/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ #include "common/endian.h" #include "sci/sci.h" #include "sci/engine/features.h" #include "sci/engine/script.h" // for SCI_OBJ_EXPORTS and SCI_OBJ_SYNONYMS #include "sci/engine/segment.h" #include "sci/engine/seg_manager.h" #include "sci/engine/state.h" namespace Sci { //#define GC_DEBUG // Debug garbage collection //#define GC_DEBUG_VERBOSE // Debug garbage verbosely SegmentObj *SegmentObj::createSegmentObj(SegmentType type) { SegmentObj *mem = 0; switch (type) { case SEG_TYPE_SCRIPT: mem = new Script(); break; case SEG_TYPE_CLONES: mem = new CloneTable(); break; case SEG_TYPE_LOCALS: mem = new LocalVariables(); break; case SEG_TYPE_SYS_STRINGS: mem = new SystemStrings(); break; case SEG_TYPE_STACK: mem = new DataStack(); break; case SEG_TYPE_HUNK: mem = new HunkTable(); break; case SEG_TYPE_LISTS: mem = new ListTable(); break; case SEG_TYPE_NODES: mem = new NodeTable(); break; case SEG_TYPE_DYNMEM: mem = new DynMem(); break; #ifdef ENABLE_SCI32 case SEG_TYPE_ARRAY: mem = new ArrayTable(); break; case SEG_TYPE_STRING: mem = new StringTable(); break; #endif default: error("Unknown SegmentObj type %d", type); break; } assert(mem); assert(mem->_type == type); return mem; } Script::Script() : SegmentObj(SEG_TYPE_SCRIPT) { _nr = 0; _buf = NULL; _bufSize = 0; _scriptSize = 0; _heapSize = 0; _synonyms = NULL; _heapStart = NULL; _exportTable = NULL; _localsOffset = 0; _localsSegment = 0; _localsBlock = NULL; _localsCount = 0; _markedAsDeleted = false; } Script::~Script() { freeScript(); } void Script::freeScript() { free(_buf); _buf = NULL; _bufSize = 0; _objects.clear(); } void Script::init(int script_nr, ResourceManager *resMan) { Resource *script = resMan->findResource(ResourceId(kResourceTypeScript, script_nr), 0); _localsOffset = 0; _localsBlock = NULL; _localsCount = 0; _markedAsDeleted = false; _nr = script_nr; _buf = 0; _heapStart = 0; _scriptSize = script->size; _bufSize = script->size; _heapSize = 0; _lockers = 1; if (getSciVersion() == SCI_VERSION_0_EARLY) { _bufSize += READ_LE_UINT16(script->data) * 2; } else if (getSciVersion() >= SCI_VERSION_1_1) { /** * In SCI11, the heap was in a separate space from the script. * We append it to the end of the script, and adjust addressing accordingly. * However, since we address the heap with a 16-bit pointer, the combined * size of the stack and the heap must be 64KB. So far this has worked * for SCI11, SCI2 and SCI21 games. SCI3 games use a different script format, * and theoretically they can exceed the 64KB boundary using relocation. */ Resource *heap = resMan->findResource(ResourceId(kResourceTypeHeap, script_nr), 0); _bufSize += heap->size; _heapSize = heap->size; // Ensure that the start of the heap resource can be word-aligned. if (script->size & 2) { _bufSize++; _scriptSize++; } // As mentioned above, the script and the heap together should not exceed 64KB if (script->size + heap->size > 65535) error("Script and heap sizes combined exceed 64K. This means a fundamental " "design bug was made regarding SCI1.1 and newer games.\nPlease " "report this error to the ScummVM team"); } } void Script::load(ResourceManager *resMan) { Resource *script = resMan->findResource(ResourceId(kResourceTypeScript, _nr), 0); assert(script != 0); _buf = (byte *)malloc(_bufSize); assert(_buf); assert(_bufSize >= script->size); memcpy(_buf, script->data, script->size); if (getSciVersion() >= SCI_VERSION_1_1) { Resource *heap = resMan->findResource(ResourceId(kResourceTypeHeap, _nr), 0); assert(heap != 0); _heapStart = _buf + _scriptSize; assert(_bufSize - _scriptSize <= heap->size); memcpy(_heapStart, heap->data, heap->size); } _exportTable = 0; _numExports = 0; _synonyms = 0; _numSynonyms = 0; if (getSciVersion() >= SCI_VERSION_1_1) { if (READ_LE_UINT16(_buf + 1 + 5) > 0) { // does the script have an export table? _exportTable = (const uint16 *)(_buf + 1 + 5 + 2); _numExports = READ_SCI11ENDIAN_UINT16(_exportTable - 1); } _localsOffset = _scriptSize + 4; _localsCount = READ_SCI11ENDIAN_UINT16(_buf + _localsOffset - 2); } else { _exportTable = (const uint16 *)findBlock(SCI_OBJ_EXPORTS); if (_exportTable) { _numExports = READ_SCI11ENDIAN_UINT16(_exportTable + 1); _exportTable += 3; // skip header plus 2 bytes (_exportTable is a uint16 pointer) } _synonyms = findBlock(SCI_OBJ_SYNONYMS); if (_synonyms) { _numSynonyms = READ_SCI11ENDIAN_UINT16(_synonyms + 2) / 4; _synonyms += 4; // skip header } const byte* localsBlock = findBlock(SCI_OBJ_LOCALVARS); if (localsBlock) { _localsOffset = localsBlock - _buf + 4; _localsCount = (READ_LE_UINT16(_buf + _localsOffset - 2) - 4) >> 1; // half block size } } if (getSciVersion() > SCI_VERSION_0_EARLY) { // Does the script actually have locals? If not, set the locals offset to 0 if (!_localsCount) _localsOffset = 0; if (_localsOffset + _localsCount * 2 + 1 >= (int)_bufSize) { error("Locals extend beyond end of script: offset %04x, count %d vs size %d", _localsOffset, _localsCount, _bufSize); _localsCount = (_bufSize - _localsOffset) >> 1; } } else { // Old script block. There won't be a localvar block in this case. // Instead, the script starts with a 16 bit int specifying the // number of locals we need; these are then allocated and zeroed. _localsCount = READ_LE_UINT16(_buf); _localsOffset = -_localsCount * 2; // Make sure it's invalid } } Object *Script::allocateObject(uint16 offset) { return &_objects[offset]; } Object *Script::getObject(uint16 offset) { if (_objects.contains(offset)) return &_objects[offset]; else return 0; } const Object *Script::getObject(uint16 offset) const { if (_objects.contains(offset)) return &_objects[offset]; else return 0; } Object *Script::scriptObjInit(reg_t obj_pos, bool fullObjectInit) { Object *obj; if (getSciVersion() < SCI_VERSION_1_1 && fullObjectInit) obj_pos.offset += 8; // magic offset (SCRIPT_OBJECT_MAGIC_OFFSET) VERIFY(obj_pos.offset < _bufSize, "Attempt to initialize object beyond end of script\n"); obj = allocateObject(obj_pos.offset); VERIFY(obj_pos.offset + kOffsetFunctionArea < (int)_bufSize, "Function area pointer stored beyond end of script\n"); obj->init(_buf, obj_pos, fullObjectInit); return obj; } void Script::scriptObjRemove(reg_t obj_pos) { if (getSciVersion() < SCI_VERSION_1_1) obj_pos.offset += 8; _objects.erase(obj_pos.toUint16()); } // This helper function is used by Script::relocateLocal and Object::relocate static bool relocateBlock(Common::Array &block, int block_location, SegmentId segment, int location, size_t scriptSize) { int rel = location - block_location; if (rel < 0) return false; uint idx = rel >> 1; if (idx >= block.size()) return false; if (rel & 1) { error("Attempt to relocate odd variable #%d.5e (relative to %04x)\n", idx, block_location); return false; } block[idx].segment = segment; // Perform relocation if (getSciVersion() >= SCI_VERSION_1_1) block[idx].offset += scriptSize; return true; } bool Script::relocateLocal(SegmentId segment, int location) { if (_localsBlock) return relocateBlock(_localsBlock->_locals, _localsOffset, segment, location, _scriptSize); else return false; } void Script::relocate(reg_t block) { byte *heap = _buf; uint16 heapSize = (uint16)_bufSize; uint16 heapOffset = 0; if (getSciVersion() >= SCI_VERSION_1_1) { heap = _heapStart; heapSize = (uint16)_heapSize; heapOffset = _scriptSize; } VERIFY(block.offset < (uint16)heapSize && READ_SCI11ENDIAN_UINT16(heap + block.offset) * 2 + block.offset < (uint16)heapSize, "Relocation block outside of script\n"); int count = READ_SCI11ENDIAN_UINT16(heap + block.offset); int exportIndex = 0; int pos = 0; for (int i = 0; i < count; i++) { pos = READ_SCI11ENDIAN_UINT16(heap + block.offset + 2 + (exportIndex * 2)) + heapOffset; // This occurs in SCI01/SCI1 games where usually one export value // is zero. It seems that in this situation, we should skip the // export and move to the next one, though the total count of valid // exports remains the same if (!pos) { exportIndex++; pos = READ_SCI11ENDIAN_UINT16(heap + block.offset + 2 + (exportIndex * 2)) + heapOffset; if (!pos) error("Script::relocate(): Consecutive zero exports found"); } // In SCI0-SCI1, script local variables, objects and code are relocated. We only relocate // locals and objects here, and ignore relocation of code blocks. In SCI1.1 and newer // versions, only locals and objects are relocated. if (!relocateLocal(block.segment, pos)) { // Not a local? It's probably an object or code block. If it's an object, relocate it. const ObjMap::iterator end = _objects.end(); for (ObjMap::iterator it = _objects.begin(); it != end; ++it) if (it->_value.relocate(block.segment, pos, _scriptSize)) break; } exportIndex++; } } void Script::incrementLockers() { _lockers++; } void Script::decrementLockers() { if (_lockers > 0) _lockers--; } int Script::getLockers() const { return _lockers; } void Script::setLockers(int lockers) { _lockers = lockers; } uint16 Script::validateExportFunc(int pubfunct) { bool exportsAreWide = (g_sci->_features->detectLofsType() == SCI_VERSION_1_MIDDLE); if (_numExports <= pubfunct) { error("validateExportFunc(): pubfunct is invalid"); return 0; } if (exportsAreWide) pubfunct *= 2; uint16 offset = READ_SCI11ENDIAN_UINT16(_exportTable + pubfunct); VERIFY(offset < _bufSize, "invalid export function pointer"); return offset; } byte *Script::findBlock(int type) { byte *buf = _buf; bool oldScriptHeader = (getSciVersion() == SCI_VERSION_0_EARLY); if (oldScriptHeader) buf += 2; do { int seekerType = READ_LE_UINT16(buf); if (seekerType == 0) break; if (seekerType == type) return buf; int seekerSize = READ_LE_UINT16(buf + 2); assert(seekerSize > 0); buf += seekerSize; } while (1); return NULL; } // memory operations void Script::mcpyInOut(int dst, const void *src, size_t n) { if (_buf) { assert(dst + n <= _bufSize); memcpy(_buf + dst, src, n); } } SegmentRef SegmentObj::dereference(reg_t pointer) { error("Error: Trying to dereference pointer %04x:%04x to inappropriate segment", PRINT_REG(pointer)); return SegmentRef(); } bool Script::isValidOffset(uint16 offset) const { return offset < _bufSize; } SegmentRef Script::dereference(reg_t pointer) { if (pointer.offset > _bufSize) { error("Script::dereference(): Attempt to dereference invalid pointer %04x:%04x into script segment (script size=%d)", PRINT_REG(pointer), (uint)_bufSize); return SegmentRef(); } SegmentRef ret; ret.isRaw = true; ret.maxSize = _bufSize - pointer.offset; ret.raw = _buf + pointer.offset; return ret; } bool LocalVariables::isValidOffset(uint16 offset) const { return offset < _locals.size() * 2; } SegmentRef LocalVariables::dereference(reg_t pointer) { SegmentRef ret; ret.isRaw = false; // reg_t based data! ret.maxSize = (_locals.size() - pointer.offset / 2) * 2; if (pointer.offset & 1) { ret.maxSize -= 1; ret.skipByte = true; } if (ret.maxSize > 0) { ret.reg = &_locals[pointer.offset / 2]; } else { if ((g_sci->getEngineState()->currentRoomNumber() == 660 || g_sci->getEngineState()->currentRoomNumber() == 660) && g_sci->getGameId() == GID_LAURABOW2) { // Happens in two places during the intro of LB2CD, both from kMemory(peek): // - room 160: Heap 160 has 83 local variables (0-82), and the game // asks for variables at indices 83 - 90 too. // - room 220: Heap 220 has 114 local variables (0-113), and the // game asks for variables at indices 114-120 too. } else { error("LocalVariables::dereference: Offset