/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ /* Detailed information on the implementation can be found in the report ** which can be downloaded from FIXME. */ #include "sci/include/engine.h" #include "sci/engine/aatree.h" #include "sci/gfx/gfx_widgets.h" #include "sci/engine/kernel.h" #include "common/list.h" namespace Sci { #define POLY_LAST_POINT 0x7777 #define POLY_POINT_SIZE 4 static void POLY_GET_POINT(byte *p, int i, Common::Point &pt) { pt.x = getInt16((p) + (i) * POLY_POINT_SIZE); pt.y = getInt16((p) + (i) * POLY_POINT_SIZE + 2); } static void POLY_SET_POINT(byte *p, int i, const Common::Point &pt) { putInt16((p) + (i) * POLY_POINT_SIZE, pt.x); putInt16((p) + (i) * POLY_POINT_SIZE + 2, pt.y); } static void POLY_GET_POINT_REG_T(reg_t *p, int i, Common::Point &pt) { pt.x = KP_SINT((p)[(i) * 2]); pt.y = KP_SINT((p)[(i) * 2 + 1]); } // SCI-defined polygon types enum { POLY_TOTAL_ACCESS = 0, POLY_NEAREST_ACCESS = 1, POLY_BARRED_ACCESS = 2, POLY_CONTAINED_ACCESS = 3 }; // Polygon containment types enum { CONT_OUTSIDE = 0, CONT_ON_EDGE = 1, CONT_INSIDE = 2 }; #define HUGE_DISTANCE 1e10 // Visibility matrix #define VIS_MATRIX_ROW_SIZE(N) (((N) / 8) + ((N) % 8 ? 1 : 0)) #define SET_VISIBLE(S, P, Q) ((S)->vis_matrix)[(P) * VIS_MATRIX_ROW_SIZE((S)->vertices) \ + (Q) / 8] |= (1 << ((Q) % 8)) #define IS_VISIBLE(S, P, Q) (((S)->vis_matrix[(P) * VIS_MATRIX_ROW_SIZE((S)->vertices) \ + (Q) / 8] & (1 << ((Q) % 8))) != 0) #define VERTEX_HAS_EDGES(V) ((V) != CLIST_NEXT(V)) // Error codes enum { PF_OK = 0, PF_ERROR = -1, PF_FATAL = -2 }; // Floating point struct struct FloatPoint { FloatPoint() : x(0), y(0) {} FloatPoint(float x_, float y_) : x(x_), y(y_) {} float x, y; }; FloatPoint toFloatPoint(Common::Point p) { return FloatPoint(p.x, p.y); } struct Vertex { // Location Common::Point v; // Index int idx; // Vertex circular list entry struct { Vertex *cle_next; // next element Vertex *cle_prev; // previous element } entries; // Distance from starting vertex float dist; // Previous vertex in shortest path Vertex *path_prev; public: Vertex(const Common::Point &p) : v(p) { dist = HUGE_DISTANCE; path_prev = NULL; } }; typedef Common::List VertexList; class CircularVertexList { public: Vertex *_head; public: CircularVertexList() : _head(0) {} Vertex *first() { return _head; } void insertHead(Vertex *elm) { if (_head == NULL) { elm->entries.cle_next = elm->entries.cle_prev = elm; } else { elm->entries.cle_next = _head; elm->entries.cle_prev = _head->entries.cle_prev; _head->entries.cle_prev = elm; elm->entries.cle_prev->entries.cle_next = elm; } _head = elm; } static void insertAfter(Vertex *listelm, Vertex *elm) { elm->entries.cle_prev = listelm; (elm)->entries.cle_next = listelm->entries.cle_next; listelm->entries.cle_next->entries.cle_prev = elm; listelm->entries.cle_next = elm; } void remove(Vertex *elm) { if (elm->entries.cle_next == elm) { _head = NULL; } else { if (_head == elm) _head = elm->entries.cle_next; elm->entries.cle_prev->entries.cle_next = elm->entries.cle_next; elm->entries.cle_next->entries.cle_prev = elm->entries.cle_prev; } } bool empty() const { return _head == NULL; } }; /* Circular list definitions. */ #define CLIST_FOREACH(var, head) \ for ((var) = (head)->first(); \ (var); \ (var) = ((var)->entries.cle_next == (head)->first() ? \ NULL : (var)->entries.cle_next)) /* Circular list access methods. */ #define CLIST_NEXT(elm) ((elm)->entries.cle_next) #define CLIST_PREV(elm) ((elm)->entries.cle_prev) struct Polygon { // SCI polygon type int type; // Circular list of vertices CircularVertexList vertices; public: Polygon(int t) : type(t) { } ~Polygon() { while (!vertices.empty()) { Vertex *vertex = vertices.first(); vertices.remove(vertex); delete vertex; } } }; typedef Common::List PolygonList; // Pathfinding state struct PathfindingState { // List of all polygons PolygonList polygons; // Original start and end points Common::Point start, end; // Flags for adding original points to final path char keep_start, keep_end; // Start and end points for pathfinding Vertex *vertex_start, *vertex_end; // Array to quickly find vertices by idx Vertex **vertex_index; // Visibility matrix char *vis_matrix; // Total number of vertices int vertices; PathfindingState(const Common::Point &s, const Common::Point &e) : start(s), end(e) { keep_start = 0; keep_end = 0; vertex_start = NULL; vertex_end = NULL; vertex_index = NULL; vis_matrix = NULL; vertices = 0; } ~PathfindingState() { free(vertex_index); free(vis_matrix); for (PolygonList::iterator it = polygons.begin(); it != polygons.end(); ++it) { delete *it; } } }; static Vertex *vertex_cur; // Temporary hack to deal with points in reg_ts static int polygon_is_reg_t(unsigned char *list, int size) { int i; // Check the first three reg_ts for (i = 0; i < (size < 3 ? size : 3); i++) if ((((reg_t *) list) + i)->segment) // Non-zero segment, cannot be reg_ts return 0; // First three segments were zero, assume reg_ts return 1; } static Common::Point read_point(unsigned char *list, int is_reg_t, int offset) { Common::Point point; if (!is_reg_t) { POLY_GET_POINT(list, offset, point); } else { POLY_GET_POINT_REG_T((reg_t *)list, offset, point); } return point; } static