/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ #include "common/stream.h" #include "common/system.h" #include "common/func.h" #include "common/serializer.h" #include // FIXME: For struct tm #include "sci/sci_memory.h" #include "sci/gfx/operations.h" #include "sci/gfx/menubar.h" #include "sci/gfx/gfx_state_internal.h" // required for GfxPort, GfxContainer #include "sci/sfx/core.h" #include "sci/sfx/iterator.h" #include "sci/engine/state.h" #include "sci/engine/intmap.h" #include "sci/engine/savegame.h" namespace Sci { // from ksound.cpp: SongIterator *build_iterator(EngineState *s, int song_nr, int type, songit_id_t id); #pragma mark - // TODO: Many of the following sync_*() methods should be turned into member funcs // of the classes they are syncing. static void sync_MemObjPtr(Common::Serializer &s, MemObject *&obj); static void sync_songlib_t(Common::Serializer &s, songlib_t &obj); static void sync_reg_t(Common::Serializer &s, reg_t &obj) { s.syncAsUint16LE(obj.segment); s.syncAsUint16LE(obj.offset); } // FIXME: Sync a C string, using malloc/free storage. // Much better to replace all of these by Common::String static void syncCStr(Common::Serializer &s, char **str) { Common::String tmp; if (s.isSaving() && *str) tmp = *str; s.syncString(tmp); if (s.isLoading()) { //free(*str); *str = strdup(tmp.c_str()); } } static void sync_song_t(Common::Serializer &s, song_t &obj) { s.syncAsSint32LE(obj.handle); s.syncAsSint32LE(obj.resource_num); s.syncAsSint32LE(obj.priority); s.syncAsSint32LE(obj.status); s.syncAsSint32LE(obj.restore_behavior); s.syncAsSint32LE(obj.restore_time); s.syncAsSint32LE(obj.loops); s.syncAsSint32LE(obj.hold); if (s.isLoading()) { obj._delay = 0; obj.it = 0; obj.next_playing = 0; obj.next_stopping = 0; obj.next = 0; } } // Experimental hack: Use syncWithSerializer to sync. By default, this assume // the object to be synced is a subclass of Serializable and thus tries to invoke // the saveLoadWithSerializer() method. But it is possible to specialize this // template function to handle stuff that is not implementing that interface. template void syncWithSerializer(Common::Serializer &s, T &obj) { obj.saveLoadWithSerializer(s); } // By default, sync using syncWithSerializer, which in turn can easily be overloaded. template struct DefaultSyncer : Common::BinaryFunction { void operator()(Common::Serializer &s, T &obj) const { //obj.saveLoadWithSerializer(s); syncWithSerializer(s, obj); } }; /** * Sync a Common::Array using a Common::Serializer. * When saving, this writes the length of the array, then syncs (writes) all entries. * When loading, it loads the length of the array, then resizes it accordingly, before * syncing all entries. * * Note: This shouldn't be in common/array.h nor in common/serializer.h, after * all, not all code using arrays wants to use the serializer, and vice versa. * But we could put this into a separate header file in common/ at some point. * Something like common/serializer-extras.h or so. * * TODO: Add something like this for lists, queues.... */ template > struct ArraySyncer : Common::BinaryFunction { void operator()(Common::Serializer &s, Common::Array &arr) const { uint len = arr.size(); s.syncAsUint32LE(len); Syncer sync; // Resize the array if loading. if (s.isLoading()) arr.resize(len); typename Common::Array::iterator i; for (i = arr.begin(); i != arr.end(); ++i) { sync(s, *i); } } }; // Convenience wrapper template void syncArray(Common::Serializer &s, Common::Array &arr) { ArraySyncer sync; sync(s, arr); } void MenuItem::saveLoadWithSerializer(Common::Serializer &s) { s.syncAsSint32LE(_type); s.syncString(_keytext); s.skip(4); // Used to be keytext_size (an already unused field) s.syncAsSint32LE(_flags); s.syncBytes(_said, MENU_SAID_SPEC_SIZE); sync_reg_t(s, _saidPos); s.syncString(_text); sync_reg_t(s, _textPos); s.syncAsSint32LE(_modifiers); s.syncAsSint32LE(_key); s.syncAsSint32LE(_enabled); s.syncAsSint32LE(_tag); } void Menu::saveLoadWithSerializer(Common::Serializer &s) { s.syncString(_title); s.syncAsSint32LE(_titleWidth); s.syncAsSint32LE(_width); syncArray(s, _items); } void Menubar::saveLoadWithSerializer(Common::Serializer &s) { syncArray(s, _menus); } void SegManager::saveLoadWithSerializer(Common::Serializer &s) { uint sync_heap_size = _heap.size(); s.syncAsUint32LE(sync_heap_size); s.syncAsSint32LE(reserved_id); s.syncAsSint32LE(exports_wide); s.syncAsSint32LE(gc_mark_bits); s.syncAsUint32LE(mem_allocated); id_seg_map->saveLoadWithSerializer(s); _heap.resize(sync_heap_size); for (uint i = 0; i < sync_heap_size; ++i) sync_MemObjPtr(s, _heap[i]); s.syncAsSint32LE(Clones_seg_id); s.syncAsSint32LE(Lists_seg_id); s.syncAsSint32LE(Nodes_seg_id); } static void sync_SegManagerPtr(Common::Serializer &s, SegManager *&obj) { bool sci11 = false; if (s.isSaving()) { assert(obj); sci11 = obj->isSci1_1; } s.syncAsByte(sci11); if (s.isLoading()) { // FIXME: Do in-place loading at some point, instead of creating a new EngineState instance from scratch. delete obj; obj = new SegManager(sci11); } obj->saveLoadWithSerializer(s); } template <> void syncWithSerializer(Common::Serializer &s, Class &obj) { s.syncAsSint32LE(obj.script); sync_reg_t(s, obj.reg); } static void sync_sfx_state_t(Common::Serializer &s, sfx_state_t &obj) { sync_songlib_t(s, obj.songlib); } static void sync_SavegameMetadata(Common::Serializer &s, SavegameMetadata &obj) { // TODO: It would be a good idea to store a magic number & a header size here, // so that we can implement backward compatibility if the savegame format changes. s.syncString(obj.savegame_name); s.syncAsSint32LE(obj.savegame_version); s.syncString(obj.game_version); s.syncAsSint32LE(obj.version); s.syncAsSint32LE(obj.savegame_date); s.syncAsSint32LE(obj.savegame_time); } void EngineState::saveLoadWithSerializer(Common::Serializer &s) { s.syncAsSint32LE(savegame_version); syncCStr(s, &game_version); s.syncAsSint32LE(version); // FIXME: Do in-place loading at some point, instead of creating a new EngineState instance from scratch. if (s.isLoading()) { //free(menubar); _menubar = new Menubar(); } else assert(_menubar); _menubar->saveLoadWithSerializer(s); s.syncAsSint32LE(status_bar_foreground); s.syncAsSint32LE(status_bar_background); sync_SegManagerPtr(s, seg_manager); syncArray(s, _classtable); sync_sfx_state_t(s, sound); } static void sync_LocalVariables(Common::Serializer &s, LocalVariables &obj) { s.syncAsSint32LE(obj.script_id); s.syncAsSint32LE(obj.nr); if (!obj.locals && obj.nr) obj.locals = (reg_t *)sci_calloc(obj.nr, sizeof(reg_t)); for (int i = 0; i < obj.nr; ++i) sync_reg_t(s, obj.locals[i]); } static void sync_Object(Common::Serializer &s, Object &obj) { s.syncAsSint32LE(obj.flags); sync_reg_t(s, obj.pos); s.syncAsSint32LE(obj.variables_nr); s.syncAsSint32LE(obj.variable_names_nr); s.syncAsSint32LE(obj.methods_nr); if (!obj.variables && obj.variables_nr) obj.variables = (reg_t *)sci_calloc(obj.variables_nr, sizeof(reg_t)); for (int i = 0; i < obj.variables_nr; ++i) sync_reg_t(s, obj.variables[i]); } template <> void syncWithSerializer(Common::Serializer &s, Clone &obj) { sync_Object(s, obj); } template <> void syncWithSerializer(Common::Serializer &s, List &obj) { sync_reg_t(s, obj.first); sync_reg_t(s, obj.last); } template <> void syncWithSerializer(Common::Serializer &s, Node &obj) { sync_reg_t(s, obj.pred); sync_reg_t(s, obj.succ); sync_reg_t(s, obj.key); sync_reg_t(s, obj.value); } template static void sync_Table(Common::Serializer &s, T &obj) { s.syncAsSint32LE(obj.entries_nr); s.syncAsSint32LE(obj.first_free); s.syncAsSint32LE(obj.entries_used); s.syncAsSint32LE(obj.max_entry); if (!obj.table && obj.entries_nr) obj.table = (typename T::Entry *)sci_calloc(obj.entries_nr, sizeof(typename T::Entry)); for (int i = 0; i < obj.entries_nr; ++i) { s.syncAsSint32LE(obj.table[i].next_free); syncWithSerializer(s, obj.table[i]); } } static void sync_Script(Common::Serializer &s, Script &obj) { s.syncAsSint32LE(obj.nr); s.syncAsUint32LE(obj.buf_size); s.syncAsUint32LE(obj.script_size); s.syncAsUint32LE(obj.heap_size); // FIXME: revamp obj_indices handling if (!obj.obj_indices) { assert(s.isLoading()); obj.obj_indices = new IntMapper(); } obj.obj_indices->saveLoadWithSerializer(s); s.syncAsSint32LE(obj.exports_nr); s.syncAsSint32LE(obj.synonyms_nr); s.syncAsSint32LE(obj.lockers); s.syncAsSint32LE(obj.objects_allocated); s.syncAsSint32LE(obj.objects_nr); if (!obj.objects && obj.objects_allocated) obj.objects = (Object *)sci_calloc(obj.objects_allocated, sizeof(Object)); for (int i = 0; i < obj.objects_allocated; ++i) sync_Object(s, obj.objects[i]); s.syncAsSint32LE(obj.locals_offset); s.syncAsSint32LE(obj.locals_segment); s.syncAsSint32LE(obj.marked_as_deleted); } static void sync_SystemString(Common::Serializer &s, SystemString &obj) { syncCStr(s, &obj.name); s.syncAsSint32LE(obj.max_size); // FIXME: This is a *WEIRD* hack: We sync a reg_t* as if it was a string. // No idea why, but this mimicks what the old save/load code used to do. syncCStr(s, (char **)&obj.value); } static void sync_SystemStrings(Common::Serializer &s, SystemStrings &obj) { for (int i = 0; i < SYS_STRINGS_MAX; ++i) sync_SystemString(s, obj.strings[i]); } static void sync_DynMem(Common::Serializer &s, DynMem &obj) { s.syncAsSint32LE(obj._size); syncCStr(s, &obj._description); if (!obj._buf && obj._size) { obj._buf = (byte *)sci_calloc(obj._size, 1); } if (obj._size) s.syncBytes(obj._buf, obj._size); } #pragma mark - static void sync_songlib_t(Common::Serializer &s, songlib_t &obj) { int songcount = 0; if (s.isSaving()) songcount = song_lib_count(obj); s.syncAsUint32LE(songcount); if (s.isLoading()) { song_lib_init(&obj); while (songcount--) { song_t *newsong = (song_t *)calloc(1, sizeof(song_t)); sync_song_t(s, *newsong); song_lib_add(obj, newsong); } } else { song_t *seeker = *(obj.lib); while (seeker) { seeker->restore_time = seeker->it->getTimepos(); sync_song_t(s, *seeker); seeker = seeker->next; } } } static void sync_MemObjPtr(Common::Serializer &s, MemObject *&mobj) { // Sync the memobj type MemObjectType type = (s.isSaving() && mobj) ? mobj->getType() : MEM_OBJ_INVALID; s.syncAsUint32LE(type); // If we were saving and mobj == 0, or if we are loading and this is an // entry marked as empty -> we are done. if (type == MEM_OBJ_INVALID) { mobj = 0; return; } if (s.isLoading()) { //assert(!mobj); mobj = MemObject::createMemObject(type); } else { assert(mobj); } s.syncAsSint32LE(mobj->_segmgrId); switch (type) { case MEM_OBJ_SCRIPT: sync_Script(s, *(Script *)mobj); break; case MEM_OBJ_CLONES: sync_Table(s, *(CloneTable *)mobj); break; case MEM_OBJ_LOCALS: sync_LocalVariables(s, *(LocalVariables *)mobj); break; case MEM_OBJ_SYS_STRINGS: sync_SystemStrings(s, *(SystemStrings *)mobj); break; case MEM_OBJ_STACK: // TODO: Switch this stack to use class Common::Stack? s.syncAsUint32LE((*(DataStack *)mobj).nr); if (s.isLoading()) { //free((*(DataStack *)mobj).entries); (*(DataStack *)mobj).entries = (reg_t *)sci_calloc((*(DataStack *)mobj).nr, sizeof(reg_t)); } break; case MEM_OBJ_HUNK: if (s.isLoading()) { (*(HunkTable *)mobj).initTable(); } break; case MEM_OBJ_STRING_FRAG: break; case MEM_OBJ_LISTS: sync_Table(s, *(ListTable *)mobj); break; case MEM_OBJ_NODES: sync_Table(s, *(NodeTable *)mobj); break; case MEM_OBJ_DYNMEM: sync_DynMem(s, *(DynMem *)mobj); break; default: error("Unknown MemObject type %d", type); break; } } #pragma mark - int gamestate_save(EngineState *s, Common::WriteStream *fh, const char* savename) { tm curTime; g_system->getTimeAndDate(curTime); SavegameMetadata meta; meta.savegame_version = CURRENT_SAVEGAME_VERSION; meta.savegame_name = savename; meta.version = s->version; meta.game_version = s->game_version; meta.savegame_date = ((curTime.tm_mday & 0xFF) << 24) | (((curTime.tm_mon + 1) & 0xFF) << 16) | ((curTime.tm_year + 1900) & 0xFFFF); meta.savegame_time = ((curTime.tm_hour & 0xFF) << 16) | (((curTime.tm_min) & 0xFF) << 8) | ((curTime.tm_sec) & 0xFF); s->savegame_version = CURRENT_SAVEGAME_VERSION; if (s->execution_stack_base) { sciprintf("Cannot save from below kernel function\n"); return 1; } /* if (s->sound_server) { if ((s->sound_server->save)(s, dirname)) { sciprintf("Saving failed for the sound subsystem\n"); chdir(".."); return 1; } } */ // Calculate the time spent with this game s->game_time = (g_system->getMillis() - s->game_start_time) / 1000; Common::Serializer ser(0, fh); sync_SavegameMetadata(ser, meta); s->saveLoadWithSerializer(ser); // FIXME: Error handling? return 0; } // FIXME: This should probably be turned into a SegManager method static SegmentId find_unique_seg_by_type(SegManager *self, int type) { for (uint i = 0; i < self->_heap.size(); i++) if (self->_heap[i] && self->_heap[i]->getType() == type) return i; return -1; } static byte *find_unique_script_block(EngineState *s, byte *buf, int type) { int magic_pos_adder = s->version >= SCI_VERSION_FTU_NEW_SCRIPT_HEADER ? 0 : 2; buf += magic_pos_adder; do { int seeker_type = READ_LE_UINT16(buf); int seeker_size; if (seeker_type == 0) break; if (seeker_type == type) return buf; seeker_size = READ_LE_UINT16(buf + 2); buf += seeker_size; } while(1); return NULL; } // FIXME: This should probably be turned into an EngineState method static void reconstruct_stack(EngineState *retval) { SegmentId stack_seg = find_unique_seg_by_type(retval->seg_manager, MEM_OBJ_STACK); DataStack *stack = (DataStack *)(retval->seg_manager->_heap[stack_seg]); retval->stack_segment = stack_seg; retval->stack_base = stack->entries; retval->stack_top = retval->stack_base + VM_STACK_SIZE; } static int clone_entry_used(CloneTable *table, int n) { int backup; int seeker = table->first_free; CloneTable::Entry *entries = table->table; if (seeker == CloneTable::HEAPENTRY_INVALID) return 1; do { if (seeker == n) return 0; backup = seeker; seeker = entries[seeker].next_free; } while (entries[backup].next_free != CloneTable::HEAPENTRY_INVALID); return 1; } static void load_script(EngineState *s, SegmentId seg) { Resource *script, *heap = NULL; Script *scr = (Script *)(s->seg_manager->_heap[seg]); scr->buf = (byte *)malloc(scr->buf_size); script = s->resmgr->findResource(kResourceTypeScript, scr->nr, 0); if (s->version >= SCI_VERSION(1,001,000)) heap = s->resmgr->findResource(kResourceTypeHeap, scr->nr, 0); switch (s->seg_manager->isSci1_1) { case 0 : s->seg_manager->mcpyInOut(0, script->data, script->size, seg, SEG_ID); break; case 1 : s->seg_manager->mcpyInOut(0, script->data, script->size, seg, SEG_ID); s->seg_manager->mcpyInOut(scr->script_size, heap->data, heap->size, seg, SEG_ID); break; } } // FIXME: The following should likely become a SegManager method static void reconstruct_scripts(EngineState *s, SegManager *self) { uint i; MemObject *mobj; for (i = 0; i < self->_heap.size(); i++) { if (self->_heap[i]) { mobj = self->_heap[i]; switch (mobj->getType()) { case MEM_OBJ_SCRIPT: { int j; Script *scr = (Script *)mobj; load_script(s, i); scr->locals_block = scr->locals_segment == 0 ? NULL : (LocalVariables *)(s->seg_manager->_heap[scr->locals_segment]); scr->export_table = (uint16 *) find_unique_script_block(s, scr->buf, sci_obj_exports); scr->synonyms = find_unique_script_block(s, scr->buf, sci_obj_synonyms); scr->code = NULL; scr->code_blocks_nr = 0; scr->code_blocks_allocated = 0; if (!self->isSci1_1) scr->export_table += 3; for (j = 0; j < scr->objects_nr; j++) { byte *data = scr->buf + scr->objects[j].pos.offset; scr->objects[j].base = scr->buf; scr->objects[j].base_obj = data; } break; } default: break; } } } for (i = 0; i < self->_heap.size(); i++) { if (self->_heap[i]) { mobj = self->_heap[i]; switch (mobj->getType()) { case MEM_OBJ_SCRIPT: { int j; Script *scr = (Script *)mobj; for (j = 0; j < scr->objects_nr; j++) { byte *data = scr->buf + scr->objects[j].pos.offset; if (self->isSci1_1) { uint16 *funct_area = (uint16 *) (scr->buf + READ_LE_UINT16( data + 6 )); uint16 *prop_area = (uint16 *) (scr->buf + READ_LE_UINT16( data + 4 )); scr->objects[j].base_method = funct_area; scr->objects[j].base_vars = prop_area; } else { int funct_area = READ_LE_UINT16( data + SCRIPT_FUNCTAREAPTR_OFFSET ); Object *base_obj; base_obj = obj_get(s, scr->objects[j].variables[SCRIPT_SPECIES_SELECTOR]); if (!base_obj) { sciprintf("Object without a base class: Script %d, index %d (reg address "PREG"\n", scr->nr, j, PRINT_REG(scr->objects[j].variables[SCRIPT_SPECIES_SELECTOR])); continue; } scr->objects[j].variable_names_nr = base_obj->variables_nr; scr->objects[j].base_obj = base_obj->base_obj; scr->objects[j].base_method = (uint16 *) (data + funct_area); scr->objects[j].base_vars = (uint16 *) (data + scr->objects[j].variable_names_nr * 2 + SCRIPT_SELECTOR_OFFSET); } } break; } default: break; } } } } // FIXME: The following should likely become a SegManager method static void reconstruct_clones(EngineState *s, SegManager *self) { uint i; MemObject *mobj; for (i = 0; i < self->_heap.size(); i++) { if (self->_heap[i]) { mobj = self->_heap[i]; switch (mobj->getType()) { case MEM_OBJ_CLONES: { int j; CloneTable::Entry *seeker = (*(CloneTable *)mobj).table; /* sciprintf("Free list: "); for (j = (*(CloneTable *)mobj).first_free; j != HEAPENTRY_INVALID; j = (*(CloneTable *)mobj).table[j].next_free) { sciprintf("%d ", j); } sciprintf("\n"); sciprintf("Entries w/zero vars: "); for (j = 0; j < (*(CloneTable *)mobj).max_entry; j++) { if ((*(CloneTable *)mobj).table[j].variables == NULL) sciprintf("%d ", j); } sciprintf("\n"); */ for (j = 0; j < (*(CloneTable *)mobj).max_entry; j++) { Object *base_obj; if (!clone_entry_used(&(*(CloneTable *)mobj), j)) { seeker++; continue; } base_obj = obj_get(s, seeker->variables[SCRIPT_SPECIES_SELECTOR]); if (!base_obj) { sciprintf("Clone entry without a base class: %d\n", j); seeker->base = seeker->base_obj = NULL; seeker->base_vars = seeker->base_method = NULL; continue; } seeker->base = base_obj->base; seeker->base_obj = base_obj->base_obj; seeker->base_vars = base_obj->base_vars; seeker->base_method = base_obj->base_method; seeker++; } break; } default: break; } } } } int _reset_graphics_input(EngineState *s); static void reconstruct_sounds(EngineState *s) { song_t *seeker; int it_type = s->resmgr->_sciVersion >= SCI_VERSION_01 ? SCI_SONG_ITERATOR_TYPE_SCI1 : SCI_SONG_ITERATOR_TYPE_SCI0; if (s->sound.songlib.lib) seeker = *(s->sound.songlib.lib); else { song_lib_init(&s->sound.songlib); seeker = NULL; } while (seeker) { SongIterator *base, *ff; int oldstatus; SongIterator::Message msg; base = ff = build_iterator(s, seeker->resource_num, it_type, seeker->handle); if (seeker->restore_behavior == RESTORE_BEHAVIOR_CONTINUE) ff = new_fast_forward_iterator(base, seeker->restore_time); ff->init(); msg = SongIterator::Message(seeker->handle, SIMSG_SET_LOOPS(seeker->loops)); songit_handle_message(&ff, msg); msg = SongIterator::Message(seeker->handle, SIMSG_SET_HOLD(seeker->hold)); songit_handle_message(&ff, msg); oldstatus = seeker->status; seeker->status = SOUND_STATUS_STOPPED; seeker->it = ff; sfx_song_set_status(&s->sound, seeker->handle, oldstatus); seeker = seeker->next; } } void internal_stringfrag_strncpy(EngineState *s, reg_t *dest, reg_t *src, int len); EngineState *gamestate_restore(EngineState *s, Common::SeekableReadStream *fh) { EngineState *retval; songlib_t temp; /* if (s->sound_server) { if ((s->sound_server->restore)(s, dirname)) { sciprintf("Restoring failed for the sound subsystem\n"); return NULL; } } */ // FIXME: Do in-place loading at some point, instead of creating a new EngineState instance from scratch. retval = new EngineState(); retval->savegame_version = -1; retval->gfx_state = s->gfx_state; SavegameMetadata meta; Common::Serializer ser(fh, 0); sync_SavegameMetadata(ser, meta); if (fh->eos()) return false; if ((meta.savegame_version < MINIMUM_SAVEGAME_VERSION) || (meta.savegame_version > CURRENT_SAVEGAME_VERSION)) { if (meta.savegame_version < MINIMUM_SAVEGAME_VERSION) sciprintf("Old savegame version detected- can't load\n"); else sciprintf("Savegame version is %d- maximum supported is %0d\n", meta.savegame_version, CURRENT_SAVEGAME_VERSION); return NULL; } // Backwards compatibility settings retval->dyn_views = NULL; retval->drop_views = NULL; retval->port = NULL; retval->save_dir_copy_buf = NULL; retval->sound_mute = s->sound_mute; retval->sound_volume = s->sound_volume; retval->saveLoadWithSerializer(ser); // FIXME: Error handling? sfx_exit(&s->sound); // Set exec stack base to zero retval->execution_stack_base = 0; retval->execution_stack_pos = 0; // Now copy all current state information // Graphics and input state: retval->animation_delay = s->animation_delay; retval->animation_granularity = s->animation_granularity; retval->gfx_state = s->gfx_state; retval->resmgr = s->resmgr; temp = retval->sound.songlib; sfx_init(&retval->sound, retval->resmgr, s->sfx_init_flags); retval->sfx_init_flags = s->sfx_init_flags; song_lib_free(retval->sound.songlib); retval->sound.songlib = temp; _reset_graphics_input(retval); reconstruct_stack(retval); reconstruct_scripts(retval, retval->seg_manager); reconstruct_clones(retval, retval->seg_manager); retval->game_obj = s->game_obj; retval->script_000 = retval->seg_manager->getScript(script_get_segment(s, 0, SCRIPT_GET_DONT_LOAD), SEG_ID); retval->gc_countdown = GC_INTERVAL - 1; retval->save_dir_copy = make_reg(s->sys_strings_segment, SYS_STRING_SAVEDIR); retval->save_dir_edit_offset = 0; retval->sys_strings_segment = find_unique_seg_by_type(retval->seg_manager, MEM_OBJ_SYS_STRINGS); retval->sys_strings = (SystemStrings *)GET_SEGMENT(*retval->seg_manager, retval->sys_strings_segment, MEM_OBJ_SYS_STRINGS); // Restore system strings SystemString *str; // First, pad memory for (int i = 0; i < SYS_STRINGS_MAX; i++) { str = &retval->sys_strings->strings[i]; char *data = (char *)str->value; if (data) { str->value = (reg_t *)calloc(str->max_size+1, sizeof(char)); // FIXME -- sizeof(char) or sizeof(reg_t) ?? strncpy((char *)str->value, data, str->max_size+1); // FIXME -- strncpy or internal_stringfrag_strncpy ? free(data); } } str = &retval->sys_strings->strings[SYS_STRING_SAVEDIR]; internal_stringfrag_strncpy(s, str->value, s->sys_strings->strings[SYS_STRING_SAVEDIR].value, str->max_size); str->value[str->max_size - 1].segment = s->string_frag_segment; // Make sure to terminate str->value[str->max_size - 1].offset &= 0xff00; // Make sure to terminate // Time state: retval->last_wait_time = g_system->getMillis(); retval->game_start_time = g_system->getMillis() - retval->game_time * 1000; // static parser information: retval->parser_rules = s->parser_rules; retval->_parserWords = s->_parserWords; retval->_parserSuffixes = s->_parserSuffixes; retval->_parserBranches = s->_parserBranches; // static VM/Kernel information: retval->_selectorNames = s->_selectorNames; retval->_kernelNames = s->_kernelNames; retval->_kfuncTable = s->_kfuncTable; retval->opcodes = s->opcodes; memcpy(&(retval->selector_map), &(s->selector_map), sizeof(selector_map_t)); retval->max_version = retval->version; retval->min_version = retval->version; retval->parser_base = make_reg(s->sys_strings_segment, SYS_STRING_PARSER_BASE); // Copy breakpoint information from current game instance retval->have_bp = s->have_bp; retval->bp_list = s->bp_list; retval->debug_mode = s->debug_mode; retval->kernel_opt_flags = 0; retval->have_mouse_flag = 1; retval->successor = NULL; retval->pic_priority_table = (int*)gfxop_get_pic_metainfo(retval->gfx_state); retval->_gameName = obj_get_name(retval, retval->game_obj); retval->sound.it = NULL; retval->sound.flags = s->sound.flags; retval->sound.song = NULL; retval->sound.suspended = s->sound.suspended; retval->sound.debug = s->sound.debug; reconstruct_sounds(retval); return retval; } bool get_savegame_metadata(Common::SeekableReadStream *stream, SavegameMetadata *meta) { assert(stream); assert(meta); Common::Serializer ser(stream, 0); sync_SavegameMetadata(ser, *meta); if (stream->eos()) return false; if ((meta->savegame_version < MINIMUM_SAVEGAME_VERSION) || (meta->savegame_version > CURRENT_SAVEGAME_VERSION)) { if (meta->savegame_version < MINIMUM_SAVEGAME_VERSION) sciprintf("Old savegame version detected- can't load\n"); else sciprintf("Savegame version is %d- maximum supported is %0d\n", meta->savegame_version, CURRENT_SAVEGAME_VERSION); return false; } return true; } } // End of namespace Sci