/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ #include "sci/engine/seg_manager.h" #include "sci/engine/state.h" #include "sci/engine/intmap.h" namespace Sci { #define DEFAULT_SCRIPTS 32 #define DEFAULT_OBJECTS 8 // default # of objects per script #define DEFAULT_OBJECTS_INCREMENT 4 // Number of additional objects to instantiate if we're running out of them //#define GC_DEBUG // Debug garbage collection //#define GC_DEBUG_VERBOSE // Debug garbage verbosely #undef DEBUG_SEG_MANAGER // Define to turn on debugging #define GET_SEGID() \ if (flag == SCRIPT_ID) \ id = segGet(id); \ VERIFY(check(id), "invalid seg id"); #if 0 // Unreferenced - removed #define VERIFY_MEM(mem_ptr, ret) \ if (!(mem_ptr)) {\ sciprintf( "%s, *d, no enough memory", __FILE__, __LINE__ ); \ return ret; \ } #endif #define INVALID_SCRIPT_ID -1 int SegManager::findFreeId(int *id) { bool was_added = false; int retval = 0; while (!was_added) { retval = id_seg_map->checkKey(reserved_id, true, &was_added); *id = reserved_id--; if (reserved_id < -1000000) reserved_id = -10; // Make sure we don't underflow } return retval; } MemObject *SegManager::allocNonscriptSegment(memObjType type, SegmentId *segid) { // Allocates a non-script segment int id; *segid = findFreeId(&id); return memObjAllocate(*segid, id, type); } SegManager::SegManager(bool sci1_1) { int i; // Initialise memory count mem_allocated = 0; id_seg_map = new IntMapper(); reserved_id = INVALID_SCRIPT_ID; id_seg_map->checkKey(reserved_id, true); // reserve 0 for seg_id reserved_id--; // reserved_id runs in the reversed direction to make sure no one will use it. heap_size = DEFAULT_SCRIPTS; heap = (MemObject **)sci_calloc(heap_size, sizeof(MemObject *)); Clones_seg_id = 0; Lists_seg_id = 0; Nodes_seg_id = 0; Hunks_seg_id = 0; exports_wide = 0; isSci1_1 = sci1_1; // initialize the heap pointers for (i = 0; i < heap_size; i++) { heap[i] = NULL; } // gc initialisation gc_mark_bits = 0; } // Destroy the object, free the memorys if allocated before SegManager::~SegManager() { int i; // Free memory for (i = 0; i < heap_size; i++) { if (heap[i]) deallocate(i, false); } delete id_seg_map; free(heap); } // allocate a memory for script from heap // Parameters: (EngineState *) s: The state to operate on // (int) script_nr: The script number to load // Returns : 0 - allocation failure // 1 - allocated successfully // seg_id - allocated segment id MemObject *SegManager::allocateScript(EngineState *s, int script_nr, int* seg_id) { int seg; bool was_added; MemObject* mem; seg = id_seg_map->checkKey(script_nr, true, &was_added); if (!was_added) { *seg_id = seg; return heap[*seg_id]; } // allocate the MemObject mem = memObjAllocate(seg, script_nr, MEM_OBJ_SCRIPT); if (!mem) { sciprintf("%s, %d, Not enough memory, ", __FILE__, __LINE__); return NULL; } *seg_id = seg; return mem; } void SegManager::setScriptSize(MemObject *mem, EngineState *s, int script_nr) { Resource *script = s->resmgr->findResource(kResourceTypeScript, script_nr, 0); Resource *heap = s->resmgr->findResource(kResourceTypeHeap, script_nr, 0); mem->data.script.script_size = script->size; mem->data.script.heap_size = 0; // Set later if (!script || (s->version >= SCI_VERSION(1, 001, 000) && !heap)) { sciprintf("%s: failed to load %s\n", __FUNCTION__, !script ? "script" : "heap"); return; } if (s->version < SCI_VERSION_FTU_NEW_SCRIPT_HEADER) { mem->data.script.buf_size = script->size + READ_LE_UINT16(script->data) * 2; //locals_size = READ_LE_UINT16(script->data) * 2; } else if (s->version < SCI_VERSION(1, 001, 000)) { mem->data.script.buf_size = script->size; } else { mem->data.script.buf_size = script->size + heap->size; mem->data.script.heap_size = heap->size; // Ensure that the start of the heap resource can be word-aligned. if (script->size & 2) { mem->data.script.buf_size++; mem->data.script.script_size++; } if (mem->data.script.buf_size > 65535) { sciprintf("Script and heap sizes combined exceed 64K.\n" "This means a fundamental design bug was made in FreeSCI\n" "regarding SCI1.1 games.\nPlease report this so it can be" "fixed in the next major version!\n"); return; } } } int SegManager::initialiseScript(MemObject *mem, EngineState *s, int script_nr) { // allocate the script.buf Script *scr; setScriptSize(mem, s, script_nr); mem->data.script.buf = (byte*) sci_malloc(mem->data.script.buf_size); dbgPrint("mem->data.script.buf ", mem->data.script.buf); if (!mem->data.script.buf) { freeScript(mem); sciprintf("SegManager: Not enough memory space for script size"); mem->data.script.buf_size = 0; return 0; } // Initialize objects scr = &(mem->data.script); scr->objects = NULL; scr->objects_allocated = 0; scr->objects_nr = 0; // No objects recorded yet scr->locals_offset = 0; scr->locals_block = NULL; scr->code = NULL; scr->code_blocks_nr = 0; scr->code_blocks_allocated = 0; scr->nr = script_nr; scr->marked_as_deleted = 0; scr->relocated = 0; scr->obj_indices = new IntMapper(); if (s->version >= SCI_VERSION(1, 001, 000)) scr->heap_start = scr->buf + scr->script_size; else scr->heap_start = scr->buf; return 1; } int SegManager::deallocate(int seg, bool recursive) { MemObject *mobj; VERIFY(check(seg), "invalid seg id"); int i; mobj = heap[seg]; id_seg_map->removeKey(mobj->segmgr_id); switch (mobj->type) { case MEM_OBJ_SCRIPT: freeScript(mobj); mobj->data.script.buf = NULL; if (recursive && mobj->data.script.locals_segment) deallocate(mobj->data.script.locals_segment, recursive); break; case MEM_OBJ_LOCALS: free(mobj->data.locals.locals); mobj->data.locals.locals = NULL; break; case MEM_OBJ_DYNMEM: free(mobj->data.dynmem.description); mobj->data.dynmem.description = NULL; free(mobj->data.dynmem.buf); mobj->data.dynmem.buf = NULL; break; case MEM_OBJ_SYS_STRINGS: for (i = 0; i < SYS_STRINGS_MAX; i++) { SystemString *str = &mobj->data.sys_strings.strings[i]; if (str->name) { free(str->name); str->name = NULL; free(str->value); str->value = NULL; str->max_size = 0; } } break; case MEM_OBJ_STACK: free(mobj->data.stack.entries); mobj->data.stack.entries = NULL; break; case MEM_OBJ_LISTS: free(mobj->data.lists.table); mobj->data.lists.table = NULL; mobj->data.lists.entries_nr = mobj->data.lists.max_entry = 0; break; case MEM_OBJ_NODES: free(mobj->data.nodes.table); mobj->data.nodes.table = NULL; mobj->data.nodes.entries_nr = mobj->data.nodes.max_entry = 0; break; case MEM_OBJ_CLONES: free(mobj->data.clones.table); mobj->data.clones.table = NULL; mobj->data.clones.entries_nr = mobj->data.clones.max_entry = 0; break; case MEM_OBJ_HUNK: free(mobj->data.hunks.table); mobj->data.hunks.table = NULL; mobj->data.hunks.entries_nr = mobj->data.hunks.max_entry = 0; break; case MEM_OBJ_RESERVED: free(mobj->data.reserved); break; case MEM_OBJ_STRING_FRAG: break; default: fprintf(stderr, "Deallocating segment type %d not supported!