at end or out of bounds %04x:%04x", PRINT_REG(pointer)); } ret.reg = 0; } return ret; } bool DataStack::isValidOffset(uint16 offset) const { return offset < _capacity * 2; } SegmentRef DataStack::dereference(reg_t pointer) { SegmentRef ret; ret.isRaw = false; // reg_t based data! ret.maxSize = (_capacity - pointer.offset / 2) * 2; if (pointer.offset & 1) { ret.maxSize -= 1; ret.skipByte = true; } ret.reg = &_entries[pointer.offset / 2]; return ret; } bool DynMem::isValidOffset(uint16 offset) const { return offset < _size; } SegmentRef DynMem::dereference(reg_t pointer) { SegmentRef ret; ret.isRaw = true; ret.maxSize = _size - pointer.offset; ret.raw = _buf + pointer.offset; return ret; } bool SystemStrings::isValidOffset(uint16 offset) const { return offset < SYS_STRINGS_MAX && !_strings[offset]._name.empty(); } SegmentRef SystemStrings::dereference(reg_t pointer) { SegmentRef ret; ret.isRaw = true; ret.maxSize = _strings[pointer.offset]._maxSize; if (isValidOffset(pointer.offset)) ret.raw = (byte *)(_strings[pointer.offset]._value); else { if (g_sci->getGameId() == GID_KQ5) { // This occurs in KQ5CD when interacting with certain objects } else { error("SystemStrings::dereference(): Attempt to dereference invalid pointer %04x:%04x", PRINT_REG(pointer)); } } return ret; } //-------------------- script -------------------- reg_t Script::findCanonicAddress(SegManager *segMan, reg_t addr) const { addr.offset = 0; return addr; } void Script::freeAtAddress(SegManager *segMan, reg_t addr) { /* debugC(2, kDebugLevelGC, "[GC] Freeing script %04x:%04x", PRINT_REG(addr)); if (_localsSegment) debugC(2, kDebugLevelGC, "[GC] Freeing locals %04x:0000", _localsSegment); */ if (_markedAsDeleted) segMan->deallocateScript(_nr); } void Script::listAllDeallocatable(SegmentId segId, void *param, NoteCallback note) const { (*note)(param, make_reg(segId, 0)); } void Script::listAllOutgoingReferences(reg_t addr, void *param, NoteCallback note) const { if (addr.offset <= _bufSize && addr.offset >= -SCRIPT_OBJECT_MAGIC_OFFSET && RAW_IS_OBJECT(_buf + addr.offset)) { const Object *obj = getObject(addr.offset); if (obj) { // Note all local variables, if we have a local variable environment if (_localsSegment) (*note)(param, make_reg(_localsSegment, 0)); for (uint i = 0; i < obj->getVarCount(); i++) (*note)(param, obj->getVariable(i)); } else { error("Request for outgoing script-object reference at %04x:%04x failed", PRINT_REG(addr)); } } else { /* warning("Unexpected request for outgoing script-object references at %04x:%04x", PRINT_REG(addr));*/ /* Happens e.g. when we're looking into strings */ } } //-------------------- clones -------------------- void CloneTable::listAllOutgoingReferences(reg_t addr, void *param, NoteCallback note) const { // assert(addr.segment == _segId); if (!isValidEntry(addr.offset)) { error("Unexpected request for outgoing references from clone at %04x:%04x", PRINT_REG(addr)); } const Clone *clone = &(_table[addr.offset]); // Emit all member variables (including references to the 'super' delegate) for (uint i = 0; i < clone->getVarCount(); i++) (*note)(param, clone->getVariable(i)); // Note that this also includes the 'base' object, which is part of the script and therefore also emits the locals. (*note)(param, clone->getPos()); //debugC(2, kDebugLevelGC, "[GC] Reporting clone-pos %04x:%04x", PRINT_REG(clone->pos)); } void CloneTable::freeAtAddress(SegManager *segMan, reg_t addr) { #ifdef GC_DEBUG // assert(addr.segment == _segId); Object *victim_obj = &(_table[addr.offset]); if (!