/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ #ifndef _SCI_SEG_MANAGER_H #define _SCI_SEG_MANAGER_H #include "sci/engine/int_hashmap.h" #include "sci/include/sys_strings.h" #include "sci/include/vm.h" namespace Sci { #define DEFAULT_SCRIPTS 32 #define DEFAULT_OBJECTS 8 // default # of objects per script #define DEFAULT_OBJECTS_INCREMENT 4 // Number of additional objects to instantiate if we're running out of them // SCRIPT_ID must be 0 typedef enum { SCRIPT_ID, SEG_ID } id_flag; //void dbg_print( const char* msg, void *i ); // for debug only // verify the the given condition is true, output the message if condition is false, and exit // Parameters: // cond - condition to be verified // msg - the message to be printed if condition fails // return: // none, terminate the program if fails #define VERIFY( cond, msg ) if (!(cond)) {\ sciprintf("%s, line, %d, %s\n", __FILE__, __LINE__, msg); \ BREAKPOINT(); \ } #define MEM_OBJ_INVALID 0 #define MEM_OBJ_SCRIPT 1 #define MEM_OBJ_CLONES 2 #define MEM_OBJ_LOCALS 3 #define MEM_OBJ_STACK 4 #define MEM_OBJ_SYS_STRINGS 5 #define MEM_OBJ_LISTS 6 #define MEM_OBJ_NODES 7 #define MEM_OBJ_HUNK 8 #define MEM_OBJ_DYNMEM 9 #define MEM_OBJ_RESERVED 10 #define MEM_OBJ_MAX MEM_OBJ_RESERVED // For sanity checking typedef int mem_obj_enum; #define GET_SEGMENT(mgr, index, rtype) ((index) > 0 && (mgr).heap_size > index) ? \ (((mgr).heap[index] && (mgr).heap[index]->type == rtype)? (mgr).heap[index] : NULL) : NULL #define GET_SEGMENT_ANY(mgr, index) ((index) > 0 && (mgr).heap_size > index) ? \ (((mgr).heap[index])? (mgr).heap[index] : NULL) : NULL #define GET_OBJECT_SEGMENT(mgr, index) ((index) > 0 && (mgr).heap_size > index) ? \ (((mgr).heap[index] && ((mgr).heap[index]->type == MEM_OBJ_SCRIPT || (mgr).heap[index]->type == MEM_OBJ_CLONES))? (mgr).heap[index] \ : NULL): NULL struct SegManager { int_hash_map_t *id_seg_map; // id - script id; seg - index of heap mem_obj_t **heap; int heap_size; // size of the heap int reserved_id; int exports_wide; int sci1_1; int gc_mark_bits; // For standard Mark&Sweep: // 1 or 0, depending on what unreachable/freshly allocated // memory is tagged as size_t mem_allocated; // Total amount of memory allocated seg_id_t clones_seg_id; // ID of the (a) clones segment seg_id_t lists_seg_id; // ID of the (a) list segment seg_id_t nodes_seg_id; // ID of the (a) node segment seg_id_t hunks_seg_id; // ID of the (a) hunk segment }; // Toplevel functionality void sm_init(SegManager *self, int sci1_1); // Initialize the segment manager void sm_destroy(SegManager *self); // Deallocate all memory associated with the segment manager void sm_gc(SegManager *self, EngineState *s); // Perform garbage collection // Parameters: (state_t *) s: The state to operate on // Effects : Unreachable objects in 's' are deallocated // 1. Scripts void sm_free_script(mem_obj_t* mem); mem_obj_t *sm_allocate_script(SegManager* self, EngineState *s, int script_nr, int* seg_id); // Allocate a script into the segment manager // Parameters: (int) script_nr: number of the script to load // (state_t *) s: The state containing resource manager handlers to load the // script data // Returns : (int) 0 on failure, 1 on success // (int) *seg_id: The segment ID of the newly allocated segment, on success // The script must then be initialised; see section (1b.), below. int sm_deallocate_script(SegManager* self, int script_nr); // Forcefully deallocate a previously allocated script // Parameters: (int) script_nr: number of the script to deallocate // Returns : (int) 1 on success, 0 on failure int sm_script_is_loaded(SegManager* self, int id, id_flag flag); // Determines whether a script has been loaded yet // Parameters: (int) id: number of the script or ID of the script segment to check for // (id_flag) flag: Whether to address the script by script number (SCRIPT_ID) or // by its segment (SEG_ID). SEG_ID is faster than SCRIPT_ID, // but less convenient. uint16 sm_validate_export_func(SegManager* self, int pubfunct, int seg); // Validate whether the specified public function is exported by the script in the specified segment // Parameters: (int) pubfunct: Index of the function to validate // (int) seg: Segment ID of the script the check is to be performed for // Returns : (uint16) 0 if the public function is invalid, its offset into the script's segment // otherwise int sm_seg_get(SegManager* self, int script_nr); // Get the segment ID associated with a script number // Parameters: (int) script_nr: Number of the script to look up // Returns : (int) The associated segment ID, or -1 if no matching segment exists // This function is "pure" (i.e, it doesn't modify anything). // script lock operations void sm_increment_lockers(SegManager *self, int id, id_flag flag); // Increments the number of lockers of the script in question by one // Parameters: (int) id: ID of the script or script segment to modify // (id_flag) flag: Whether to address the script by script number (SCRIPT_ID) or // by its segment (SEG_ID). SEG_ID is faster than SCRIPT_ID, // but less convenient. void sm_decrement_lockers(SegManager *self, int id, id_flag flag); // Decrements the number of lockers of the script in question by one // Parameters: (int) id: ID of the script or script segment to modify // (id_flag) flag: Whether to address the script by script number (SCRIPT_ID) or // by its segment (SEG_ID). SEG_ID is faster than SCRIPT_ID, // but less convenient. int sm_get_lockers(SegManager *self, int id, id_flag flag); // Retrieves the number of locks held on this script // Parameters: (int) id: ID of the script or script segment to read from // (id_flag) flag: Whether to address the script by script number (SCRIPT_ID) or // by its segment (SEG_ID). SEG_ID is faster than SCRIPT_ID, // but less convenient. // Returns : (int) The number of locks held on the previously identified script void sm_set_lockers(SegManager *self, int lockers, int id, id_flag flag); // Sets the number of locks held on the specified script // Parameters: (int) id: ID of the script or script segment to modify // (id_flag) flag: Whether to address the script by script number (SCRIPT_ID) or // by its segment (SEG_ID). SEG_ID is faster than SCRIPT_ID, // but less convenient. byte *sm_get_synonyms(SegManager *self, int id, id_flag flag); // Retrieves a pointer to the synonyms associated with the specified script // Parameters: (int) id: ID of the script or script segment to read from // (id_flag) flag: Whether to address the script by script number (SCRIPT_ID) or // by its segment (SEG_ID). SEG_ID is faster than SCRIPT_ID, // but less convenient. // Returns : (byte *) Pointer to the synonyms, in non-parsed format. // A dynamic failure is issued if the specified ID does not reference a proper script. int sm_get_synonyms_nr(SegManager *self, int id, id_flag flag); // Retrieves the number of synonyms associated with the specified script // Parameters: (int) id: ID of the script or script segment to read from // (id_flag) flag: Whether to address the script by script number (SCRIPT_ID) or // by its segment (SEG_ID). SEG_ID is faster than SCRIPT_ID, // but less convenient. // Returns : (int) The number of synonyms associated with the specified script // A dynamic failure is issued if the specified ID does not reference a proper script. // 1b. Script Initialisation // The set of functions below are intended // to be used during script instantiation, // i.e. loading and linking. void sm_script_initialise_locals_zero(SegManager *self, seg_id_t seg, int nr); // Initializes a script's local variable block // Parameters: (seg_id_t) seg: Segment containing the script to initialize // (int) nr: Number of local variables to allocate // All variables are initialized to zero. void sm_script_initialise_locals(SegManager *self, reg_t location); // Initializes a script's local variable block according to a prototype // Parameters: (reg_t) location: Location to initialize from object_t *sm_script_obj_init(SegManager *self, EngineState *s, reg_t obj_pos); // Initializes an object within the segment manager // Parameters: (reg_t) obj_pos: Location (segment, offset) of the object // Returns : (object_t *) A newly created object_t describing the object // obj_pos must point to the beginning of the script/class block (as opposed // to what the VM considers to be the object location) // The corresponding object_t is stored within the relevant script. void sm_script_add_code_block(SegManager *self, reg_t location); // Informs the segment manager that a code block must be relocated // Parameters: (reg_t) location: Start of block to relocate void sm_set_export_width(SegManager *self, int flag); // Tells the segment manager whether exports are wide (32-bit) or not. // Parameters: (int) flag: 1 if exports are wide, 0 otherwise void sm_script_relocate(SegManager *self, reg_t block); // Processes a relocation block witin a script // Parameters: (reg_t) obj_pos: Location (segment, offset) of the block // Returns : (object_t *) Location of the relocation block // This function is idempotent, but it must only be called after all // objects have been instantiated, or a run-time error will occur. void sm_script_free_unused_objects(SegManager *self, seg_id_t segid); // Deallocates all unused but allocated entries for objects // Parameters: (seg_id_t) segid: segment of the script to prune in this way // These entries are created during script instantiation; deallocating them // frees up some additional memory. void sm_set_export_table_offset(SegManager *self, int offset, int id, id_flag flag); // Sets the script-relative offset of the exports table // Parameters: (int) offset: The script-relative exports table offset // (int) id: ID of the script or script segment to write to // (id_flag) flag: Whether to address the script by script number (SCRIPT_ID) or // by its segment (SEG_ID). SEG_ID is faster than SCRIPT_ID, // but less convenient. // A dynamic failure is issued if the specified ID does not reference a proper script. void sm_set_synonyms_offset(SegManager *self, int offset, int id, id_flag flag); // Sets the script-relative offset of the synonyms associated with the specified script // Parameters: (int) offset: The script-relative offset of the synonyms block // (int) id: ID of the script or script segment to write to // (id_flag) flag: Whether to address the script by script number (SCRIPT_ID) or // by its segment (SEG_ID). SEG_ID is faster than SCRIPT_ID, // but less convenient. // A dynamic failure is issued if the specified ID does not reference a proper script. void sm_set_synonyms_nr(SegManager *self, int nr, int id, id_flag flag); // Sets the number of synonyms associated with the specified script // Parameters: (int) nr: The number of synonyms, as to be stored within the script // (int) id: ID of the script or script segment to write to // (id_flag) flag: Whether to address the script by script number (SCRIPT_ID) or // by its segment (SEG_ID). SEG_ID is faster than SCRIPT_ID, // but less convenient. // A dynamic failure is issued if the specified ID does not reference a proper script. void sm_mark_script_deleted(SegManager *self, int script_nr); // Marks the script identified by its script number as deleted // Parameters: (int) script_nr: Script number to mark as deleted // This will not actually delete the script. If references remain present on the // heap or the stack, the script will stay in memory in a quasi-deleted state until // either unreachable (resulting in its eventual deletion) or reloaded (resulting // in its data being updated). void sm_unmark_script_deleted(SegManager *self, int script_nr); // Marks the script identified by its script number as not deleted // Parameters: (int) script_nr: Script number to mark as not deleted int sm_script_is_marked_as_deleted(SegManager *self, seg_id_t seg); // Determines whether the script referenced by the indicated segment is marked as being deleted. // Parameters: (seg_id_t) Segment ID of the script to investigate // Returns : (int) 1 iff seg points to a script and the segment is deleted, 0 otherwise // Will return 0 when applied to an invalid or non-script seg. // 2. Clones clone_t *sm_alloc_clone(SegManager *self, reg_t *addr); // Allocate a fresh clone // Returns : (clone_t*): Reference to the memory allocated for the clone // (reg_t) *addr: The offset of the freshly allocated clone void sm_free_clone(SegManager *self, reg_t addr); // Deallocates a clone // Parameters: (reg_t) addr: Offset of the clone scheduled for termination // Objects (static, from Scripts, and dynmic, from Clones) // Not all of these functions are fully operational for clones ATM int16 sm_get_heap(SegManager* self, reg_t reg); // Retrieves a 16 bit value from within a script's heap representation // Parameters: (reg_t) reg: The address to read from // Returns : (int16) The value read from the specified location void sm_put_heap(SegManager *self, reg_t reg, int16 value); // Writes a 16 bit value into a script's heap representation // Parameters: (reg_t) reg: The address to write to // (int16) value: The value to write void sm_mcpy_in_out(SegManager* self, int dst, const void *src, size_t n, int id, int flag); // Copies a byte string into a script's heap representation // Parameters: (int) dst: The script-relative offset of the destination area // (const void *) src: Pointer to the data source location // (size_t) n: Number of bytes to copy // (int) id: ID of the script or script segment to write to // (id_flag) flag: Whether to address the script by script number (SCRIPT_ID) or // by its segment (SEG_ID). SEG_ID is faster than SCRIPT_ID, // but less convenient. // A dynamic failure is issued if the specified ID does not reference a proper script. // 4. Stack dstack_t *sm_allocate_stack(SegManager *self, int size, seg_id_t *segid); // Allocates a data stack // Parameters: (int) size: Number of stack entries to reserve // Returns : (dstack_t *): The physical stack // (seg_id_t) segid: Segment ID of the stack // 5. System Strings sys_strings_t *sm_allocate_sys_strings(SegManager *self, seg_id_t *segid); // Allocates a system string table // Returns : (dstack_t *): The physical stack // (seg_id_t) segid: Segment ID of the stack // See also sys_string_acquire(); // 6, 7. Lists and Nodes list_t *sm_alloc_list(SegManager *self, reg_t *addr); // Allocate a fresh list // Returns : (listY_t*): Reference to the memory allocated for the list // (reg_t) *addr: The offset of the freshly allocated list void sm_free_list(SegManager *self, reg_t addr); // Deallocates