/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ #include "sci/sci.h" #include "sci/engine/seg_manager.h" #include "sci/engine/state.h" namespace Sci { enum { DEFAULT_SCRIPTS = 32, DEFAULT_OBJECTS = 8, ///< default number of objects per script DEFAULT_OBJECTS_INCREMENT = 4 ///< Number of additional objects to instantiate if we're running out of them }; SegManager::SegManager(ResourceManager *resMan) { _heap.push_back(0); Clones_seg_id = 0; Lists_seg_id = 0; Nodes_seg_id = 0; Hunks_seg_id = 0; #ifdef ENABLE_SCI32 Arrays_seg_id = 0; String_seg_id = 0; #endif _resMan = resMan; createClassTable(); } SegManager::~SegManager() { resetSegMan(); } void SegManager::resetSegMan() { // Free memory for (uint i = 0; i < _heap.size(); i++) { if (_heap[i]) deallocate(i, false); } _heap.clear(); // And reinitialize _heap.push_back(0); Clones_seg_id = 0; Lists_seg_id = 0; Nodes_seg_id = 0; Hunks_seg_id = 0; // Reinitialize class table _classTable.clear(); createClassTable(); } void SegManager::initSysStrings() { sysStrings = (SystemStrings *)allocSegment(new SystemStrings(), &sysStringsSegment); // Allocate static buffer for savegame and CWD directories SystemString *strSaveDir = &sysStrings->_strings[SYS_STRING_SAVEDIR]; strSaveDir->_name = "savedir"; strSaveDir->_maxSize = MAX_SAVE_DIR_SIZE; strSaveDir->_value = (char *)calloc(MAX_SAVE_DIR_SIZE, sizeof(char)); // Set the savegame dir (actually, we set it to a fake value, // since we cannot let the game control where saves are stored) ::strcpy(strSaveDir->_value, ""); // Allocate static buffer for the parser base SystemString *strParserBase = &sysStrings->_strings[SYS_STRING_PARSER_BASE]; strParserBase->_name = "parser-base"; strParserBase->_maxSize = MAX_PARSER_BASE; strParserBase->_value = (char *)calloc(MAX_PARSER_BASE, sizeof(char)); } SegmentId SegManager::findFreeSegment() const { // FIXME: This is a very crude approach: We find a free segment id by scanning // from the start. This can be slow if the number of segments becomes large. // Optimizations are possible and easy, but I refrain from doing any until this // refactoring is complete. // One very simple yet probably effective approach would be to add // "int firstFreeSegment", which is updated when allocating/freeing segments. // There are some scenarios where it performs badly, but we should first check // whether those occur at all. If so, there are easy refinements that deal // with this. Finally, we could switch to a more elaborate scheme, // such as keeping track of all free segments. But I doubt this is necessary. uint seg = 1; while (seg < _heap.size() && _heap[seg]) { ++seg; } assert(seg < 65536); return seg; } SegmentObj *SegManager::allocSegment(SegmentObj *mem, SegmentId *segid) { // Find a free segment SegmentId id = findFreeSegment(); if (segid) *segid = id; if (!mem) error("SegManager: invalid mobj"); // ... and put it into the (formerly) free segment. if (id >= (int)_heap.size()) { assert(id == (int)_heap.size()); _heap.push_back(0); } _heap[id] = mem; return mem; } Script *SegManager::allocateScript(int script_nr, SegmentId *segid) { // Check if the script already has an allocated segment. If it // does, return that segment. *segid = _scriptSegMap.getVal(script_nr, 0); if (*segid > 0) { return (Script *)_heap[*segid]; } // allocate the SegmentObj SegmentObj *mem = allocSegment(new Script(), segid); // Add the script to the "script id -> segment id" hashmap _scriptSegMap[script_nr] = *segid; return (Script *)mem; } int SegManager::deallocate(SegmentId seg, bool recursive) { SegmentObj *mobj; VERIFY(check(seg), "invalid seg id"); mobj = _heap[seg]; if (mobj->getType() == SEG_TYPE_SCRIPT) { Script *scr = (Script *)mobj; _scriptSegMap.erase(scr->_nr); if (recursive && scr->_localsSegment) deallocate(scr->_localsSegment, recursive); } delete mobj; _heap[seg] = NULL; return 1; } bool SegManager::isHeapObject(reg_t pos) { const Object *obj = getObject(pos); if (obj == NULL || (obj && obj->isFreed())) return false; Script *scr = getScriptIfLoaded(pos.segment); return !(scr && scr->_markedAsDeleted); } void SegManager::deallocateScript(int script_nr) { SegmentId seg = getScriptSegment(script_nr); deallocate(seg, true); } Script *SegManager::getScript(const SegmentId seg) { if (seg < 1 || (uint)seg >= _heap.size()) { error("SegManager::getScript(): seg id %x out of bounds", seg); } if (!_heap[seg]) { error("SegManager::getScript(): seg id %x is not in memory", seg); } if (_heap[seg]->getType() != SEG_TYPE_SCRIPT) { error("SegManager::getScript(): seg id %x refers to type %d != SEG_TYPE_SCRIPT", seg, _heap[seg]->getType()); } return (Script *)_heap[seg]; } Script *SegManager::getScriptIfLoaded(const SegmentId seg) { if (seg < 1 || (uint)seg >= _heap.size() || !_heap[seg] || _heap[seg]->getType() != SEG_TYPE_SCRIPT) return 0; return (Script *)_heap[seg]; } SegmentId SegManager::findSegmentByType(int type) { for (uint i = 0; i < _heap.size(); i++) if (_heap[i] && _heap[i]->getType() == type) return i; return 0; } SegmentObj *SegManager::getSegmentObj(SegmentId seg) { if (seg < 1 || (uint)seg >= _heap.size() || !_heap[seg]) return 0; return _heap[seg]; } SegmentType SegManager::getSegmentType(SegmentId seg) { if (seg < 1 || (uint)seg >= _heap.size() || !_heap[seg]) return SEG_TYPE_INVALID; return _heap[seg]->getType(); } SegmentObj *SegManager::getSegment(SegmentId seg, SegmentType type) { return getSegmentType(seg) == type ? _heap[seg] : NULL; } Object *SegManager::getObject(reg_t pos) { SegmentObj *mobj = getSegmentObj(pos.segment); Object *obj = NULL; if (mobj != NULL) { if (mobj->getType() == SEG_TYPE_CLONES) { CloneTable *ct = (CloneTable *)mobj; if (ct->isValidEntry(pos.offset)) obj = &(ct->_table[pos.offset]); else warning("getObject(): Trying to get an invalid object"); } else if (mobj->getType() == SEG_TYPE_SCRIPT) { Script *scr = (Script *)mobj; if (pos.offset <= scr->getBufSize() && pos.offset >= -SCRIPT_OBJECT_MAGIC_OFFSET && RAW_IS_OBJECT(scr->_buf + pos.offset)) { obj = scr->getObject(pos.offset); } } } return obj; } const char *SegManager::getObjectName(reg_t pos) { const Object *obj = getObject(pos); if (!obj) return ""; reg_t nameReg = obj->getNameSelector(); if (nameReg.isNull()) return ""; const char *name = derefString(nameReg); if (!name) return ""; return name; } reg_t SegManager::findObjectByName(const Common::String &name, int index) { reg_t retVal = NULL_REG; // Now all values are available; iterate over all objects. int timesFound = 0; for (uint i = 0; i < _heap.size(); i++) { SegmentObj *mobj = _heap[i]; int idx = 0; int max_index = 0; ObjMap::iterator it; Script *scr = 0; CloneTable *ct = 0; if (mobj) { if (mobj->getType() == SEG_TYPE_SCRIPT) { scr = (Script *)mobj; max_index = scr->_objects.size(); it = scr->_objects.begin(); } else if (mobj->getType() == SEG_TYPE_CLONES) { ct = (CloneTable *)mobj; max_index = ct->_table.size(); } } // It's a script or a clone table, scan all objects in it for (; idx < max_index; ++idx) { const Object *obj = NULL; reg_t objpos; objpos.offset = 0; objpos.segment = i; if (mobj->getType() == SEG_TYPE_SCRIPT) { obj = &(it->_value); objpos.offset = obj->getPos().offset; ++it; } else if (mobj->getType() == SEG_TYPE_CLONES) { if (!ct->isValidEntry(idx)) continue; obj = &(ct->_table[idx]); objpos.offset = idx; } const char *objname = getObjectName(objpos); if (name == objname) { // Found a match! if ((index < 0) && (timesFound > 0)) { if (timesFound == 1) { // First time we realized the ambiguity printf("Ambiguous:\n"); printf(" %3x: [%04x:%04x] %s\n", 0, PRINT_REG(retVal), name.c_str()); } printf(" %3x: [%04x:%04x] %s\n", timesFound, PRINT_REG(objpos), name.c_str()); } if (index < 0 || timesFound == index) retVal = objpos; ++timesFound; } } } if (!timesFound) return NULL_REG; if (timesFound > 1 && index < 0) { printf("Ambiguous: Aborting.\n"); return NULL_REG; // Ambiguous } if (timesFound <= index) return NULL_REG; // Not found return retVal; } // validate the seg // return: // false - invalid seg // true - valid seg bool SegManager::check(SegmentId seg) { if (seg < 1 || (uint)seg >= _heap.size()) { return false; } if (!_heap[seg]) { warning("SegManager: seg %x is removed from memory, but not removed from hash_map", seg); return false; } return true; } // return the seg if script_id is valid and in the map, else 0 SegmentId SegManager::getScriptSegment(int script_id) const { return _scriptSegMap.getVal(script_id, 0); } SegmentId SegManager::getScriptSegment(int script_nr, ScriptLoadType load) { SegmentId segment; if ((load & SCRIPT_GET_LOAD) == SCRIPT_GET_LOAD) script_instantiate(_resMan, this, script_nr); segment = getScriptSegment(script_nr); if (segment > 0) { if ((load & SCRIPT_GET_LOCK) == SCRIPT_GET_LOCK) getScript(segment)->incrementLockers(); } return segment; } LocalVariables *SegManager::allocLocalsSegment(Script *scr, int count) { if (!count) { // No locals scr->_localsSegment = 0; scr->_localsBlock = NULL; return NULL; } else { LocalVariables *locals; if (scr->_localsSegment) { locals = (LocalVariables *)_heap[scr->_localsSegment]; VERIFY(locals != NULL, "Re-used locals segment was NULL'd out"); VERIFY(locals->getType() == SEG_TYPE_LOCALS, "Re-used locals segment did not consist of local variables"); VERIFY(locals->script_id == scr->_nr, "Re-used locals segment belonged to other script"); } else locals = (LocalVariables *)allocSegment(new LocalVariables(), &scr->_localsSegment); scr->_localsBlock = locals; locals->script_id = scr->_nr; locals->_locals.resize(count); return locals; } } DataStack *SegManager::allocateStack(int size, SegmentId *segid) { SegmentObj *mobj = allocSegment(new DataStack(), segid); DataStack *retval = (DataStack *)mobj; retval->_entries = (reg_t *)calloc(size, sizeof(reg_t)); retval->_capacity = size; return retval; } void SegManager::freeHunkEntry(reg_t addr) { if (addr.isNull()) { warning("Attempt to free a Hunk from a null address"); return; } HunkTable *ht = (HunkTable *)getSegment(addr.segment, SEG_TYPE_HUNK); if (!ht) { warning("Attempt