\n", mobj->type); BREAKPOINT(); } free(mobj); heap[seg] = NULL; return 1; } int SegManager::scriptMarkedDeleted(int script_nr) { Script *scr; int seg = segGet(script_nr); VERIFY(check(seg), "invalid seg id"); scr = &(heap[seg]->data.script); return scr->marked_as_deleted; } void SegManager::markScriptDeleted(int script_nr) { Script *scr; int seg = segGet(script_nr); VERIFY(check(seg), "invalid seg id"); scr = &(heap[seg]->data.script); scr->marked_as_deleted = 1; } void SegManager::unmarkScriptDeleted(int script_nr) { Script *scr; int seg = segGet(script_nr); VERIFY(check(seg), "invalid seg id"); scr = &(heap[seg]->data.script); scr->marked_as_deleted = 0; } int SegManager::scriptIsMarkedAsDeleted(SegmentId seg) { Script *scr; if (!check(seg)) return 0; if (heap[seg]->type != MEM_OBJ_SCRIPT) return 0; scr = &(heap[seg]->data.script); return scr->marked_as_deleted; } int SegManager::deallocateScript(int script_nr) { int seg = segGet(script_nr); deallocate(seg, true); return 1; } MemObject *SegManager::memObjAllocate(SegmentId segid, int hash_id, memObjType type) { MemObject *mem = (MemObject *)sci_calloc(sizeof(MemObject), 1); if (!mem) { sciprintf("SegManager: invalid mem_obj "); return NULL; } if (segid >= heap_size) { void *temp; int oldhs = heap_size; if (segid >= heap_size * 2) { sciprintf("SegManager: hash_map error or others??"); return NULL; } heap_size *= 2; temp = sci_realloc((void *)heap, heap_size * sizeof(MemObject *)); if (!temp) { sciprintf("SegManager: Not enough memory space for script size"); return NULL; } heap = (MemObject **)temp; // Clear pointers memset(heap + oldhs, 0, sizeof(MemObject *) * (heap_size - oldhs)); } mem->segmgr_id = hash_id; mem->type = type; // hook it to the heap heap[segid] = mem; return mem; } /* No longer in use? void SegManager::sm_object_init(Object *object) { if (!object) return; object->variables_nr = 0; object->variables = NULL; };*/ void SegManager::freeScript(MemObject *mem) { if (!mem) return; if (mem->data.script.buf) { free(mem->data.script.buf); mem->data.script.buf = NULL; mem->data.script.buf_size = 0; } if (mem->data.script.objects) { int i; for (i = 0; i < mem->data.script.objects_nr; i++) { Object* object = &mem->data.script.objects[i]; if (object->variables) { free(object->variables); object->variables = NULL; object->variables_nr = 0; } } free(mem->data.script.objects); mem->data.script.objects = NULL; mem->data.script.objects_nr = 0; } delete mem->data.script.obj_indices; free(mem->data.script.code); } // memory operations #if 0 // Unreferenced - removed static void SegManager::sm_mset(int offset, int c, size_t n, int id, int flag) { MemObject *mem_obj; GET_SEGID(); mem_obj = heap[id]; switch (mem_obj->type) { case MEM_OBJ_SCRIPT: if (mem_obj->data.script.buf) { memset(mem_obj->data.script.buf + offset, c, n); } break; case MEM_OBJ_CLONES: sciprintf("memset for clones haven't been implemented\n"); break; default: sciprintf("unknown mem obj type\n"); break; } } #endif #if 0 // Unreferenced - removed static void SegManager::sm_mcpy_in_in(int dst, const int src, size_t n, int id, int flag) { MemObject *mem_obj; GET_SEGID(); mem_obj = heap[id]; switch (mem_obj->type) { case MEM_OBJ_SCRIPT: if (mem_obj->data.script.buf) { memcpy(mem_obj->data.script.buf + dst, mem_obj->data.script.buf + src, n); } break; case MEM_OBJ_CLONES: sciprintf("memcpy for clones haven't been implemented\n"); break; default: sciprintf("unknown mem obj type\n"); break; } } #endif void SegManager::mcpyInOut(int dst, const void *src, size_t n, int id, int flag) { MemObject *mem_obj; GET_SEGID(); mem_obj = heap[id]; switch (mem_obj->type) { case MEM_OBJ_SCRIPT: if (mem_obj->data.script.buf) { memcpy(mem_obj->data.script.buf + dst, src, n); } break; case MEM_OBJ_CLONES: sciprintf("memcpy for clones hasn't been implemented yet\n"); break; default: sciprintf("unknown mem obj type\n"); break; } } #if 0 // Unreferenced - removed static void SegManager::sm_mcpy_out_in(void *dst, const int src, size_t n, int id, int flag) { MemObject *mem_obj; GET_SEGID(); mem_obj = heap[id]; switch (mem_obj->type) { case MEM_OBJ_SCRIPT: if (mem_obj->data.script.buf) { memcpy(dst, mem_obj->data.script.buf + src, n); } break; case MEM_OBJ_CLONES: sciprintf("memcpy for clones hasn't been implemented yet\n"); break; default: sciprintf("unknown mem obj type\n"); break; } } #endif int16 SegManager::getHeap(reg_t reg) { MemObject *mem_obj; memObjType mem_type; VERIFY(check(reg.segment), "Invalid seg id"); mem_obj = heap[reg.segment]; mem_type = mem_obj->type; switch (mem_type) { case MEM_OBJ_SCRIPT: VERIFY(reg.offset + 1 < (uint16)mem_obj->data.script.buf_size, "invalid offset\n"); return (mem_obj->data.script.buf[reg.offset] | (mem_obj->data.script.buf[reg.offset+1]) << 8); case MEM_OBJ_CLONES: sciprintf("memcpy for clones hasn't been implemented yet\n"); break; default: sciprintf("unknown mem obj type\n"); break; } return 0; // never get here } #if 0 // Unreferenced - removed void SegManager::sm_put_heap(reg_t reg, int16 value) { MemObject *mem_obj; memObjType mem_type; VERIFY(check(reg.segment), "Invalid seg id"); mem_obj = heap[reg.segment]; mem_type = mem_obj->type; switch (mem_type) { case MEM_OBJ_SCRIPT: VERIFY(reg.offset + 1 < (uint16)mem_obj->data.script.buf_size, "invalid offset"); mem_obj->data.script.buf[reg.offset] = value & 0xff; mem_obj->data.script.buf[reg.offset + 1] = value >> 8; break; case MEM_OBJ_CLONES: sciprintf("memcpy for clones haven't been implemented\n"); break; default: sciprintf("unknown mem obj type\n"); break; } } #endif // return the seg if script_id is valid and in the map, else -1 int SegManager::segGet(int script_id) const { return id_seg_map->lookupKey(script_id); } // validate the seg // return: // false - invalid seg // true - valid seg bool SegManager::check(int seg) { if (seg < 0 || seg >= heap_size) { return false; } if (!heap[seg]) { sciprintf("SegManager: seg %x is removed from memory, but not removed from hash_map\n", seg); return false; } return true; } int SegManager::scriptIsLoaded(int id, idFlag flag) { if (flag == SCRIPT_ID) id = segGet(id); return check(id); } void SegManager::incrementLockers(int id, idFlag flag) { if (flag == SCRIPT_ID) id = segGet(id); VERIFY(check(id), "invalid seg id"); heap[id]->data.script.lockers++; } void SegManager::decrementLockers(int id, idFlag flag) { if (flag == SCRIPT_ID) id = segGet(id); VERIFY(check(id), "invalid seg id"); if (heap[id]->data.script.lockers > 0) heap[id]->data.script.lockers--; } int SegManager::getLockers(int id, idFlag flag) { if (flag == SCRIPT_ID) id = segGet(id); VERIFY(check(id), "invalid seg id"); return heap[id]->data.script.lockers; } void SegManager::setLockers(int lockers, int id, idFlag flag) { if (flag == SCRIPT_ID) id = segGet(id); VERIFY(check(id), "invalid seg id"); heap[id]->data.script.lockers = lockers; } void SegManager::setExportTableOffset(int offset, int id, idFlag flag) { Script *scr = &(heap[id]->data.script); GET_SEGID(); if (offset) { scr->export_table = (uint16 *)(scr->buf + offset + 2); scr->exports_nr = READ_LE_UINT16((byte *)(scr->export_table - 1)); } else { scr->export_table = NULL; scr->exports_nr = 0; } } #if 0 // Unreferenced - removed int SegManager::sm_hash_segment_data(int id) { int i, len, hash_code = 0x55555555; char *buf; if (heap[id]->type == MEM_OBJ_LISTS) return 0; if (heap[id]->type == MEM_OBJ_NODES) return 0; if (heap[id]->type == MEM_OBJ_CLONES) return 0; buf = (char *)dereference(make_reg(id, 0), &len); for (i = 0; i < len; i++) hash_code = (hash_code * 19) + *(buf + i); return hash_code; } #endif void SegManager::setExportWidth(int flag) { exports_wide = flag; } #if 0 // Unreferenced - removed static uint16 *SegManager::sm_get_export_table_offset(int id, int flag, int *max) { GET_SEGID(); if (max) *max = heap[id]->data.script.exports_nr; return heap[id]->data.script.export_table; } #endif void SegManager::setSynonymsOffset(int offset, int id, idFlag flag) { GET_SEGID(); heap[id]->data.script.synonyms = heap[id]->data.script.buf + offset; } byte *SegManager::getSynonyms(int id, idFlag flag) { GET_SEGID(); return heap[id]->data.script.synonyms; } void SegManager::setSynonymsNr(int nr, int id, idFlag flag) { GET_SEGID(); heap[id]->data.script.synonyms_nr = nr; } int SegManager::getSynonymsNr(int id, idFlag flag) { GET_SEGID(); return heap[id]->data.script.synonyms_nr; } #if 0 // Unreferenced - removed static int SegManager::sm_get_heappos(int id, int flag) { GET_SEGID(); return 0; } #endif #if 0 // Unreferenced - removed static void SegManager::sm_set_variables(reg_t reg, int obj_index, reg_t variable_reg, int variable_index) { Script *script; VERIFY(check(reg.segment), "invalid seg id"); VERIFY(heap[reg.segment], "invalid mem"); script = &(heap[reg.segment]->data.script); VERIFY(obj_index < script->objects_nr, "Invalid obj_index"); VERIFY(variable_index >= 0 && variable_index < script->objects[obj_index].variables_nr, "Attempt to write to invalid variable number"); script->objects[obj_index].variables[variable_index] = variable_reg; } #endif int SegManager::relocateBlock(reg_t *block, int block_location, int block_items, SegmentId segment, int location) { int rel = location - block_location; int index; if (rel < 0) return 0; index = rel >> 1; if (index >= block_items) return 0; if (rel & 1) { sciprintf("Error: Attempt to relocate odd variable #%d.5e (relative to %04x)\n", index, block_location); return 0; } block[index].segment = segment; // Perform relocation if (isSci1_1) block[index].offset += heap[segment]->data.script.script_size; return 1; } int SegManager::relocateLocal(Script *scr, SegmentId segment, int location) { if (scr->locals_block) return relocateBlock(scr->locals_block->locals, scr->locals_offset, scr->locals_block->nr, segment, location); else return 0; // No hands, no cookies } int SegManager::relocateObject(Object *obj, SegmentId segment, int location) { return relocateBlock(obj->variables, obj->pos.offset, obj->variables_nr, segment, location); } void SegManager::scriptAddCodeBlock(reg_t location) { MemObject *mobj = heap[location.segment]; Script *scr; int index; VERIFY(!(location.segment >= heap_size || mobj->type != MEM_OBJ_SCRIPT), "Attempt to add a code block to non-script\n"); scr = &(mobj->data.script); if (++scr->code_blocks_nr > scr->code_blocks_allocated) { scr->code_blocks_allocated += DEFAULT_OBJECTS_INCREMENT; scr->code = (CodeBlock *)sci_realloc(scr->code, scr->code_blocks_allocated * sizeof(CodeBlock)); } index = scr->code_blocks_nr - 1; scr->code[index].pos = location; scr->code[index].size = READ_LE_UINT16(scr->buf + location.offset - 2); } void SegManager::scriptRelocate(reg_t block) { MemObject *mobj = heap[block.segment]; Script *scr; int count; int i; VERIFY(!