from or to a null pointer"); } } reg_t arrayHandle = argv[1]; SciArray *array1 = s->_segMan->lookupArray(argv[1]); SciArray *array2 = s->_segMan->lookupArray(argv[3]); uint32 index1 = argv[2].toUint16(); uint32 index2 = argv[4].toUint16(); // The original engine ignores bad copies too if (index2 > array2->getSize()) break; // A count of -1 means fill the rest of the array uint32 count = argv[5].toSint16() == -1 ? array2->getSize() - index2 : argv[5].toUint16(); if (array1->getSize() < index1 + count) array1->setSize(index1 + count); for (uint16 i = 0; i < count; i++) array1->setValue(i + index1, array2->getValue(i + index2)); return arrayHandle; } case 7: // Cmp // Not implemented in SSCI warning("kArray(Cmp) called"); return s->r_acc; case 8: { // Dup if (argv[1].isNull()) { warning("kArray(Dup): Request to duplicate a null pointer"); #if 0 // Allocate an array anyway reg_t arrayHandle; SciArray *dupArray = s->_segMan->allocateArray(&arrayHandle); dupArray->setType(3); dupArray->setSize(0); return arrayHandle; #endif return NULL_REG; } if (s->_segMan->getSegmentObj(argv[1].segment)->getType() != SEG_TYPE_ARRAY) error("kArray(Dup): Request to duplicate a segment which isn't an array"); reg_t arrayHandle; SciArray *dupArray = s->_segMan->allocateArray(&arrayHandle); // This must occur after allocateArray, as inserting a new object // in the heap object list might invalidate this pointer. Also refer // to the same issue in kClone() SciArray *array = s->_segMan->lookupArray(argv[1]); dupArray->setType(array->getType()); dupArray->setSize(array->getSize()); for (uint32 i = 0; i < array->getSize(); i++) dupArray->setValue(i, array->getValue(i)); return arrayHandle; } case 9: // Getdata if (!s->_segMan->isHeapObject(argv[1])) return argv[1]; return readSelector(s->_segMan, argv[1], SELECTOR(data)); default: error("Unknown kArray subop %d", op); } return NULL_REG; } #endif } // End of namespace Sci