a list // Parameters: (reg_t) addr: Offset of the list scheduled for termination node_t *sm_alloc_node(SegManager *self, reg_t *addr); // Allocate a fresh node // Returns : (node_t*): Reference to the memory allocated for the node // (reg_t) *addr: The offset of the freshly allocated node void sm_free_node(SegManager *self, reg_t addr); // Deallocates a list node // Parameters: (reg_t) addr: Offset of the node scheduled for termination // 8. Hunk Memory hunk_t *sm_alloc_hunk_entry(SegManager *self, const char *hunk_type, int size, reg_t *addr); // Allocate a fresh chunk of the hunk // Parameters: (int) size: Number of bytes to allocate for the hunk entry // (const char *) hunk_type: A descriptive string for the hunk entry, // for debugging purposes // Returns : (hunk_t*): Reference to the memory allocated for the hunk piece // (reg_t) *addr: The offset of the freshly allocated hunk entry void sm_free_hunk_entry(SegManager *self, reg_t addr); // Deallocates a hunk eentry // Parameters: (reg_t) addr: Offset of the hunk entry to delete // 9. Dynamic Memory unsigned char *sm_alloc_dynmem(SegManager *self, int size, const char *description, reg_t *addr); // Allocate some dynamic memory // Parameters: (int) size: Number of bytes to allocate // (const char_ *) description: A descriptive string, // for debugging purposes // Returns : (unsigned char*): Raw pointer into the allocated dynamic memory // (reg_t) *addr: The offset of the freshly allocated X int sm_free_dynmem(SegManager *self, reg_t addr); // Deallocates a piece of dynamic memory // Parameters: (reg_t) addr: Offset of the dynmem chunk to free const char *sm_get_description(SegManager *self, reg_t addr); // Gets the description of a dynmem segment // Parameters: (reg_t) addr: Segment to describe // Returns : (const char *): Pointer to the descriptive string set in // sm_alloc_dynmem // 10. Reserved segments seg_id_t sm_allocate_reserved_segment(SegManager *self, char *name); // Reserves a special-purpose segment // Parameters: (char *) name: A string name identifying the segment (the string is cloned and retained) // Returns : A fresh segment ID for the segment in question // Reserved segments are never used by the segment manager. They can be used to tag special-purpose addresses. // Segment 0 is implicitly reserved for numbers. // Generic Operations on Segments and Addresses byte *sm_dereference(SegManager *self, reg_t reg, int *size); // Dereferences a raw memory pointer // Parameters: (reg_t) reg: The reference to dereference // Returns : (byte *) The data block referenced // (int) size: (optionally) the theoretical maximum size of it // 11. Segment interface, primarily for GC typedef struct _seg_interface { SegManager *segmgr; mem_obj_t *mobj; seg_id_t seg_id; mem_obj_enum type_id; // Segment type const char *type; // String description of the segment type reg_t (*find_canonic_address)(struct _seg_interface *self, reg_t sub_addr); // Finds the canonic address associated with sub_reg // Parameters: (reg_t) sub_addr: The base address whose canonic address is to be found // For each valid address a, there exists a canonic address c(a) such that c(a) = c(c(a)). // This address "governs" a in the sense that deallocating c(a) will deallocate a. void (*free_at_address)(struct _seg_interface *self, reg_t sub_addr); // Deallocates all memory associated with the specified address // Parameters: (reg_t) sub_addr: The address (within the given segment) to deallocate void (*list_all_deallocatable)(struct _seg_interface *self, void *param, void (*note)(void *param, reg_t addr)); // Iterates over and reports all addresses within the current segment // Parameters: note : (voidptr * addr) -> (): Invoked for each address on which free_at_address() // makes sense // (void *) param: Parameter passed to 'note' void (*list_all_outgoing_references)(struct _seg_interface *self, EngineState *s, reg_t object, void *param, void (*note)(void *param, reg_t addr)); // Iterates over all references reachable from the specified object // Parameters: (reg_t) object: The object (within the current segment) to analyse // (void *) param: Parameter passed to 'note' // note : (voidptr * addr) -> (): Invoked for each outgoing reference within the object // Note: This function may also choose to report numbers (segment 0) as adresses void (*deallocate_self)(struct _seg_interface *self); // Deallocates the segment interface } seg_interface_t; seg_interface_t *get_seg_interface(SegManager *self, seg_id_t segid); // Retrieves the segment interface to the specified segment // Parameters: (seg_id_t) segid: ID of the segment to look up // Returns : (seg_interface_t *): An interface to the specified segment ID, or NULL on error // The returned interface 'si' must be freed after use by calling 'si->dealloc_self(si)'; } // End of namespace Sci #endif