(block.segment >= heap_size || mobj->type != MEM_OBJ_SCRIPT), "Attempt relocate non-script\n"); scr = &(mobj->data.script); VERIFY(block.offset < (uint16)scr->buf_size && READ_LE_UINT16(scr->buf + block.offset) * 2 + block.offset < (uint16)scr->buf_size, "Relocation block outside of script\n"); count = READ_LE_UINT16(scr->buf + block.offset); for (i = 0; i <= count; i++) { int pos = READ_LE_UINT16(scr->buf + block.offset + 2 + (i * 2)); if (!pos) continue; // FIXME: A hack pending investigation if (!relocateLocal(scr, block.segment, pos)) { int k, done = 0; for (k = 0; !done && k < scr->objects_nr; k++) { if (relocateObject(scr->objects + k, block.segment, pos)) done = 1; } for (k = 0; !done && k < scr->code_blocks_nr; k++) { if (pos >= scr->code[k].pos.offset && pos < scr->code[k].pos.offset + scr->code[k].size) done = 1; } if (!done) { sciprintf("While processing relocation block "PREG":\n", PRINT_REG(block)); sciprintf("Relocation failed for index %04x (%d/%d)\n", pos, i + 1, count); if (scr->locals_block) sciprintf("- locals: %d at %04x\n", scr->locals_block->nr, scr->locals_offset); else sciprintf("- No locals\n"); for (k = 0; k < scr->objects_nr; k++) sciprintf("- obj#%d at %04x w/ %d vars\n", k, scr->objects[k].pos.offset, scr->objects[k].variables_nr); // SQ3 script 71 has broken relocation entries. // Since this is mainstream, we can't break out as we used to do. sciprintf("Trying to continue anyway...\n"); // BREAKPOINT(); } } } } void SegManager::heapRelocate(EngineState *s, reg_t block) { MemObject *mobj = heap[block.segment]; Script *scr; int count; int i; VERIFY(!(block.segment >= heap_size || mobj->type != MEM_OBJ_SCRIPT), "Attempt relocate non-script\n"); scr = &(mobj->data.script); VERIFY(block.offset < (uint16)scr->heap_size && READ_LE_UINT16(scr->heap_start + block.offset) * 2 + block.offset < (uint16)scr->buf_size, "Relocation block outside of script\n"); if (scr->relocated) return; scr->relocated = 1; count = READ_LE_UINT16(scr->heap_start + block.offset); for (i = 0; i < count; i++) { int pos = READ_LE_UINT16(scr->heap_start + block.offset + 2 + (i * 2)) + scr->script_size; if (!relocateLocal(scr, block.segment, pos)) { int k, done = 0; for (k = 0; !done && k < scr->objects_nr; k++) { if (relocateObject(scr->objects + k, block.segment, pos)) done = 1; } if (!done) { sciprintf("While processing relocation block "PREG":\n", PRINT_REG(block)); sciprintf("Relocation failed for index %04x (%d/%d)\n", pos, i + 1, count); if (scr->locals_block) sciprintf("- locals: %d at %04x\n", scr->locals_block->nr, scr->locals_offset); else sciprintf("- No locals\n"); for (k = 0; k < scr->objects_nr; k++) sciprintf("- obj#%d at %04x w/ %d vars\n", k, scr->objects[k].pos.offset, scr->objects[k].variables_nr); sciprintf("Triggering breakpoint...\n"); BREAKPOINT(); } } } } #define INST_LOOKUP_CLASS(id) ((id == 0xffff) ? NULL_REG : get_class_address(s, id, SCRIPT_GET_LOCK, NULL_REG)) reg_t get_class_address(EngineState *s, int classnr, int lock, reg_t caller); Object *SegManager::scriptObjInit0(EngineState *s, reg_t obj_pos) { MemObject *mobj = heap[obj_pos.segment]; Script *scr; Object *obj; int id; unsigned int base = obj_pos.offset - SCRIPT_OBJECT_MAGIC_OFFSET; reg_t temp; VERIFY(!(obj_pos.segment >= heap_size || mobj->type != MEM_OBJ_SCRIPT), "Attempt to initialize object in non-script\n"); scr = &(mobj->data.script); VERIFY(base < scr->buf_size, "Attempt to initialize object beyond end of script\n"); if (!scr->objects) { scr->objects_allocated = DEFAULT_OBJECTS; scr->objects = (Object *)sci_malloc(sizeof(Object) * scr->objects_allocated); } if (scr->objects_nr == scr->objects_allocated) { scr->objects_allocated += DEFAULT_OBJECTS_INCREMENT; scr->objects = (Object *)sci_realloc(scr->objects, sizeof(Object) * scr->objects_allocated); } temp = make_reg(obj_pos.segment, base); id = scr->obj_indices->checkKey(base, true); scr->objects_nr++; obj = scr->objects + id; VERIFY(base + SCRIPT_FUNCTAREAPTR_OFFSET < scr->buf_size, "Function area pointer stored beyond end of script\n"); { byte *data = (byte *)(scr->buf + base); int funct_area = READ_LE_UINT16(data + SCRIPT_FUNCTAREAPTR_OFFSET); int variables_nr; int functions_nr; int is_class; int i; obj->flags = 0; obj->pos = temp; VERIFY(base + funct_area < scr->buf_size, "Function area pointer references beyond end of script"); variables_nr = READ_LE_UINT16(data + SCRIPT_SELECTORCTR_OFFSET); functions_nr = READ_LE_UINT16(data + funct_area - 2); is_class = READ_LE_UINT16(data + SCRIPT_INFO_OFFSET) & SCRIPT_INFO_CLASS; VERIFY(base + funct_area + functions_nr * 2 // add again for classes, since those also store selectors + (is_class ? functions_nr * 2 : 0) < scr->buf_size, "Function area extends beyond end of script"); obj->variables_nr = variables_nr; obj->variables = (reg_t *)sci_malloc(sizeof(reg_t) * variables_nr); obj->methods_nr = functions_nr; obj->base = scr->buf; obj->base_obj = data; obj->base_method = (uint16 *)(data + funct_area); obj->base_vars = NULL; for (i = 0; i < variables_nr; i++) obj->variables[i] = make_reg(0, READ_LE_UINT16(data + (i * 2))); } return obj; } Object *SegManager::scriptObjInit11(EngineState *s, reg_t obj_pos) { MemObject *mobj = heap[obj_pos.segment]; Script *scr; Object *obj; int id; int base = obj_pos.offset; VERIFY(!(obj_pos.segment >= heap_size || mobj->type != MEM_OBJ_SCRIPT), "Attempt to initialize object in non-script\n"); scr = &(mobj->data.script); VERIFY(base < (uint16)scr->buf_size, "Attempt to initialize object beyond end of script\n"); if (!scr->objects) { scr->objects_allocated = DEFAULT_OBJECTS; scr->objects = (Object *)sci_malloc(sizeof(Object) * scr->objects_allocated); } if (scr->objects_nr == scr->objects_allocated) { scr->objects_allocated += DEFAULT_OBJECTS_INCREMENT; scr->objects = (Object *)sci_realloc(scr->objects, sizeof(Object) * scr->objects_allocated); } id = scr->obj_indices->checkKey(obj_pos.offset, true); scr->objects_nr++; obj = scr->objects + id; VERIFY(base + SCRIPT_FUNCTAREAPTR_OFFSET < (uint16)scr->buf_size, "Function area pointer stored beyond end of script\n"); { byte *data = (byte *)(scr->buf + base); uint16 *funct_area = (uint16 *)(scr->buf + READ_LE_UINT16(data + 6)); uint16 *prop_area = (uint16 *)(scr->buf + READ_LE_UINT16(data + 4)); int variables_nr; int functions_nr; int is_class; int i; obj->flags = 0; obj->pos = obj_pos; VERIFY((byte *) funct_area < scr->buf + scr->buf_size, "Function