(victim_obj->_flags & OBJECT_FLAG_FREED)) warning("[GC] Clone %04x:%04x not reachable and not freed (freeing now)", PRINT_REG(addr)); #ifdef GC_DEBUG_VERBOSE else warning("[GC-DEBUG] Clone %04x:%04x: Freeing", PRINT_REG(addr)); #endif #endif /* warning("[GC] Clone %04x:%04x: Freeing", PRINT_REG(addr)); warning("[GC] Clone had pos %04x:%04x", PRINT_REG(victim_obj->pos)); */ freeEntry(addr.offset); } //-------------------- locals -------------------- reg_t LocalVariables::findCanonicAddress(SegManager *segMan, reg_t addr) const { // Reference the owning script SegmentId owner_seg = segMan->getScriptSegment(script_id); assert(owner_seg > 0); return make_reg(owner_seg, 0); } void LocalVariables::listAllOutgoingReferences(reg_t addr, void *param, NoteCallback note) const { // assert(addr.segment == _segId); for (uint i = 0; i < _locals.size(); i++) (*note)(param, _locals[i]); } //-------------------- stack -------------------- reg_t DataStack::findCanonicAddress(SegManager *segMan, reg_t addr) const { addr.offset = 0; return addr; } void DataStack::listAllOutgoingReferences(reg_t addr, void *param, NoteCallback note) const { fprintf(stderr, "Emitting %d stack entries\n", _capacity); for (int i = 0; i < _capacity; i++) (*note)(param, _entries[i]); fprintf(stderr, "DONE"); } //-------------------- lists -------------------- void ListTable::freeAtAddress(SegManager *segMan, reg_t sub_addr) { freeEntry(sub_addr.offset); } void ListTable::listAllOutgoingReferences(reg_t addr, void *param, NoteCallback note) const { if (!isValidEntry(addr.offset)) { error("Invalid list referenced for outgoing references: %04x:%04x", PRINT_REG(addr)); return; } const List *list = &(_table[addr.offset]); note(param, list->first); note(param, list->last); // We could probably get away with just one of them, but // let's be conservative here. } //-------------------- nodes -------------------- void NodeTable::freeAtAddress(SegManager *segMan, reg_t sub_addr) { freeEntry(sub_addr.offset); } void NodeTable::listAllOutgoingReferences(reg_t addr, void *param, NoteCallback note) const { if (!isValidEntry(addr.offset)) { error("Invalid node referenced for outgoing references: %04x:%04x", PRINT_REG(addr)); return; } const Node *node = &(_table[addr.offset]); // We need all four here. Can't just stick with 'pred' OR 'succ' because node operations allow us // to walk around from any given node note(param, node->pred); note(param, node->succ); note(param, node->key); note(param, node->value); } //-------------------- hunk -------------------- //-------------------- object ---------------------------- void Object::init(byte *buf, reg_t obj_pos, bool initVariables) { byte *data = buf + obj_pos.offset; _baseObj = data; _pos = obj_pos; if (getSciVersion() < SCI_VERSION_1_1) { _variables.resize(READ_LE_UINT16(data + kOffsetSelectorCounter)); _baseVars = (const uint16 *)(_baseObj + _variables.size() * 2); _baseMethod = (const uint16 *)(data + READ_LE_UINT16(data + kOffsetFunctionArea)); _methodCount = READ_LE_UINT16(_baseMethod - 1); } else { _variables.resize(READ_SCI11ENDIAN_UINT16(data + 2)); _baseVars = (const uint16 *)(buf + READ_SCI11ENDIAN_UINT16(data + 4)); _baseMethod = (const uint16 *)(buf + READ_SCI11ENDIAN_UINT16(data + 6)); _methodCount = READ_SCI11ENDIAN_UINT16(_baseMethod); } if (initVariables) { for (uint i = 0; i < _variables.size(); i++) _variables[i] = make_reg(0, READ_SCI11ENDIAN_UINT16(data + (i * 2))); } } const Object *Object::getClass(SegManager *segMan) const { return isClass() ? this : segMan->getObject(getSuperClassSelector()); } int Object::locateVarSelector(SegManager *segMan, Selector slc) const { const byte *buf; uint varnum; if (getSciVersion() < SCI_VERSION_1_1) { varnum = getVarCount(); int selector_name_offset = varnum * 2 + kOffsetSelectorSegment; buf = _baseObj + selector_name_offset; } else { const Object *obj = getClass(segMan); varnum = obj->getVariable(1).toUint16(); buf = (byte *)obj->_baseVars; } for (uint i = 0; i < varnum; i++) if (READ_SCI11ENDIAN_UINT16(buf + (i << 1)) == slc) // Found it? return i; // report success return -1; // Failed } bool Object::relocate(SegmentId segment, int location, size_t scriptSize) { return relocateBlock(_variables, getPos().offset, segment, location, scriptSize); } int Object::propertyOffsetToId(SegManager *segMan, int propertyOffset) const { int selectors = getVarCount(); if (propertyOffset < 0 || (propertyOffset >> 1) >= selectors) { error("Applied propertyOffsetToId to invalid property offset %x (property #%d not in [0..