to free Hunk from address %04x:%04x: Invalid segment type", PRINT_REG(addr)); return; } ht->freeEntry(addr.offset); } reg_t SegManager::allocateHunkEntry(const char *hunk_type, int size) { HunkTable *table; int offset; if (!Hunks_seg_id) allocSegment(new HunkTable(), &(Hunks_seg_id)); table = (HunkTable *)_heap[Hunks_seg_id]; offset = table->allocEntry(); reg_t addr = make_reg(Hunks_seg_id, offset); Hunk *h = &(table->_table[offset]); if (!h) return NULL_REG; h->mem = malloc(size); h->size = size; h->type = hunk_type; return addr; } byte *SegManager::getHunkPointer(reg_t addr) { HunkTable *ht = (HunkTable *)getSegment(addr.segment, SEG_TYPE_HUNK); if (!ht || !ht->isValidEntry(addr.offset)) { warning("getHunkPointer() with invalid handle"); return NULL; } return (byte *)ht->_table[addr.offset].mem; } Clone *SegManager::allocateClone(reg_t *addr) { CloneTable *table; int offset; if (!Clones_seg_id) table = (CloneTable *)allocSegment(new CloneTable(), &(Clones_seg_id)); else table = (CloneTable *)_heap[Clones_seg_id]; offset = table->allocEntry(); *addr = make_reg(Clones_seg_id, offset); return &(table->_table[offset]); } void SegManager::reconstructClones() { for (uint i = 0; i < _heap.size(); i++) { if (_heap[i]) { SegmentObj *mobj = _heap[i]; if (mobj->getType() == SEG_TYPE_CLONES) { CloneTable *ct = (CloneTable *)mobj; for (uint j = 0; j < ct->_table.size(); j++) { // Check if the clone entry is used uint entryNum = (uint)ct->first_free; bool isUsed = true; while (entryNum != ((uint) CloneTable::HEAPENTRY_INVALID)) { if (entryNum == j) { isUsed = false; break; } entryNum = ct->_table[entryNum].next_free; } if (!isUsed) continue; CloneTable::Entry &seeker = ct->_table[j]; const Object *baseObj = getObject(seeker.getSpeciesSelector()); seeker.cloneFromObject(baseObj); if (!baseObj) warning("Clone entry without a base class: %d", j); } // end for } // end if } // end if } // end for } List *SegManager::allocateList(reg_t *addr) { ListTable *table; int offset; if (!Lists_seg_id) allocSegment(new ListTable(), &(Lists_seg_id)); table = (ListTable *)_heap[Lists_seg_id]; offset = table->allocEntry(); *addr = make_reg(Lists_seg_id, offset); return &(table->_table[offset]); } Node *SegManager::allocateNode(reg_t *addr) { NodeTable *table; int offset; if (!Nodes_seg_id) allocSegment(new NodeTable(), &(Nodes_seg_id)); table = (NodeTable *)_heap[Nodes_seg_id]; offset = table->allocEntry(); *addr = make_reg(Nodes_seg_id, offset); return &(table->_table[offset]); } reg_t SegManager::newNode(reg_t value, reg_t key) { reg_t nodebase; Node *n = allocateNode(&nodebase); n->pred = n->succ = NULL_REG; n->key = key; n->value = value; return nodebase; } List *SegManager::lookupList(reg_t addr) { if (getSegmentType(addr.segment) != SEG_TYPE_LISTS) { warning("Attempt to use non-list %04x:%04x as list", PRINT_REG(addr)); return NULL; } ListTable *lt = (ListTable *)_heap[addr.segment]; if (!lt->isValidEntry(addr.offset)) { warning("Attempt to use non-list %04x:%04x as list", PRINT_REG(addr)); return NULL; } return &(lt->_table[addr.offset]); } Node *SegManager::lookupNode(reg_t addr) { if (addr.isNull()) return NULL; // Non-error null if (getSegmentType(addr.segment) != SEG_TYPE_NODES) { // FIXME: This occurs right at the beginning of SQ4, when walking north from the first screen. It doesn't // seem to have any apparent ill-effects, though, so it's been changed to non-fatal, for now //error("%s, L%d: Attempt to use non-node %04x:%04x as list node", __FILE__, __LINE__, PRINT_REG(addr)); warning("Attempt to use non-node %04x:%04x as list node", PRINT_REG(addr)); return NULL; } NodeTable *nt = (NodeTable *)_heap[addr.segment]; if (!nt->isValidEntry(addr.offset)) { warning("Attempt to use non-node %04x:%04x as list node", PRINT_REG(addr)); return NULL; } return &(nt->_table[addr.offset]); } SegmentRef SegManager::dereference(reg_t pointer) { SegmentRef ret; if (!pointer.segment || (pointer.segment >= _heap.size()) || !_heap[pointer.segment]) { // This occurs in KQ5CD when interacting with certain objects warning("SegManager::dereference(): Attempt to dereference invalid pointer %04x:%04x", PRINT_REG(pointer)); return ret; /* Invalid */ } SegmentObj *mobj = _heap[pointer.segment]; return mobj->dereference(pointer); } static void *derefPtr(SegManager *segMan, reg_t pointer, int entries, bool wantRaw) { SegmentRef ret = segMan->dereference(pointer); if (!ret.isValid()) return NULL; if (ret.isRaw != wantRaw) { warning("Dereferencing pointer %04x:%04x (type %d) which is %s, but expected %s", PRINT_REG(pointer), segMan->_heap[pointer.segment]->getType(), ret.isRaw ? "raw" : "not raw", wantRaw ? "raw" : "not raw"); } if (!wantRaw && ret.skipByte) { warning("Unaligned pointer read: %04x:%04x expected with word alignment", PRINT_REG(pointer)); return NULL; } if (entries > ret.maxSize) { warning("Trying to dereference pointer %04x:%04x beyond end of segment", PRINT_REG(pointer)); return NULL; } if (ret.isRaw) return ret.raw; else return ret.reg; } byte *SegManager::derefBulkPtr(reg_t pointer, int entries) { return (byte *)derefPtr(this, pointer, entries, true); } reg_t *SegManager::derefRegPtr(reg_t pointer, int entries) { return (reg_t *)derefPtr(this, pointer, 2*entries, false); } char *SegManager::derefString(reg_t pointer, int entries) { return (char *)derefPtr(this, pointer, entries, true); } // Helper functions for getting/setting characters in string fragments static inline char getChar(const SegmentRef &ref, uint offset) { if (ref.skipByte) offset++; reg_t val = ref.reg[offset / 2]; if (val.segment != 0) warning("Attempt to read character from non-raw data"); return (offset & 1 ? val.offset >> 8 : val.offset & 0xff); } static inline void setChar(const SegmentRef &ref, uint offset, char value) { if (ref.skipByte) offset++; reg_t *val = ref.reg + offset / 2; val->segment = 0; if (offset & 1) val->offset = (val->offset & 0x00ff) | (value << 8); else val->offset = (val->offset & 0xff00) | value; } // TODO: memcpy, strcpy and strncpy could maybe be folded into a single function void SegManager::strncpy(reg_t dest, const char* src, size_t n) { SegmentRef dest_r = dereference(dest); if (!dest_r.isValid()) { warning("Attempt to strncpy to invalid pointer %04x:%04x", PRINT_REG(dest)); return; } if (dest_r.isRaw) { // raw -> raw if (n == 0xFFFFFFFFU) ::strcpy((char *)dest_r.raw, src); else ::strncpy((char *)dest_r.raw, src, n); } else { // raw -> non-raw for (uint i = 0; i < n; i++) { setChar(dest_r, i, src[i]); if (!src[i]) break; } // Put an ending NUL to terminate the string if ((size_t)dest_r.maxSize > n) setChar(dest_r, n, 0); } } void SegManager::strncpy(reg_t dest, reg_t src, size_t