void draw_line(EngineState *s, Common::Point p1, Common::Point p2, int type) { // Colors for polygon debugging. // Green: Total access // Red : Barred access // Blue: Near-point access // Yellow: Contained access int poly_colors[][3] = {{0, 255, 0}, {0, 0, 255}, {255, 0, 0}, {255, 255, 0}}; gfx_color_t col; gfxw_list_t *decorations = s->picture_port->decorations; gfxw_primitive_t *line; col.visual.global_index = GFX_COLOR_INDEX_UNMAPPED; col.visual.r = poly_colors[type][0]; col.visual.g = poly_colors[type][1]; col.visual.b = poly_colors[type][2]; col.alpha = 0; col.priority = -1; col.control = 0; col.mask = GFX_MASK_VISUAL | GFX_MASK_PRIORITY; p1.y += 10; p2.y += 10; line = gfxw_new_line(p1, p2, col, GFX_LINE_MODE_CORRECT, GFX_LINE_STYLE_NORMAL); decorations->add((gfxw_container_t *)decorations, (gfxw_widget_t *)line); } static void draw_point(EngineState *s, Common::Point p, int start) { // Colors for starting and end point // Green: End point // Blue: Starting point int point_colors[][3] = {{0, 255, 0}, {0, 0, 255}}; gfx_color_t col; gfxw_list_t *decorations = s->picture_port->decorations; gfxw_box_t *box; col.visual.global_index = GFX_COLOR_INDEX_UNMAPPED; col.visual.r = point_colors[start][0]; col.visual.g = point_colors[start][1]; col.visual.b = point_colors[start][2]; col.alpha = 0; col.priority = -1; col.control = 0; col.mask = GFX_MASK_VISUAL | GFX_MASK_PRIORITY; box = gfxw_new_box(s->gfx_state, gfx_rect(p.x - 1, p.y - 1 + 10, 3, 3), col, col, GFX_BOX_SHADE_FLAT); decorations->add((gfxw_container_t *) decorations, (gfxw_widget_t *) box); } static void draw_polygon(EngineState *s, reg_t polygon) { reg_t points = GET_SEL32(polygon, points); int size = KP_UINT(GET_SEL32(polygon, size)); int type = KP_UINT(GET_SEL32(polygon, type)); Common::Point first, prev; unsigned char *list = kernel_dereference_bulk_pointer(s, points, size * POLY_POINT_SIZE); int is_reg_t = polygon_is_reg_t(list, size); int i; prev = first = read_point(list, is_reg_t, 0); for (i = 1; i < size; i++) { Common::Point point = read_point(list, is_reg_t, i); draw_line(s, prev, point, type); prev = point; } draw_line(s, prev, first, type % 3); } static void draw_input(EngineState *s, reg_t poly_list, Common::Point start, Common::Point end, int opt) { list_t *list; node_t *node; draw_point(s, start, 1); draw_point(s, end, 0); if (!poly_list.segment) return; list = LOOKUP_LIST(poly_list); if (!list) { warning("Could not obtain polygon list"); return; } node = LOOKUP_NODE(list->first); while (node) { draw_polygon(s, node->value); node = LOOKUP_NODE(node->succ); } } static void print_polygon(EngineState *s, reg_t polygon) { reg_t points = GET_SEL32(polygon, points); int size = KP_UINT(GET_SEL32(polygon, size)); int type = KP_UINT(GET_SEL32(polygon, type)); int i; unsigned char *point_array = kernel_dereference_bulk_pointer(s, points, size * POLY_POINT_SIZE); int is_reg_t = polygon_is_reg_t(point_array, size); Common::Point point; sciprintf("%i:", type); for (i = 0; i < size; i++) { point = read_point(point_array, is_reg_t, i); sciprintf(" (%i, %i)", point.x, point.y); } point = read_point(point_array, is_reg_t, 0); sciprintf(" (%i, %i);\n", point.x, point.y); } static void print_input(EngineState *s, reg_t poly_list, Common::Point start, Common::Point end, int opt) { list_t *list; node_t *node; sciprintf("Start point: (%i, %i)\n", start.x, start.y); sciprintf("End point: (%i, %i)\n", end.x, end.y); sciprintf("Optimization level: %i\n", opt); if (!poly_list.segment) return; list = LOOKUP_LIST(poly_list); if (!list) { warning("Could not obtain polygon list"); return; } sciprintf("Polygons:\n"); node = LOOKUP_NODE(list->first); while (node) { print_polygon(s, node->value); node = LOOKUP_NODE(node->succ); } } static int area(Common::Point a, Common::Point b, Common::Point c) { // Computes the area of a triangle // Parameters: (Common::Point) a, b, c: The points of the triangle // Returns : (int) The area multiplied by two return (b.x - a.x) * (a.y - c.y) - (c.x - a.x) * (a.y - b.y); } static int left(Common::Point a, Common::Point b, Common::Point c) { // Determines whether or not a point is to the left of a directed line // Parameters: (Common::Point) a, b: The directed line (a, b) // (Common::Point) c: The query point // Returns : (int) 1 if c is to the left of (a, b), 0 otherwise return area(a, b, c) > 0; } static int left_on(Common::Point a, Common::Point b, Common::Point c) { // Determines whether or not a point is to the left of or collinear with a // directed line // Parameters: (Common::Point) a, b: The directed line (a, b) // (Common::Point) c: The query point // Returns : (int) 1 if c is to the left of or collinear with (a, b), 0 // otherwise return area(a, b, c) >= 0; } static int collinear(Common::Point a, Common::Point b, Common::Point c) { // Determines whether or not three points are collinear // Parameters: (Common::Point) a, b, c: The three points // Returns : (int) 1 if a, b, and c are collinear, 0 otherwise return area(a, b, c) == 0; } static int between(Common::Point a, Common::Point b, Common::Point c) { // Determines whether or not a point lies on a line segment // Parameters: (Common::Point) a, b: The line segment (a, b) // (Common::Point) c: The query point // Returns : (int) 1 if c lies on (a, b), 0 otherwise if (!collinear(a, b, c)) return 0; // Assumes a != b. if (a.x != b.x) return ((a.x <= c.x) && (c.x <= b.x)) || ((a.x >= c.x) && (c.x >= b.x)); else return ((a.y <= c.y) && (c.y <= b.y)) || ((a.y >= c.y) && (c.y >= b.y)); } static int intersect_proper(Common::Point a, Common::Point b, Common::Point c, Common::Point d) { // Determines whether or not two line segments properly intersect // Parameters: (Common::Point) a, b: The line segment (a, b) // (Common::Point) c, d: The line segment (c, d) // Returns : (int) 1 if (a, b) properly intersects (c, d), 0 otherwise int ab = (left(a, b, c) && left(b, a, d)) || (left(a, b, d) && left(b, a, c)); int cd = (left(c, d, a) && left(d, c, b)) || (left(c, d, b) && left(d, c, a)); return ab && cd; } static int intersect(Common::Point a, Common::Point b, Common::Point c, Common::Point d) { // Determines whether or not two line segments intersect // Parameters: (Common::Point) a, b: The line segment (a, b) // (Common::Point) c, d: The line segment (c, d) // Returns : (int) 1 if (a, b) intersects (c, d), 0 otherwise if (intersect_proper(a, b, c, d)) return 1; return between(a, b, c) || between(a, b, d) || between(c, d, a) || between(c, d, b); } static int contained(Common::Point p, Polygon *polygon) { // Polygon containment test // Parameters: (Common::Point) p: The point // (Polygon *) polygon: The polygon // Returns : (int) CONT_INSIDE if p is strictly contained in polygon, // CONT_ON_EDGE if p lies on an edge of polygon, // CONT_OUTSIDE otherwise // Number of ray crossing left and right int lcross = 0, rcross = 0; Vertex *vertex; // Iterate over edges CLIST_FOREACH(vertex, &polygon->vertices) { Common::Point v1 = vertex->v; Common::Point v2 = CLIST_NEXT(vertex)->v; // Flags for ray straddling left and right int rstrad, lstrad; // Check if p is a vertex if (p == v1) return CONT_ON_EDGE; // Check if edge straddles the ray rstrad = (v1.y < p.y) != (v2.y < p.y); lstrad = (v1.y > p.y) != (v2.y > p.y); if (lstrad || rstrad) { // Compute intersection point x / xq int x = v2.x * v1.y - v1.x * v2.y + (v1.x - v2.x) * p.y; int xq = v1.y - v2.y; // Multiply by -1 if xq is negative (for comparison that follows) if (xq < 0) { x = -x; xq = -xq; } // Avoid floats by multiplying instead of dividing if (rstrad && (x > xq * p.x)) rcross++; else if (lstrad && (x < xq * p.x)) lcross++; } } // If we counted an odd number of total crossings the point is on an edge if ((lcross + rcross) % 2 == 1) return CONT_ON_EDGE; // If there are an odd number of crossings to one side the point is contained in the polygon if (rcross % 2 == 1) { // Invert result for contained access polygons. if (polygon->type == POLY_CONTAINED_ACCESS) return CONT_OUTSIDE; return CONT_INSIDE; } // Point is outside polygon. Invert result for contained access polygons if (polygon->type == POLY_CONTAINED_ACCESS) return CONT_INSIDE; return CONT_OUTSIDE; } static int polygon_area(Polygon *polygon) { // Computes polygon area // Parameters: (Polygon *) polygon: The polygon // Returns : (int) The area multiplied by two Vertex *first = polygon->vertices.first(); Vertex *v; int size = 0; v = CLIST_NEXT(first); while (CLIST_NEXT(v) != first) { size += area(first->v, v->v, CLIST_NEXT(v)->v); v = CLIST_NEXT(v); } return size; } static void fix_vertex_order(Polygon *polygon) { // Fixes the vertex order of a polygon if incorrect. Contained access // polygons should have their vertices ordered clockwise, all other types // anti-clockwise // Parameters: (Polygon *) polygon: The polygon int area = polygon_area(polygon); // When the polygon area is positive the vertices are ordered // anti-clockwise. When the area is negative the vertices are ordered // clockwise if (((area > 0) && (polygon->type == POLY_CONTAINED_ACCESS)) || ((area < 0) && (polygon->type != POLY_CONTAINED_ACCESS))) { // Create a new circular list CircularVertexList vertices; while (!polygon->vertices.empty()) { // Put first vertex in new list Vertex *vertex = polygon->vertices.first(); polygon->vertices.remove(vertex); vertices.insertHead(vertex); } polygon->vertices = vertices; } } static int vertex_compare(const void *a, const void *b) { // Compares two vertices by angle (first) and distance (second) in relation // to vertex_cur. The angle is relative to the horizontal line extending // right from vertex_cur, and increases clockwise // Parameters: (const void *) a, b: The vertices // Returns : (int) -1 if a is smaller than b, 1 if a is larger than b, and // 0 if a and b are equal Common::Point p0 = vertex_cur->v; Common::Point p1 = (*(Vertex **) a)->v; Common::Point p2 = (*(Vertex **) b)->v; if (p1 == p2) return 0; // Points above p0 have larger angle than points below p0 if ((p1.y < p0.y) && (p2.y >= p0.y)) return 1; if ((p2.y < p0.y) && (p1.y >= p0.y)) return -1; // Handle case where all points have the same y coordinate if ((p0.y == p1.y) && (p0.y == p2.y)) { // Points left of p0 have larger angle than points right of p0 if ((p1.x < p0.x) && (p2.x >= p0.x)) return 1; if ((p1.x >= p0.x) && (p2.x < p0.x)) return -1; } if (collinear(p0, p1, p2)) { // At this point collinear points must have