%d])", propertyOffset, propertyOffset >> 1, selectors - 1); return -1; } if (getSciVersion() < SCI_VERSION_1_1) { const byte *selectoroffset = ((const byte *)(_baseObj)) + kOffsetSelectorSegment + selectors * 2; return READ_SCI11ENDIAN_UINT16(selectoroffset + propertyOffset); } else { const Object *obj = this; if (!isClass()) obj = segMan->getObject(getSuperClassSelector()); return READ_SCI11ENDIAN_UINT16((const byte *)obj->_baseVars + propertyOffset); } } void Object::initSpecies(SegManager *segMan, reg_t addr) { uint16 speciesOffset = getSpeciesSelector().offset; if (speciesOffset == 0xffff) // -1 setSpeciesSelector(NULL_REG); // no species else setSpeciesSelector(segMan->getClassAddress(speciesOffset, SCRIPT_GET_LOCK, addr)); } void Object::initSuperClass(SegManager *segMan, reg_t addr) { uint16 superClassOffset = getSuperClassSelector().offset; if (superClassOffset == 0xffff) // -1 setSuperClassSelector(NULL_REG); // no superclass else setSuperClassSelector(segMan->getClassAddress(superClassOffset, SCRIPT_GET_LOCK, addr)); } bool Object::initBaseObject(SegManager *segMan, reg_t addr, bool doInitSuperClass) { const Object *baseObj = segMan->getObject(getSpeciesSelector()); if (baseObj) { _variables.resize(baseObj->getVarCount()); // Copy base from species class, as we need its selector IDs _baseObj = baseObj->_baseObj; if (doInitSuperClass) initSuperClass(segMan, addr); return true; } return false; } //-------------------- dynamic memory -------------------- reg_t DynMem::findCanonicAddress(SegManager *segMan, reg_t addr) const { addr.offset = 0; return addr; } void DynMem::listAllDeallocatable(SegmentId segId, void *param, NoteCallback note) const { (*note)(param, make_reg(segId, 0)); } #ifdef ENABLE_SCI32 SegmentRef ArrayTable::dereference(reg_t pointer) { SegmentRef ret; ret.isRaw = false; ret.maxSize = _table[pointer.offset].getSize() * 2; ret.reg = _table[pointer.offset].getRawData(); return ret; } void ArrayTable::freeAtAddress(SegManager *segMan, reg_t sub_addr) { _table[sub_addr.offset].destroy(); freeEntry(sub_addr.offset); } void ArrayTable::listAllOutgoingReferences(reg_t addr, void *param, NoteCallback note) const { if (!isValidEntry(addr.offset)) { error("Invalid array referenced for outgoing references: %04x:%04x", PRINT_REG(addr)); return; } const SciArray *array = &(_table[addr.offset]); for (uint32 i = 0; i < array->getSize(); i++) { reg_t value = array->getValue(i); if (value.segment != 0) note(param, value); } } Common::String SciString::toString() const { if (_type != 3) error("SciString::toString(): Array is not a string"); Common::String string; for (uint32 i = 0; i < _size && _data[i] != 0; i++) string += _data[i]; return string; } void SciString::fromString(const Common::String &string) { if (_type != 3) error("SciString::fromString(): Array is not a string"); if (string.size() > _size) setSize(string.size()); for (uint32 i = 0; i < string.size(); i++) _data[i] = string[i]; } SegmentRef StringTable::dereference(reg_t pointer) { SegmentRef ret; ret.isRaw = true; ret.maxSize = _table[pointer.offset].getSize(); ret.raw = (byte*)_table[pointer.offset].getRawData(); return ret; } void StringTable::freeAtAddress(SegManager *segMan, reg_t sub_addr) { _table[sub_addr.offset].destroy(); freeEntry(sub_addr.offset); } #endif } // End of namespace Sci