area pointer references beyond end of script"); variables_nr = READ_LE_UINT16(data + 2); functions_nr = *funct_area; is_class = READ_LE_UINT16(data + 14) & SCRIPT_INFO_CLASS; obj->base_method = funct_area; obj->base_vars = prop_area; VERIFY(((byte *) funct_area + functions_nr) < scr->buf + scr->buf_size, "Function area extends beyond end of script"); obj->variables_nr = variables_nr; obj->variable_names_nr = variables_nr; obj->variables = (reg_t *)sci_malloc(sizeof(reg_t) * variables_nr); obj->methods_nr = functions_nr; obj->base = scr->buf; obj->base_obj = data; for (i = 0; i < variables_nr; i++) obj->variables[i] = make_reg(0, READ_LE_UINT16(data + (i * 2))); } return obj; } Object *SegManager::scriptObjInit(EngineState *s, reg_t obj_pos) { if (!isSci1_1) return scriptObjInit0(s, obj_pos); else return scriptObjInit11(s, obj_pos); } LocalVariables *SegManager::allocLocalsSegment(Script *scr, int count) { if (!count) { // No locals scr->locals_segment = 0; scr->locals_block = NULL; return NULL; } else { MemObject *mobj; LocalVariables *locals; if (scr->locals_segment) { mobj = heap[scr->locals_segment]; VERIFY(mobj != NULL, "Re-used locals segment was NULL'd out"); VERIFY(mobj->type == MEM_OBJ_LOCALS, "Re-used locals segment did not consist of local variables"); VERIFY(mobj->data.locals.script_id == scr->nr, "Re-used locals segment belonged to other script"); } else mobj = allocNonscriptSegment(MEM_OBJ_LOCALS, &scr->locals_segment); locals = scr->locals_block = &(mobj->data.locals); locals->script_id = scr->nr; locals->locals = (reg_t *)sci_calloc(count, sizeof(reg_t)); locals->nr = count; return locals; } } void SegManager::scriptInitialiseLocalsZero(SegmentId seg, int count) { MemObject *mobj = heap[seg]; Script *scr; VERIFY(!(seg >= heap_size || mobj->type != MEM_OBJ_SCRIPT), "Attempt to initialize locals in non-script\n"); scr = &(mobj->data.script); scr->locals_offset = -count * 2; // Make sure it's invalid allocLocalsSegment(scr, count); } void SegManager::scriptInitialiseLocals(reg_t location) { MemObject *mobj = heap[location.segment]; unsigned int count; Script *scr; LocalVariables *locals; VERIFY(!(location.segment >= heap_size || mobj->type != MEM_OBJ_SCRIPT), "Attempt to initialize locals in non-script\n"); scr = &(mobj->data.script); VERIFY(location.offset + 1 < (uint16)scr->buf_size, "Locals beyond end of script\n"); if (isSci1_1) count = READ_LE_UINT16(scr->buf + location.offset - 2); else count = (READ_LE_UINT16(scr->buf + location.offset - 2) - 4) >> 1; // half block size scr->locals_offset = location.offset; if (!(location.offset + count * 2 + 1 < scr->buf_size)) { sciprintf("Locals extend beyond end of script: offset %04x, count %x vs size %x\n", location.offset, count, (uint)scr->buf_size); count = (scr->buf_size - location.offset) >> 1; } locals = allocLocalsSegment(scr, count); if (locals) { uint i; byte *base = (byte *)(scr->buf + location.offset); for (i = 0; i < count; i++) locals->locals[i].offset = READ_LE_UINT16(base + i * 2); } } void SegManager::scriptRelocateExportsSci11(int seg) { MemObject *mobj = heap[seg]; Script *scr; int i; int location; VERIFY(!(seg >= heap_size || mobj->type != MEM_OBJ_SCRIPT), "Attempt to relocate exports in non-script\n"); scr = &(mobj->data.script); for (i = 0; i < scr->exports_nr; i++) { /* We are forced to use an ugly heuristic here to distinguish function exports from object/class exports. The former kind points into the script resource, the latter into the heap resource. */ location = READ_LE_UINT16((byte *)(scr->export_table + i)); if (READ_LE_UINT16(scr->heap_start + location) == SCRIPT_OBJECT_MAGIC_NUMBER) { WRITE_LE_UINT16((byte *)(scr->export_table + i), location + scr->heap_start - scr->buf); } else { // Otherwise it's probably a function export, // and we don't need to do anything. } } } void SegManager::scriptInitialiseObjectsSci11(EngineState *s, int seg) { MemObject *mobj = heap[seg]; Script *scr; byte *seeker; VERIFY(!(seg >= heap_size || mobj->type != MEM_OBJ_SCRIPT), "Attempt to relocate exports in non-script\n"); scr = &(mobj->data.script); seeker = scr->heap_start + 4 + READ_LE_UINT16(scr->heap_start + 2) * 2; while (READ_LE_UINT16(seeker) == SCRIPT_OBJECT_MAGIC_NUMBER) { if (READ_LE_UINT16(seeker + 14) & SCRIPT_INFO_CLASS) { int classpos = seeker - scr->buf; int species = READ_LE_UINT16(seeker + 10); if (species < 0 || species >= s->classtable_size) { sciprintf("Invalid species %d(0x%x) not in interval [0,%d) while instantiating script %d\n", species, species, s->classtable_size, scr->nr); script_debug_flag = script_error_flag = 1; return; } s->classtable[species].script = scr->nr; s->classtable[species].reg.segment = seg; s->classtable[species].reg.offset = classpos; } seeker += READ_LE_UINT16(seeker + 2) * 2; } seeker = scr->heap_start + 4 + READ_LE_UINT16(scr->heap_start + 2) * 2; while (READ_LE_UINT16(seeker) == SCRIPT_OBJECT_MAGIC_NUMBER) { reg_t reg; Object *obj; reg.segment = seg; reg.offset = seeker - scr->buf; obj = scriptObjInit(s, reg); #if 0 if (obj->variables[5].offset != 0xffff) { obj->variables[5] = INST_LOOKUP_CLASS(obj->variables[5].offset); base_obj = obj_get(s, obj->variables[5]); obj->variable_names_nr = base_obj->variables_nr; obj->base_obj = base_obj->base_obj; } #endif // Copy base from species class, as we need its selector IDs obj->variables[6] = INST_LOOKUP_CLASS(obj->variables[6].offset); seeker += READ_LE_UINT16(seeker + 2) * 2; } } void SegManager::scriptFreeUnusedObjects(SegmentId seg) { MemObject *mobj = heap[seg]; Script *scr; VERIFY(!