n) { SegmentRef dest_r = dereference(dest); const SegmentRef src_r = dereference(src); if (!src_r.isValid()) { warning("Attempt to strncpy from invalid pointer %04x:%04x", PRINT_REG(src)); // Clear target string instead. if (n > 0) strcpy(dest, ""); return; } if (!dest_r.isValid()) { warning("Attempt to strncpy to invalid pointer %04x:%04x", PRINT_REG(dest)); return; } if (src_r.isRaw) { // raw -> * strncpy(dest, (const char*)src_r.raw, n); } else if (dest_r.isRaw && !src_r.isRaw) { // non-raw -> raw for (uint i = 0; i < n; i++) { char c = getChar(src_r, i); dest_r.raw[i] = c; if (!c) break; } } else { // non-raw -> non-raw for (uint i = 0; i < n; i++) { char c = getChar(src_r, i); setChar(dest_r, i, c); if (!c) break; } } } void SegManager::strcpy(reg_t dest, const char* src) { strncpy(dest, src, 0xFFFFFFFFU); } void SegManager::strcpy(reg_t dest, reg_t src) { strncpy(dest, src, 0xFFFFFFFFU); } void SegManager::memcpy(reg_t dest, const byte* src, size_t n) { SegmentRef dest_r = dereference(dest); if (!dest_r.isValid()) { warning("Attempt to memcpy to invalid pointer %04x:%04x", PRINT_REG(dest)); return; } if ((int)n > dest_r.maxSize) { warning("Trying to dereference pointer %04x:%04x beyond end of segment", PRINT_REG(dest)); return; } if (dest_r.isRaw) { // raw -> raw ::memcpy((char*)dest_r.raw, src, n); } else { // raw -> non-raw for (uint i = 0; i < n; i++) setChar(dest_r, i, src[i]); } } void SegManager::memcpy(reg_t dest, reg_t src, size_t n) { SegmentRef dest_r = dereference(dest); const SegmentRef src_r = dereference(src); if (!dest_r.isValid()) { warning("Attempt to memcpy to invalid pointer %04x:%04x", PRINT_REG(dest)); return; } if ((int)n > dest_r.maxSize) { warning("Trying to dereference pointer %04x:%04x beyond end of segment", PRINT_REG(dest)); return; } if (!src_r.isValid()) { warning("Attempt to memcpy from invalid pointer %04x:%04x", PRINT_REG(src)); return; } if ((int)n > src_r.maxSize) { warning("Trying to dereference pointer %04x:%04x beyond end of segment", PRINT_REG(src)); return; } if (src_r.isRaw) { // raw -> * memcpy(dest, src_r.raw, n); } else if (dest_r.isRaw) { // * -> raw memcpy(dest_r.raw, src, n); } else { // non-raw -> non-raw for (uint i = 0; i < n; i++) { char c = getChar(src_r, i); setChar(dest_r, i, c); } } } void SegManager::memcpy(byte *dest, reg_t src, size_t n) { const SegmentRef src_r = dereference(src); if (!src_r.isValid()) { warning("Attempt to memcpy from invalid pointer %04x:%04x", PRINT_REG(src)); return; } if ((int)n > src_r.maxSize) { warning("Trying to dereference pointer %04x:%04x beyond end of segment", PRINT_REG(src)); return; } if (src_r.isRaw) { // raw -> raw ::memcpy(dest, src_r.raw, n); } else { // non-raw -> raw for (uint i = 0; i < n; i++) { char c = getChar(src_r, i); dest[i] = c; } } } size_t SegManager::strlen(reg_t str) { SegmentRef str_r = dereference(str); if (!str_r.isValid()) { warning("Attempt to call strlen on invalid pointer %04x:%04x", PRINT_REG(str)); return 0; } if (str_r.isRaw) { return ::strlen((const char *)str_r.raw); } else { int i = 0; while (getChar(str_r, i)) i++; return i; } } Common::String SegManager::getString(reg_t pointer, int entries) { Common::String ret; SegmentRef src_r = dereference(pointer); if (!src_r.isValid()) { warning("SegManager::getString(): Attempt to dereference invalid