the same angle, // so compare distance to p0 if (abs(p1.x - p0.x) < abs(p2.x - p0.x)) return -1; if (abs(p1.y - p0.y) < abs(p2.y - p0.y)) return -1; return 1; } // If p2 is left of the directed line (p0, p1) then p1 has greater angle if (left(p0, p1, p2)) return 1; return -1; } static void clockwise(Vertex *v, Common::Point *p1, Common::Point *p2) { // Orders the points of an edge clockwise around vertex_cur. If all three // points are collinear the original order is used // Parameters: (Vertex *) v: The first vertex of the edge // Returns : (void) // (Common::Point) *p1: The first point in clockwise order // (Common::Point) *p2: The second point in clockwise order Vertex *w = CLIST_NEXT(v); if (left_on(vertex_cur->v, w->v, v->v)) { *p1 = v->v; *p2 = w->v; } else { *p1 = w->v; *p2 = v->v; } } static int edge_compare(const void *a, const void *b) { // Compares two edges that are intersected by the sweeping line by distance // from vertex_cur // Parameters: (const void *) a, b: The first vertices of the edges // Returns : (int) -1 if a is closer than b, 1 if b is closer than a, and // 0 if a and b are equal Common::Point v1, v2, w1, w2; // We can assume that the sweeping line intersects both edges and // that the edges do not properly intersect if (a == b) return 0; // Order vertices clockwise so we know vertex_cur is to the right of // directed edges (v1, v2) and (w1, w2) clockwise((Vertex *)a, &v1, &v2); clockwise((Vertex *)b, &w1, &w2); // As the edges do not properly intersect one edge must lie entirely // to one side of another. Note that the special case where edges are // collinear does not need to be handled as those edges will never be // in the tree simultaneously // b is left of a if (left_on(v1, v2, w1) && left_on(v1, v2, w2)) return -1; // b is right of a if (left_on(v2, v1, w1) && left_on(v2, v1, w2)) return 1; // a is left of b if (left_on(w1, w2, v1) && left_on(w1, w2, v2)) return 1; // a is right of b return -1; } static int inside(Common::Point p, Vertex *vertex) { // Determines whether or not a line from a point to a vertex intersects the // interior of the polygon, locally at that vertex // Parameters: (Common::Point) p: The point // (Vertex *) vertex: The vertex // Returns : (int) 1 if the line (p, vertex->v) intersects the interior of // the polygon, locally at the vertex. 0 otherwise // Check that it's not a single-vertex polygon if (VERTEX_HAS_EDGES(vertex)) { Common::Point prev = CLIST_PREV(vertex)->v; Common::Point next = CLIST_NEXT(vertex)->v; Common::Point cur = vertex->v; if (left(prev, cur, next)) { // Convex vertex, line (p, cur) intersects the inside // if p is located left of both edges if (left(cur, next, p) && left(prev, cur, p)) return 1; } else { // Non-convex vertex, line (p, cur) intersects the // inside if p is located left of either edge if (left(cur, next, p) || left(prev, cur, p)) return 1; } } return 0; } static int visible(Vertex *vertex, Vertex *vertex_prev, int visible, aatree_t *tree) { // Determines whether or not a vertex is visible from vertex_cur // Parameters: (Vertex *) vertex: The vertex // (Vertex *) vertex_prev: The previous vertex in the sort // order, or NULL // (int) visible: 1 if vertex_prev is visible, 0 otherwise // (aatree_t *) tree: The tree of edges intersected by the // sweeping line // Returns : (int) 1 if vertex is visible from vertex_cur, 0 otherwise Vertex *edge; Common::Point p = vertex_cur->v; Common::Point w = vertex->v; aatree_t *tree_n = tree; // Check if sweeping line intersects the interior of the polygon // locally at vertex if (inside(p, vertex)) return 0; // If vertex_prev is on the sweeping line, then vertex is invisible // if vertex_prev is invisible if (vertex_prev && !visible && between(p, w, vertex_prev->v)) return 0; // Find leftmost node of tree */ while ((tree_n = aatree_walk(tree_n, AATREE_WALK_LEFT))) tree = tree_n; edge = (Vertex*)aatree_get_data(tree); if (edge) { Common::Point p1, p2; // Check for intersection with sweeping line before vertex clockwise(edge, &p1, &p2); if (left(p2, p1, p) && left(p1, p2, w)) return 0; } return 1; } static void visible_vertices(PathfindingState *s, Vertex *vert) { // Determines all vertices that are visible from a particular vertex and // updates the visibility matrix // Parameters: (PathfindingState *) s: The pathfinding state // (Vertex *) vert: The vertex aatree_t *tree = aatree_new(); Common::Point p = vert->v; Polygon *polygon; int i; int is_visible; Vertex **vert_sorted = (Vertex**)sci_malloc(sizeof(Vertex *) * s->vertices); // Sort vertices by angle (first) and distance (second) memcpy(vert_sorted, s->vertex_index, sizeof(Vertex *) * s->vertices); vertex_cur = vert; qsort(vert_sorted, s->vertices, sizeof(Vertex *), vertex_compare); for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) { polygon = *it; Vertex *vertex; vertex = polygon->vertices.first(); // Check that there is more than one vertex. if (VERTEX_HAS_EDGES(vertex)) CLIST_FOREACH(vertex, &polygon->vertices) { Common::Point high, low; // Add edges that intersect the initial position of the sweeping line clockwise(vertex, &high, &low); if ((high.y < p.y) && (low.y >= p.y) && (low != p)) aatree_insert(vertex, &tree, edge_compare); } } is_visible = 1; // The first vertex will be vertex_cur, so we skip it for (i = 1; i < s->vertices; i++) { Vertex *v1; // Compute visibility of vertex_index[i] is_visible = visible(vert_sorted[i], vert_sorted[i - 1], is_visible, tree); // Update visibility matrix if (is_visible) SET_VISIBLE(s, vert->idx, vert_sorted[i]->idx); // Delete anti-clockwise edges from tree v1 = CLIST_PREV(vert_sorted[i]); if (left(p, vert_sorted[i]->v, v1->v)) { if (aatree_delete(v1, &tree, edge_compare)) sciprintf("[avoidpath] Error: failed to remove edge from tree\n"); } v1 = CLIST_NEXT(vert_sorted[i]); if (left(p, vert_sorted[i]->v, v1->v)) { if (aatree_delete(vert_sorted[i], &tree, edge_compare)) sciprintf("[avoidpath] Error: failed to remove edge from tree\n"); } // Add clockwise edges of collinear vertices when sweeping line moves if ((i < s->vertices - 1) && !collinear(p, vert_sorted[i]->v, vert_sorted[i + 1]->v)) { int j; for (j = i; (j >= 1) && collinear(p, vert_sorted[i]->v, vert_sorted[j]->v); j--) { v1 = CLIST_PREV(vert_sorted[j]); if (left(vert_sorted[j]->v, p, v1->v)) aatree_insert(v1, &tree, edge_compare); v1 = CLIST_NEXT(vert_sorted[j]); if (left(vert_sorted[j]->v, p, v1->v)) aatree_insert(vert_sorted[j], &tree, edge_compare); } } } free(vert_sorted); // Free tree aatree_free(tree); } static float distance(FloatPoint a, FloatPoint b) { // Computes the distance between two pointfs // Parameters: (Common::Point) a, b: The two pointfs // Returns : (int) The distance between a and b, rounded to int float w = a.x - b.x; float h = a.y - b.y; return sqrt(w * w + h * h); } static int point_on_screen_border(Common::Point p) { // Determines if a point lies on the screen border // Parameters: (Common::Point) p: The point // Returns : (int) 1 if p lies on the screen border, 0 otherwise // FIXME get dimensions from somewhere? return (p.x == 0) || (p.x == 319) || (p.y == 0) || (p.y == 189); } static int edge_on_screen_border(Common::Point p, Common::Point q) { // Determines if an edge lies on the screen border // Parameters: (Common::Point) p, q: The edge (p, q) // Returns : (int) 1 if (p, q) lies on the screen border, 0 otherwise // FIXME get dimensions from somewhere? return ((p.x == 0 && q.x == 0) || (p.x == 319 && q.x == 319) || (p.y == 0 && q.y == 0) || (p.y == 189 && q.y == 189)); } static int find_free_point(FloatPoint f, Polygon *polygon, Common::Point *ret) { // Searches for a nearby point that is not contained in a polygon // Parameters: (FloatPoint) f: The pointf to search nearby // (Polygon *) polygon: The polygon // Returns : (int) PF_OK on success, PF_FATAL otherwise // (Common::Point) *ret: The non-contained point on success Common::Point p; // Try nearest point first p = Common::Point((int)floor(f.x + 0.5), (int)floor(f.y + 0.5)); if (contained(p, polygon) != CONT_INSIDE) { *ret = p; return PF_OK; } p = Common::Point((int)floor(f.x), (int)floor(f.y)); // Try (x, y), (x + 1, y), (x , y + 1) and (x + 1, y + 1) if (contained(p, polygon) == CONT_INSIDE) { p.x++; if (contained(p, polygon) == CONT_INSIDE) { p.y++; if (contained(p, polygon) == CONT_INSIDE) { p.x--; if (contained(p, polygon) == CONT_INSIDE) return PF_FATAL; } } } *ret = p; return PF_OK; } static int near_point(Common::Point p, Polygon *polygon, Common::Point *ret) { // Computes the near point of a point contained in a polygon // Parameters: (Common::Point) p: The point // (Polygon *) polygon: The polygon // Returns : (int) PF_OK on success, PF_FATAL otherwise // (Common::Point) *ret: The near point of p in polygon on success Vertex *vertex; FloatPoint near_p; float dist = HUGE_DISTANCE; CLIST_FOREACH(vertex, &polygon->vertices) { Common::Point p1 = vertex->v; Common::Point p2 = CLIST_NEXT(vertex)->v; float w, h, l, u; FloatPoint new_point; float new_dist; // Ignore edges on the screen border if (edge_on_screen_border(p1, p2)) continue; // Compute near point w = p2.x - p1.x; h = p2.y - p1.y; l = sqrt(w * w + h * h); u = ((p.x - p1.x) * (p2.x - p1.x) + (p.y - p1.y) * (p2.y - p1.y)) / (l * l); // Clip to edge if (u < 0.0f) u = 0.0f; if (u > 1.0f) u = 1.0f; new_point.x = p1.x + u * (p2.x - p1.x); new_point.y = p1.y + u * (p2.y - p1.y); new_dist = distance(toFloatPoint(p), new_point); if (new_dist < dist) { near_p = new_point; dist = new_dist; } } // Find point not contained in polygon return find_free_point(near_p, polygon, ret); } static int intersection(Common::Point a, Common::Point b, Vertex *vertex, FloatPoint *ret) { // Computes the intersection point of a line segment and an edge (not // including the vertices themselves) // Parameters: (Common::Point) a, b: The line segment (a, b) // (Vertex *) vertex: The first vertex of the edge // Returns : (int) FP_OK on success, PF_ERROR otherwise // (FloatPoint) *ret: The intersection point // Parameters of parametric equations float s, t; // Numerator and denominator of equations float num, denom; Common::Point c = vertex->v; Common::Point d = CLIST_NEXT(vertex)->v; denom = a.x * (float)(d.y - c.y) + b.x * (float)(c.y - d.y) + d.x * (float)(b.y - a.y) + c.x * (float)(a.y - b.y); if (denom == 0.0) // Segments are parallel, no intersection return PF_ERROR; num = a.x * (float)(d.y - c.y) + c.x * (float)(a.y - d.y) + d.x * (float)(c.y - a.y); s = num / denom; num = -(a.x * (float)(c.y - b.y) + b.x * (float)(a.y - c.y) + c.x * (float)(b.y - a.y)); t = num / denom; if ((0.0 <= s) && (s <= 1.0) && (0.0 < t) && (t < 1.0)) { // Intersection found ret->x = a.x + s * (b.x - a.x); ret->y = a.y + s * (b.y - a.y); return PF_OK; } return PF_ERROR; } static int nearest_intersection(PathfindingState *s, Common::Point p, Common::Point q, Common::Point *ret) { // Computes the nearest intersection point of a line segment and the polygon // set. Intersection points that are reached from the inside of a polygon // are ignored as are improper intersections which do not obstruct // visibility // Parameters: (PathfindingState *) s: The pathfinding state // (Common::Point) p, q: The line segment (p, q) // Returns : (int) PF_OK on success, PF_ERROR when no intersections were // found, PF_FATAL otherwise // (Common::Point) *ret: On success, the closest intersection point Polygon *polygon = 0; FloatPoint isec; Polygon *ipolygon = 0; float dist = HUGE_DISTANCE; for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) { polygon = *it; Vertex *vertex; CLIST_FOREACH(vertex, &polygon->vertices) { float new_dist; FloatPoint new_isec; // Check for intersection with vertex if (between(p, q, vertex->v)) { // Skip this vertex if we hit it from the // inside of the polygon if (inside(q, vertex)) { new_isec.x = vertex->v.x; new_isec.y = vertex->v.y; } else continue; } else { // Check for intersection with edges // Skip this edge if we hit it from the // inside of the polygon if (!left(vertex->v, CLIST_NEXT(vertex)->v, q)) continue; if (intersection(p, q, vertex, &new_isec) != PF_OK) continue; } new_dist = distance(toFloatPoint(p), new_isec); if (new_dist < dist) { ipolygon = polygon; isec = new_isec; dist = new_dist; } } } if (dist == HUGE_DISTANCE) return PF_ERROR; // Find point not contained in polygon return find_free_point(isec, ipolygon, ret); } static int fix_point(PathfindingState *s, Common::Point p, Common::Point *ret, Polygon **ret_pol) { // Checks a point for containment in any of the polygons in the polygon set. // If the point is contained in a totally accessible polygon that polygon // is removed from the set. If the point is contained in a polygon of another // type the near point is returned. Otherwise the original point is returned // Parameters: (Common::Point) p: The point // Returns : (int) PF_OK on success, PF_FATAL otherwise // (Common::Point) *ret: A valid input point for pathfinding // (Polygon *) *ret_pol: The polygon p was contained in if p // != *ret, NULL otherwise PolygonList::iterator it; *ret_pol = NULL; // Check for polygon containment for (it = s->polygons.begin(); it != s->polygons.end(); ++it) { if (contained(p, *it) != CONT_OUTSIDE) break; } if (it != s->polygons.end()) { Common::Point near_p; if ((*it)->type == POLY_TOTAL_ACCESS) { // Remove totally accessible polygon if it contains p s->polygons.erase(it); *ret = p; return PF_OK; } // Otherwise, compute near point if (near_point(p, (*it), &near_p) == PF_OK) { *ret = near_p; if (p != *ret) *ret_pol = *it; return PF_OK; } return PF_FATAL; } // p is not contained in any polygon *ret = p; return PF_OK; } static Vertex *merge_point(PathfindingState *s, Common::Point v) { // Merges a point into the polygon set. A new vertex is allocated for this // point, unless a matching vertex already exists. If the point is on an // already existing edge that edge is split up into two edges connected by // the new vertex // Parameters: (PathfindingState *) s: The pathfinding state // (Common::Point) v: The point to merge // Returns : (Vertex *) The vertex corresponding to v Vertex *vertex; Vertex *v_new; Polygon *polygon; // Check for already existing vertex for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) { polygon = *it; CLIST_FOREACH(vertex, &polygon->vertices) { if (vertex->v == v) return vertex; } } v_new = new Vertex(v); // Check for point being on an edge for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) { polygon = *it; // Skip single-vertex polygons if (VERTEX_HAS_EDGES(polygon->vertices.first())) { CLIST_FOREACH(vertex, &polygon->vertices) { Vertex *next = CLIST_NEXT(vertex); if (between(vertex->v, next->v, v)) { // Split edge by adding vertex polygon->vertices.insertAfter(vertex, v_new); return v_new; } } } } // Add point as single-vertex polygon polygon = new Polygon(POLY_BARRED_ACCESS); polygon->vertices.insertHead(v_new); s->polygons.push_front(polygon); return v_new; } static Polygon *convert_polygon(EngineState *s, reg_t polygon) { // Converts an SCI polygon into a Polygon // Parameters: (EngineState *) s: The game state // (reg_t) polygon: The SCI polygon to convert // Returns : (Polygon *) The converted polygon int i; reg_t points = GET_SEL32(polygon, points); int size = KP_UINT(GET_SEL32(polygon, size)); unsigned char *list = kernel_dereference_bulk_pointer(s, points, size * POLY_POINT_SIZE); Polygon *poly = new Polygon(KP_UINT(GET_SEL32(polygon, type))); int is_reg_t = polygon_is_reg_t(list, size); for (i = 0; i < size; i++) { Vertex *vertex = new Vertex(read_point(list, is_reg_t, i)); poly->vertices.insertHead(vertex); } fix_vertex_order(poly); return