(seg >= heap_size || mobj->type != MEM_OBJ_SCRIPT), "Attempt to free unused objects in non-script\n"); scr = &(mobj->data.script); if (scr->objects_allocated > scr->objects_nr) { if (scr->objects_nr) scr->objects = (Object *)sci_realloc(scr->objects, sizeof(Object) * scr->objects_nr); else { if (scr->objects_allocated) free(scr->objects); scr->objects = NULL; } scr->objects_allocated = scr->objects_nr; } } /* static char *SegManager::dynprintf(char *msg, ...) { va_list argp; char *buf = (char *)sci_malloc(strlen(msg) + 100); va_start(argp, msg); vsprintf(buf, msg, argp); va_end(argp); return buf; } */ dstack_t *SegManager::allocateStack(int size, SegmentId *segid) { MemObject *memobj = allocNonscriptSegment(MEM_OBJ_STACK, segid); dstack_t *retval = &(memobj->data.stack); retval->entries = (reg_t*)sci_calloc(size, sizeof(reg_t)); retval->nr = size; return retval; } SystemStrings *SegManager::allocateSysStrings(SegmentId *segid) { MemObject *memobj = allocNonscriptSegment(MEM_OBJ_SYS_STRINGS, segid); SystemStrings *retval = &(memobj->data.sys_strings); memset(retval, 0, sizeof(SystemString)*SYS_STRINGS_MAX); return retval; } SegmentId SegManager::allocateStringFrags() { SegmentId segid; allocNonscriptSegment(MEM_OBJ_STRING_FRAG, &segid); return segid; } #if 0 // Unreferenced - removed SegmentId SegManager::sm_allocate_reserved_segment(char *src_name) { SegmentId segid; MemObject *memobj = allocNonscriptSegment(MEM_OBJ_RESERVED, &segid); char *name = sci_strdup(src_name); memobj->data.reserved = name; return segid; } #endif uint16 SegManager::validateExportFunc(int pubfunct, int seg) { Script* script; uint16 offset; VERIFY(check(seg), "invalid seg id"); VERIFY(heap[seg]->type == MEM_OBJ_SCRIPT, "Can only validate exports on scripts"); script = &heap[seg]->data.script; if (script->exports_nr <= pubfunct) { sciprintf("pubfunct is invalid"); return 0; } if (exports_wide) pubfunct *= 2; offset = READ_LE_UINT16((byte *)(script->export_table + pubfunct)); VERIFY(offset < script->buf_size, "invalid export function pointer"); return offset; } void SegManager::free_hunk_entry(reg_t addr) { MemObject *mobj = GET_SEGMENT(*this, addr.segment, MEM_OBJ_HUNK); if (!mobj) { sciprintf("Attempt to free Hunk from address "PREG": Invalid segment type\n", PRINT_REG(addr)); return; } Sci::free_Hunk_entry(&(mobj->data.hunks), addr.offset); } Hunk *SegManager::alloc_hunk_entry(const char *hunk_type, int size, reg_t *reg) { Hunk *h = alloc_Hunk(reg); if (!h) return NULL; h->mem = sci_malloc(size); h->size = size; h->type = hunk_type; return h; } void _clone_cleanup(Clone *clone) { if (clone->variables) free(clone->variables); // Free the dynamically allocated memory part } void _hunk_cleanup(Hunk *hunk) { if (hunk->mem) free(hunk->mem); } DEFINE_HEAPENTRY(List, 8, 4) DEFINE_HEAPENTRY(Node, 32, 16) DEFINE_HEAPENTRY_WITH_CLEANUP(Clone, 16, 4, _clone_cleanup) DEFINE_HEAPENTRY_WITH_CLEANUP(Hunk, 4, 4, _hunk_cleanup) #define DEFINE_ALLOC(TYPE, SEGTYPE, PLURAL) \ TYPE *SegManager::alloc_##TYPE(reg_t *addr) { \ MemObject *mobj; \ TYPE##Table *table; \ int offset; \ \ if (!TYPE##s_seg_id) { \ mobj = allocNonscriptSegment(SEGTYPE, &(TYPE##s_seg_id)); \ init_##TYPE##_table(&(mobj->data.PLURAL)); \ } else \ mobj = heap[TYPE##s_seg_id]; \ \ table = &(mobj->data.PLURAL); \ offset = Sci::alloc_##TYPE##_entry(table); \ \ *addr = make_reg(TYPE##s_seg_id, offset); \ return &(mobj->data.PLURAL.table[offset].entry); \ } DEFINE_ALLOC(Clone, MEM_OBJ_CLONES, clones) DEFINE_ALLOC(List, MEM_OBJ_LISTS, lists) DEFINE_ALLOC(Node, MEM_OBJ_NODES, nodes) DEFINE_ALLOC(Hunk, MEM_OBJ_HUNK, hunks) byte *SegManager::dereference(reg_t pointer, int *size) { MemObject *mobj; byte *base = NULL; int count; if (!pointer.segment || (pointer.segment >= heap_size) || !heap[pointer.segment]) { sciprintf("Error: Attempt to dereference invalid pointer "PREG"!\n", PRINT_REG(pointer)); return NULL; /* Invalid */ } mobj = heap[pointer.segment]; switch (mobj->type) { case MEM_OBJ_SCRIPT: if (pointer.offset > mobj->data.script.buf_size) { sciprintf("Error: Attempt to dereference invalid pointer "PREG" into script segment (script size=%d)\n", PRINT_REG(pointer), (uint)mobj->data.script.buf_size); return NULL; } if (size) *size = mobj->data.script.buf_size - pointer.offset; return (byte *)(mobj->data.script.buf + pointer.offset); break; case MEM_OBJ_LOCALS: count = mobj->data.locals.nr * sizeof(reg_t); base = (byte *)mobj->data.locals.locals; break; case MEM_OBJ_STACK: count = mobj->data.stack.nr * sizeof(reg_t); base = (byte *)mobj->data.stack.entries; break; case MEM_OBJ_DYNMEM: count = mobj->data.dynmem.size; base = (byte *)mobj->data.dynmem.buf; break; case MEM_OBJ_SYS_STRINGS: if (size) *size = mobj->data.sys_strings.strings[pointer.offset].max_size; if (pointer.offset < SYS_STRINGS_MAX && mobj->data.sys_strings.strings[pointer.offset].name) return (byte *)(mobj->data.sys_strings.strings[pointer.offset].value); else { sciprintf("Error: Attempt to dereference invalid pointer "PREG"!\n", PRINT_REG(pointer)); return NULL; } case MEM_OBJ_RESERVED: sciprintf("Error: Trying to dereference pointer "PREG" to reserved segment `%s'!\n", PRINT_REG(pointer), mobj->data.reserved); return NULL; break; default: sciprintf("Error: Trying to dereference pointer "PREG" to inappropriate" " segment!\n", PRINT_REG(pointer)); return NULL; } if (size) *size = count; return base + pointer.offset; } unsigned char *SegManager::allocDynmem(int size, const char *descr, reg_t *addr) { SegmentId seg; MemObject *mobj = allocNonscriptSegment(MEM_OBJ_DYNMEM, &seg); *addr = make_reg(seg, 0); mobj->data.dynmem.size = size; if (size == 0) mobj->data.dynmem.buf = NULL; else mobj->data.dynmem.buf = (byte*) sci_malloc(size); mobj->data.dynmem.description = sci_strdup(descr); return (unsigned char *)(mobj->data.dynmem.buf); } const char *SegManager::getDescription(reg_t addr) { MemObject *mobj = heap[addr.segment]; if (addr.segment >= heap_size) return ""; switch (mobj->type) { case MEM_OBJ_DYNMEM: return mobj->data.dynmem.description; default: return ""; } } int SegManager::freeDynmem(reg_t addr) { if (addr.segment <= 0 || addr.segment >= heap_size || !heap[addr.segment] || heap[addr.segment]->type != MEM_OBJ_DYNMEM) return 1; // error deallocate(addr.segment, true); return 0; // OK } void SegManager::dbgPrint(const char* msg, void *i) { #ifdef DEBUG_SEG_MANAGER char buf[1000]; sprintf(buf, "%s = [0x%x], dec:[%d]", msg, i, i); perror(buf); #endif } // ------------------- Segment interface ------------------ SegInterface::SegInterface(SegManager *segmgr, MemObject *mobj, SegmentId segId, memObjType typeId) : _segmgr(segmgr), _mobj(mobj), _segId(segId), _typeId(typeId) { VERIFY(_mobj->type == _typeId, "Invalid MemObject type"); } reg_t SegInterface::findCanonicAddress(reg_t addr) { return addr; } void SegInterface::freeAtAddress(reg_t sub_addr) { } void SegInterface::listAllDeallocatable(void *param, NoteCallback note) { } void SegInterface::listAllOutgoingReferences(EngineState *s, reg_t object, void *param, NoteCallback note) { } //-------------------- base -------------------- class SegInterfaceBase : public SegInterface { protected: SegInterfaceBase(SegManager *segmgr, MemObject *mobj, SegmentId segId, memObjType typeId) : SegInterface(segmgr, mobj, segId, typeId) {} public: reg_t findCanonicAddress(reg_t addr); void listAllDeallocatable(void *param, NoteCallback note); }; reg_t SegInterfaceBase::findCanonicAddress(reg_t addr) { addr.offset = 0; return addr; } void SegInterfaceBase::listAllDeallocatable(void *param, NoteCallback note) { (*note)(param, make_reg(_segId, 0)); } //-------------------- script -------------------- class SegInterfaceScript : public SegInterfaceBase { public: SegInterfaceScript(SegManager *segmgr, MemObject *mobj, SegmentId segId) : SegInterfaceBase(segmgr, mobj, segId, MEM_OBJ_SCRIPT) {} void freeAtAddress(reg_t addr); void listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note); }; void SegInterfaceScript::freeAtAddress(reg_t addr) { Script *script = &(_mobj->data.script); /* sciprintf("[GC] Freeing script "PREG"\n", PRINT_REG(addr)); if (script->locals_segment) sciprintf("[GC] Freeing locals %04x:0000\n", script->locals_segment); */ if (script->marked_as_deleted) _segmgr->deallocateScript(script->nr); } void SegInterfaceScript::listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note) { Script *script = &(_mobj->data.script); if (addr.offset <= script->buf_size && addr.offset >= -SCRIPT_OBJECT_MAGIC_OFFSET && RAW_IS_OBJECT(script->buf + addr.offset)) { int idx = RAW_GET_CLASS_INDEX(script, addr); if (idx >= 0 && idx < script->objects_nr) { Object *obj = script->objects + idx; int i; // Note all local variables, if we have a local variable environment if (script->locals_segment) (*note)(param, make_reg(script->locals_segment, 0)); for (i = 0; i < obj->variables_nr; i++) (*note)(param, obj->variables[i]); } else { fprintf(stderr, "Request for outgoing script-object reference at "PREG" yielded invalid index %d\n", PRINT_REG(addr), idx); } } else { /* fprintf(stderr, "Unexpected request for outgoing script-object references at "PREG"\n", PRINT_REG(addr));*/ /* Happens e.g. when we're looking into strings */ } } #define LIST_ALL_DEALLOCATABLE(kind, kind_field) \ kind##Table * table = &(_mobj->data.kind_field); \ int i; \ \ for (i = 0; i < table->max_entry; i++) \ if (ENTRY_IS_VALID(table, i)) \ (*note) (param, make_reg(_segId, i)); //-------------------- clones -------------------- class SegInterfaceClones : public SegInterface { public: SegInterfaceClones(SegManager *segmgr, MemObject *mobj, SegmentId segId) : SegInterface(segmgr, mobj, segId, MEM_OBJ_CLONES) {} void freeAtAddress(reg_t addr); void listAllDeallocatable(void *param, NoteCallback note); void listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note); }; void SegInterfaceClones::listAllDeallocatable(void *param, NoteCallback note) { LIST_ALL_DEALLOCATABLE(Clone, clones); } void SegInterfaceClones::listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note) { CloneTable *clone_table = &(_mobj->data.clones); Clone *clone; int i; assert(addr.segment == _segId); if (!(ENTRY_IS_VALID(clone_table, addr.offset))) { fprintf(stderr, "Unexpected request for outgoing references from clone at "PREG"\n", PRINT_REG(addr)); // BREAKPOINT(); return; } clone = &(clone_table->table[addr.offset].entry); // Emit all member variables (including references to the 'super' delegate) for (i = 0; i < clone->variables_nr; i++) (*note)(param, clone->variables[i]); // Note that this also includes the 'base' object, which is part of the script and therefore also emits the locals. (*note)(param, clone->pos); //sciprintf("[GC] Reporting clone-pos "PREG"\n", PRINT_REG(clone->pos)); } void SegInterfaceClones::freeAtAddress(reg_t addr) { Object *victim_obj; assert(addr.segment == _segId); victim_obj = &(_mobj->data.clones.table[addr.offset].entry); #ifdef GC_DEBUG if (!(victim_obj->flags & OBJECT_FLAG_FREED)) sciprintf("[GC] Warning: Clone "PREG" not reachable and not freed (freeing now)\n", PRINT_REG(addr)); #ifdef GC_DEBUG_VERBOSE else sciprintf("[GC-DEBUG] Clone "PREG": Freeing\n", PRINT_REG(addr)); #endif #endif /* sciprintf("[GC] Clone "PREG": Freeing\n", PRINT_REG(addr)); sciprintf("[GC] Clone had pos "PREG"\n", PRINT_REG(victim_obj->pos)); */ free(victim_obj->variables); victim_obj->variables = NULL; Sci::free_Clone_entry(&(_mobj->data.clones), addr.offset); } //-------------------- locals -------------------- class SegInterfaceLocals : public SegInterface { public: SegInterfaceLocals(SegManager *segmgr, MemObject *mobj, SegmentId segId) : SegInterface(segmgr, mobj, segId, MEM_OBJ_LOCALS) {} reg_t findCanonicAddress(reg_t addr); void freeAtAddress(reg_t addr); void listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note); }; reg_t SegInterfaceLocals::findCanonicAddress(reg_t addr) { LocalVariables *locals = &(_mobj->data.locals); // Reference the owning script SegmentId owner_seg = _segmgr->segGet(locals->script_id); assert(owner_seg >= 0); return make_reg(owner_seg, 0); } void SegInterfaceLocals::freeAtAddress(reg_t sub_addr) { //sciprintf(" Request to free "PREG"\n", PRINT_REG(sub_addr)); // STUB } void SegInterfaceLocals::listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note) { LocalVariables *locals = &(_mobj->data.locals); int i; assert(addr.segment == _segId); for (i = 0; i < locals->nr; i++) (*note)(param, locals->locals[i]); } //-------------------- stack -------------------- class SegInterfaceStack : public SegInterface { public: SegInterfaceStack(SegManager *segmgr, MemObject *mobj, SegmentId segId) : SegInterface(segmgr, mobj, segId, MEM_OBJ_STACK) {} reg_t findCanonicAddress(reg_t addr); void listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note); }; reg_t SegInterfaceStack::findCanonicAddress(reg_t addr) { addr.offset = 0; return addr; } void SegInterfaceStack::listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note) { int i; fprintf(stderr, "Emitting %d stack entries\n", _mobj->data.stack.nr); for (i = 0; i < _mobj->data.stack.nr; i++) (*note)(param, _mobj->data.stack.entries[i]); fprintf(stderr, "DONE"); } //-------------------- system strings -------------------- class SegInterfaceSysStrings : public SegInterface { public: SegInterfaceSysStrings(SegManager *segmgr, MemObject *mobj, SegmentId segId) : SegInterface(segmgr, mobj, segId, MEM_OBJ_SYS_STRINGS) {} }; //-------------------- string frags -------------------- class SegInterfaceStringFrag : public SegInterface { public: SegInterfaceStringFrag(SegManager *segmgr, MemObject *mobj, SegmentId segId) : SegInterface(segmgr, mobj, segId, MEM_OBJ_STRING_FRAG) {} }; //-------------------- lists -------------------- class SegInterfaceLists : public SegInterface { public: SegInterfaceLists(SegManager *segmgr, MemObject *mobj, SegmentId segId) : SegInterface(segmgr, mobj, segId, MEM_OBJ_LISTS) {} void freeAtAddress(reg_t addr); void listAllDeallocatable(void *param, NoteCallback note); void listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note); }; void SegInterfaceLists::freeAtAddress(reg_t sub_addr) { Sci::free_List_entry(&(_mobj->data.lists), sub_addr.offset); } void SegInterfaceLists::listAllDeallocatable(void *param, NoteCallback note) { LIST_ALL_DEALLOCATABLE(List, lists); } void SegInterfaceLists::listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note) { ListTable *table = &(_mobj->data.lists); List *list = &(table->table[addr.offset].entry); if (!ENTRY_IS_VALID(table, addr.offset)) { fprintf(stderr, "Invalid list referenced for outgoing references: "PREG"\n", PRINT_REG(addr)); return; } note(param, list->first); note(param, list->last); // We could probably get away with just one of them, but // let's be conservative here. } //-------------------- nodes -------------------- class SegInterfaceNodes : public SegInterface { public: SegInterfaceNodes(SegManager *segmgr, MemObject *mobj, SegmentId segId) : SegInterface(segmgr, mobj, segId, MEM_OBJ_NODES) {} void freeAtAddress(reg_t addr); void listAllDeallocatable(void *param, NoteCallback note); void listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note); }; void SegInterfaceNodes::freeAtAddress(reg_t sub_addr) { Sci::free_Node_entry(&(_mobj->data.nodes), sub_addr.offset); } void SegInterfaceNodes::listAllDeallocatable(void *param, NoteCallback note) { LIST_ALL_DEALLOCATABLE(Node, nodes); } void SegInterfaceNodes::listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note) { NodeTable *table = &(_mobj->data.nodes); Node *node = &(table->table[addr.offset].entry); if (!ENTRY_IS_VALID(table, addr.offset)) { fprintf(stderr, "Invalid node referenced for outgoing references: "PREG"\n", PRINT_REG(addr)); return; } // We need all four here. Can't just stick with 'pred' OR 'succ' because node operations allow us // to walk around from any given node note(param, node->pred); note(param, node->succ); note(param, node->key); note(param, node->value); } //-------------------- hunk -------------------- class SegInterfaceHunk : public SegInterface { public: SegInterfaceHunk(SegManager *segmgr, MemObject *mobj, SegmentId segId) : SegInterface(segmgr, mobj, segId, MEM_OBJ_HUNK) {} void freeAtAddress(reg_t addr); void listAllDeallocatable(void *param, NoteCallback note); }; void SegInterfaceHunk::freeAtAddress(reg_t sub_addr) { //sciprintf(" Request to free "PREG"\n", PRINT_REG(sub_addr)); // STUB } void SegInterfaceHunk::listAllDeallocatable(void *param, NoteCallback note) { LIST_ALL_DEALLOCATABLE(Hunk, hunks); } //-------------------- dynamic memory -------------------- class SegInterfaceDynMem : public SegInterfaceBase { public: SegInterfaceDynMem(SegManager *segmgr, MemObject *mobj, SegmentId segId) : SegInterfaceBase(segmgr, mobj, segId, MEM_OBJ_DYNMEM) {} void freeAtAddress(reg_t addr); }; void SegInterfaceDynMem::freeAtAddress(reg_t sub_addr) { //sciprintf(" Request to free "PREG"\n", PRINT_REG(sub_addr)); // STUB } //-------------------- reserved -------------------- class SegInterfaceReserved : public SegInterface { public: SegInterfaceReserved(SegManager *segmgr, MemObject *mobj, SegmentId segId) : SegInterface(segmgr, mobj, segId, MEM_OBJ_RESERVED) {} }; SegInterface *SegManager::getSegInterface(SegmentId segid) { if (!check(segid)) return NULL; // Invalid segment SegInterface *retval = NULL; MemObject *mobj = heap[segid]; switch (mobj->type) { case MEM_OBJ_SCRIPT: retval = new SegInterfaceScript(this, mobj, segid); break; case MEM_OBJ_CLONES: retval = new SegInterfaceClones(this, mobj, segid); break; case MEM_OBJ_LOCALS: retval = new SegInterfaceLocals(this, mobj, segid); break; case MEM_OBJ_STACK: retval = new SegInterfaceStack(this, mobj, segid); break; case MEM_OBJ_SYS_STRINGS: retval = new SegInterfaceSysStrings(this, mobj, segid); break; case MEM_OBJ_LISTS: retval = new SegInterfaceLists(this, mobj, segid); break; case MEM_OBJ_NODES: retval = new SegInterfaceNodes(this, mobj, segid); break; case MEM_OBJ_HUNK: retval = new SegInterfaceHunk(this, mobj, segid); break; case MEM_OBJ_DYNMEM: retval = new SegInterfaceDynMem(this, mobj, segid); break; case MEM_OBJ_STRING_FRAG: retval = new SegInterfaceStringFrag(this, mobj, segid); break; case MEM_OBJ_RESERVED: retval = new SegInterfaceReserved(this, mobj, segid); break; default: error("Improper segment interface for %d", mobj->type); } return retval; } } // End of namespace Sci