pointer %04x:%04x", PRINT_REG(pointer)); return ret; } if (entries > src_r.maxSize) { warning("Trying to dereference pointer %04x:%04x beyond end of segment", PRINT_REG(pointer)); return ret; } if (src_r.isRaw) ret = (char *)src_r.raw; else { uint i = 0; for (;;) { char c = getChar(src_r, i); if (!c) break; i++; ret += c; }; } return ret; } byte *SegManager::allocDynmem(int size, const char *descr, reg_t *addr) { SegmentId seg; SegmentObj *mobj = allocSegment(new DynMem(), &seg); *addr = make_reg(seg, 0); DynMem &d = *(DynMem *)mobj; d._size = size; if (size == 0) d._buf = NULL; else d._buf = (byte *)malloc(size); d._description = descr; return (byte *)(d._buf); } int SegManager::freeDynmem(reg_t addr) { if (addr.segment < 1 || addr.segment >= _heap.size() || !_heap[addr.segment] || _heap[addr.segment]->getType() != SEG_TYPE_DYNMEM) return 1; // error deallocate(addr.segment, true); return 0; // OK } #ifdef ENABLE_SCI32 SciArray *SegManager::allocateArray(reg_t *addr) { ArrayTable *table; int offset; if (!Arrays_seg_id) { table = (ArrayTable *)allocSegment(new ArrayTable(), &(Arrays_seg_id)); } else table = (ArrayTable *)_heap[Arrays_seg_id]; offset = table->allocEntry(); *addr = make_reg(Arrays_seg_id, offset); return &(table->_table[offset]); } SciArray *SegManager::lookupArray(reg_t addr) { if (_heap[addr.segment]->getType() != SEG_TYPE_ARRAY) error("Attempt to use non-array %04x:%04x as array", PRINT_REG(addr)); ArrayTable *arrayTable = (ArrayTable *)_heap[addr.segment]; if (!arrayTable->isValidEntry(addr.offset)) error("Attempt to use non-array %04x:%04x as array", PRINT_REG(addr)); return &(arrayTable->_table[addr.offset]); } void SegManager::freeArray(reg_t addr) { if (_heap[addr.segment]->getType() != SEG_TYPE_ARRAY) error("Attempt to use non-array %04x:%04x as array", PRINT_REG(addr)); ArrayTable *arrayTable = (ArrayTable *)_heap[addr.segment]; if (!arrayTable->isValidEntry(addr.offset)) error("Attempt to use non-array %04x:%04x as array", PRINT_REG(addr)); arrayTable->_table[addr.offset].destroy(); arrayTable->freeEntry(addr.offset); } SciString *SegManager::allocateString(reg_t *addr) { StringTable *table; int offset; if (!String_seg_id) { table = (StringTable *)allocSegment(new StringTable(), &(String_seg_id)); } else table = (StringTable *)_heap[String_seg_id]; offset = table->allocEntry(); *addr = make_reg(String_seg_id, offset); return &(table->_table[offset]); } SciString *SegManager::lookupString(reg_t addr) { if (_heap[addr.segment]->getType() != SEG_TYPE_STRING) error("lookupString: Attempt to use non-string %04x:%04x as string", PRINT_REG(addr)); StringTable *stringTable = (StringTable *)_heap[addr.segment]; if (!stringTable->isValidEntry(addr.offset)) error("lookupString: Attempt to use non-string %04x:%04x as string", PRINT_REG(addr)); return &(stringTable->_table[addr.offset]); } void SegManager::freeString(reg_t addr) { if (_heap[addr.segment]->getType() != SEG_TYPE_STRING) error("freeString: Attempt to use non-string %04x:%04x as string", PRINT_REG(addr)); StringTable *stringTable = (StringTable *)_heap[addr.segment]; if (!stringTable->isValidEntry(addr.offset)) error("freeString: Attempt to use non-string %04x:%04x as string", PRINT_REG(addr)); stringTable->_table[addr.offset].destroy(); stringTable->freeEntry(addr.offset); } #endif } // End of namespace Sci