poly; } static void change_polygons_opt_0(PathfindingState *s) { // Changes the polygon list for optimization level 0 (used for keyboard // support). Totally accessible polygons are removed and near-point // accessible polygons are changed into totally accessible polygons. // Parameters: (PathfindingState *) s: The pathfinding state PolygonList::iterator it = s->polygons.begin(); while (it != s->polygons.end()) { Polygon *polygon = *it; assert(polygon); if (polygon->type == POLY_TOTAL_ACCESS) { delete polygon; it = s->polygons.erase(it); } else { if (polygon->type == POLY_NEAREST_ACCESS) polygon->type = POLY_TOTAL_ACCESS; ++it; } } } static PathfindingState *convert_polygon_set(EngineState *s, reg_t poly_list, Common::Point start, Common::Point end, int opt) { // Converts the SCI input data for pathfinding // Parameters: (EngineState *) s: The game state // (reg_t) poly_list: Polygon list // (Common::Point) start: The start point // (Common::Point) end: The end point // (int) opt: Optimization level (0, 1 or 2) // Returns : (PathfindingState *) On success a newly allocated pathfinding state, // NULL otherwise Polygon *polygon; int err; int count = 0; PathfindingState *pf_s = new PathfindingState(start, end); // Convert all polygons if (poly_list.segment) { list_t *list = LOOKUP_LIST(poly_list); node_t *node = LOOKUP_NODE(list->first); while (node) { polygon = convert_polygon(s, node->value); pf_s->polygons.push_front(polygon); count += KP_UINT(GET_SEL32(node->value, size)); node = LOOKUP_NODE(node->succ); } } if (opt == 0) { // Keyboard support change_polygons_opt_0(pf_s); // Find nearest intersection err = nearest_intersection(pf_s, start, end, &start); if (err == PF_FATAL) { sciprintf("[avoidpath] Error: fatal error finding nearest intersecton\n"); delete pf_s; return NULL; } else if (err == PF_OK) // Keep original start position if intersection was found pf_s->keep_start = 1; } else { if (fix_point(pf_s, start, &start, &polygon) != PF_OK) { sciprintf("[avoidpath] Error: couldn't fix start position for pathfinding\n"); delete pf_s; return NULL; } else if (polygon) { // Start position has moved pf_s->keep_start = 1; if ((polygon->type != POLY_NEAREST_ACCESS)) sciprintf("[avoidpath] Warning: start position at unreachable location\n"); } } if (fix_point(pf_s, end, &end, &polygon) != PF_OK) { sciprintf("[avoidpath] Error: couldn't fix end position for pathfinding\n"); delete pf_s; return NULL; } else { // Keep original end position if it is contained in a // near-point accessible polygon if (polygon && (polygon->type == POLY_NEAREST_ACCESS)) pf_s->keep_end = 1; } // Merge start and end points into polygon set pf_s->vertex_start = merge_point(pf_s, start); pf_s->vertex_end = merge_point(pf_s, end); // Allocate and build vertex index pf_s->vertex_index = (Vertex**)sci_malloc(sizeof(Vertex *) * (count + 2)); count = 0; for (PolygonList::iterator it = pf_s->polygons.begin(); it != pf_s->polygons.end(); ++it) { polygon = *it; Vertex *vertex; CLIST_FOREACH(vertex, &polygon->vertices) { vertex->idx = count; pf_s->vertex_index[count++] = vertex; } } pf_s->vertices = count; // Allocate and clear visibility matrix pf_s->vis_matrix = (char *)sci_calloc(pf_s->vertices * VIS_MATRIX_ROW_SIZE(pf_s->vertices), 1); return pf_s; } static void visibility_graph(PathfindingState *s) { // Computes the visibility graph // Parameters: (PathfindingState *) s: The pathfinding state Polygon *polygon; for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) { polygon = *it; Vertex *vertex; CLIST_FOREACH(vertex, &polygon->vertices) { visible_vertices(s, vertex); } } } static int intersecting_polygons(PathfindingState *s) { // Detects (self-)intersecting polygons // Parameters: (PathfindingState *) s: The pathfinding state // Returns : (int) 1 if s contains (self-)intersecting polygons, 0 otherwise int i, j; for (i = 0; i < s->vertices; i++) { Vertex *v1 = s->vertex_index[i]; if (!VERTEX_HAS_EDGES(v1)) continue; for (j = i + 1; j < s->vertices; j++) { Vertex *v2 = s->vertex_index[j]; if (!VERTEX_HAS_EDGES(v2)) continue; // Skip neighbouring edges if ((CLIST_NEXT(v1) == v2) || CLIST_PREV(v1) == v2) continue; if (intersect(v1->v, CLIST_NEXT(v1)->v, v2->v, CLIST_NEXT(v2)->v)) return 1; } } return 0; } static void dijkstra(PathfindingState *s) { // Computes a shortest path from vertex_start to vertex_end. The caller can // construct the resulting path by following the path_prev links from // vertex_end back to vertex_start. If no path exists vertex_end->path_prev // will be NULL // Parameters: (PathfindingState *) s: The pathfinding state Polygon *polygon; // Vertices of which the shortest path is known VertexList done; // The remaining vertices VertexList remain; // Start out with all vertices in set remain for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) { polygon = *it; Vertex *vertex; CLIST_FOREACH(vertex, &polygon->vertices) { remain.push_front(vertex); } } s->vertex_start->dist = 0.0f; // Loop until we find vertex_end while (1) { // Find vertex at shortest distance from set done VertexList::iterator it; VertexList::iterator vertex_min_it = remain.end(); Vertex *vertex_min = 0; float min = HUGE_DISTANCE; for (it = remain.begin(); it != remain.end(); ++it) { Vertex *vertex = *it; if (vertex->dist < min) { vertex_min_it = it; vertex_min = *vertex_min_it; min = vertex->dist; } } if (min == HUGE_DISTANCE) { sciprintf("[avoidpath] Warning: end point (%i, %i) is unreachable\n", s->vertex_end->v.x, s->vertex_end->v.y); return; } // If vertex_end is at shortest distance we can stop if (vertex_min == s->vertex_end) return; // Move vertex from set remain to set done done.push_front(vertex_min); remain.erase(vertex_min_it); for (int i = 0; i < s->vertices; i++) { // Adjust upper bound for all vertices that are visible from vertex_min if (IS_VISIBLE(s, vertex_min->idx, i)) { float new_dist; // Avoid plotting path along screen edge if ((s->vertex_index[i] != s->vertex_end) && point_on_screen_border(s->vertex_index[i]->v)) continue; new_dist = vertex_min->dist + distance(toFloatPoint(vertex_min->v), toFloatPoint(s->vertex_index[i]->v)); if (new_dist < s->vertex_index[i]->dist) { s->vertex_index[i]->dist = new_dist; s->vertex_index[i]->path_prev = vertex_min; } } } } } static reg_t output_path(PathfindingState *p, EngineState *s) { // Stores the final path in newly allocated dynmem // Parameters: (PathfindingState *) p: The pathfinding state // (EngineState *) s: The game state // Returns : (reg_t) Pointer to dynmem containing path int path_len = 0; byte *oref; reg_t output; Vertex *vertex = p->vertex_end; int i; int unreachable = vertex->path_prev == NULL; if (unreachable) { // If pathfinding failed we only return the path up to vertex_start oref = s->seg_manager->allocDynmem(POLY_POINT_SIZE * 3, AVOIDPATH_DYNMEM_STRING, &output); if (p->keep_start) POLY_SET_POINT(oref, 0, p->start); else POLY_SET_POINT(oref, 0, p->vertex_start->v); POLY_SET_POINT(oref, 1, p->vertex_start->v); POLY_SET_POINT(oref, 2, Common::Point(POLY_LAST_POINT, POLY_LAST_POINT)); return output; } while (vertex) { // Compute path length path_len++; vertex = vertex->path_prev; } oref = s->seg_manager->allocDynmem(POLY_POINT_SIZE * (path_len + 1 + p->keep_start + p->keep_end), AVOIDPATH_DYNMEM_STRING, &output); // Sentinel POLY_SET_POINT(oref, path_len + p->keep_start + p->keep_end, Common::Point(POLY_LAST_POINT, POLY_LAST_POINT)); // Add original start and end points if needed if (p->keep_end) POLY_SET_POINT(oref, path_len + p->keep_start, p->end); if (p->keep_start) POLY_SET_POINT(oref, 0, p->start); i = path_len + p->keep_start - 1; if (unreachable) { // Return straight trajectory from start to end POLY_SET_POINT(oref, i - 1, p->vertex_start->v); POLY_SET_POINT(oref, i, p->vertex_end->v); return output; } vertex = p->vertex_end; while (vertex) { POLY_SET_POINT(oref, i, vertex->v); vertex = vertex->path_prev; i--; } if (s->debug_mode & (1 << SCIkAVOIDPATH_NR)) { sciprintf("[avoidpath] Returning path:"); for (i = 0; i < path_len + p->keep_start + p->keep_end; i++) { Common::Point pt; POLY_GET_POINT(oref, i, pt); sciprintf(" (%i, %i)", pt.x, pt.y); } sciprintf("\n"); } return output; } reg_t kAvoidPath(EngineState *s, int funct_nr, int argc, reg_t *argv) { Common::Point start = Common::Point(SKPV(0), SKPV(1)); if (s->debug_mode & (1 << SCIkAVOIDPATH_NR)) { gfxw_port_t *port = s->picture_port; if (!port->decorations) { port->decorations = gfxw_new_list(gfx_rect(0, 0, 320, 200), 0); port->decorations->set_visual(GFXW(port->decorations), port->visual); } else { port->decorations->free_contents(port->decorations); } } switch (argc) { case 3 : { reg_t retval; Polygon *polygon = convert_polygon(s, argv[2]); if (polygon->type == POLY_CONTAINED_ACCESS) { sciprintf("[avoidpath] Warning: containment test performed on contained access polygon\n"); // Semantics unknown, assume barred access semantics polygon->type = POLY_BARRED_ACCESS; } retval = make_reg(0, contained(start, polygon) != CONT_OUTSIDE); delete polygon; return retval; } case 6 : case 7 : { Common::Point end = Common::Point(SKPV(2), SKPV(3)); reg_t poly_list = argv[4]; //int poly_list_size = UKPV(5); int opt = UKPV_OR_ALT(6, 1); reg_t output; PathfindingState *p; if (s->debug_mode & (1 << SCIkAVOIDPATH_NR)) { sciprintf("[avoidpath] Pathfinding input:\n"); draw_point(s, start, 1); draw_point(s, end, 0); if (poly_list.segment) { print_input(s, poly_list, start, end, opt); draw_input(s, poly_list, start, end, opt); } } p = convert_polygon_set(s, poly_list, start, end, opt); if (intersecting_polygons(p)) { sciprintf("[avoidpath] Error: input set contains (self-)intersecting polygons\n"); delete p; p = NULL; } if (!p) { byte *oref; sciprintf("[avoidpath] Error: pathfinding failed for following input:\n"); print_input(s, poly_list, start, end, opt); sciprintf("[avoidpath] Returning direct path from start point to end point\n"); oref = s->seg_manager->allocDynmem(POLY_POINT_SIZE * 3, AVOIDPATH_DYNMEM_STRING, &output); POLY_SET_POINT(oref, 0, start); POLY_SET_POINT(oref, 1, end); POLY_SET_POINT(oref, 2, Common::Point(POLY_LAST_POINT, POLY_LAST_POINT)); return output; } visibility_graph(p); dijkstra(p); output = output_path(p, s); delete p; // Memory is freed by explicit calls to Memory return output; } default: warning("Unknown AvoidPath subfunction %d", argc); return NULL_REG; break; } } } // End of namespace Sci