/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #ifndef SCI_ENGINE_SEGMENT_H #define SCI_ENGINE_SEGMENT_H #include "common/serializer.h" #include "sci/engine/object.h" #include "sci/engine/vm.h" #include "sci/engine/vm_types.h" // for reg_t #include "sci/util.h" namespace Sci { struct SegmentRef { bool isRaw; ///< true if data is raw, false if it is a reg_t sequence union { byte *raw; reg_t *reg; }; int maxSize; ///< number of available bytes // FIXME: Perhaps a generic 'offset' is more appropriate here bool skipByte; ///< true if referencing the 2nd data byte of *reg, false otherwise // TODO: Add this? //reg_t pointer; // Original pointer // TODO: Add this? //SegmentType type; SegmentRef() : isRaw(true), raw(0), maxSize(0), skipByte(false) {} bool isValid() const { return (isRaw ? raw != 0 : reg != 0); } }; enum SegmentType { SEG_TYPE_INVALID = 0, SEG_TYPE_SCRIPT = 1, SEG_TYPE_CLONES = 2, SEG_TYPE_LOCALS = 3, SEG_TYPE_STACK = 4, // 5 used to be system strings, now obsolete SEG_TYPE_LISTS = 6, SEG_TYPE_NODES = 7, SEG_TYPE_HUNK = 8, SEG_TYPE_DYNMEM = 9, // 10 used to be string fragments, now obsolete #ifdef ENABLE_SCI32 SEG_TYPE_ARRAY = 11, SEG_TYPE_STRING = 12, SEG_TYPE_BITMAP = 13, #endif SEG_TYPE_MAX // For sanity checking }; struct SegmentObj : public Common::Serializable { SegmentType _type; public: static SegmentObj *createSegmentObj(SegmentType type); public: SegmentObj(SegmentType type) : _type(type) {} virtual ~SegmentObj() {} inline SegmentType getType() const { return _type; } /** * Check whether the given offset into this memory object is valid, * i.e., suitable for passing to dereference. */ virtual bool isValidOffset(uint16 offset) const = 0; /** * Dereferences a raw memory pointer. * @param reg reference to dereference * @return the data block referenced */ virtual SegmentRef dereference(reg_t pointer); /** * Finds the canonic address associated with sub_reg. * Used by the garbage collector. * * For each valid address a, there exists a canonic address c(a) such that c(a) = c(c(a)). * This address "governs" a in the sense that deallocating c(a) will deallocate a. * * @param sub_addr base address whose canonic address is to be found */ virtual reg_t findCanonicAddress(SegManager *segMan, reg_t sub_addr) const { return sub_addr; } /** * Deallocates all memory associated with the specified address. * Used by the garbage collector. * @param sub_addr address (within the given segment) to deallocate */ virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr) {} /** * Iterates over and reports all addresses within the segment. * Used by the garbage collector. * @return a list of addresses within the segment */ virtual Common::Array listAllDeallocatable(SegmentId segId) const { return Common::Array(); } /** * Iterates over all references reachable from the specified object. * Used by the garbage collector. * @param object object (within the current segment) to analyze * @return a list of outgoing references within the object * * @note This function may also choose to report numbers (segment 0) as adresses */ virtual Common::Array listAllOutgoingReferences(reg_t object) const { return Common::Array(); } }; struct LocalVariables : public SegmentObj { int script_id; /**< Script ID this local variable block belongs to */ Common::Array _locals; public: LocalVariables(): SegmentObj(SEG_TYPE_LOCALS), script_id(0) { } virtual bool isValidOffset(uint16 offset) const { return offset < _locals.size() * 2; } virtual SegmentRef dereference(reg_t pointer); virtual reg_t findCanonicAddress(SegManager *segMan, reg_t sub_addr) const; virtual Common::Array listAllOutgoingReferences(reg_t object) const; virtual void saveLoadWithSerializer(Common::Serializer &ser); }; /** Data stack */ struct DataStack : SegmentObj { int _capacity; /**< Number of stack entries */ reg_t *_entries; public: DataStack() : SegmentObj(SEG_TYPE_STACK), _capacity(0), _entries(NULL) { } ~DataStack() { free(_entries); _entries = NULL; } virtual bool isValidOffset(uint16 offset) const { return offset < _capacity * 2; } virtual SegmentRef dereference(reg_t pointer); virtual reg_t findCanonicAddress(SegManager *segMan, reg_t addr) const { return make_reg(addr.getSegment(), 0); } virtual Common::Array listAllOutgoingReferences(reg_t object) const; virtual void saveLoadWithSerializer(Common::Serializer &ser); }; enum { CLONE_USED = -1, CLONE_NONE = -1 }; typedef Object Clone; struct Node { reg_t pred; /**< Predecessor node */ reg_t succ; /**< Successor node */ reg_t key; reg_t value; }; /* List nodes */ struct List { reg_t first; reg_t last; }; struct Hunk { void *mem; uint32 size; const char *type; }; template struct SegmentObjTable : public SegmentObj { typedef T value_type; struct Entry { T data; int next_free; /* Only used for free entries */ }; enum { HEAPENTRY_INVALID = -1 }; int first_free; /**< Beginning of a singly linked list for entries */ int entries_used; /**< Statistical information */ typedef Common::Array ArrayType; ArrayType _table; public: SegmentObjTable(SegmentType type) : SegmentObj(type) { initTable(); } void initTable() { entries_used = 0; first_free = HEAPENTRY_INVALID; _table.clear(); } int allocEntry() { entries_used++; if (first_free != HEAPENTRY_INVALID) { int oldff = first_free; first_free = _table[oldff].next_free; _table[oldff].next_free = oldff; return oldff; } else { uint newIdx = _table.size(); _table.push_back(Entry()); _table[newIdx].next_free = newIdx; // Tag as 'valid' return newIdx; } } virtual bool isValidOffset(uint16 offset) const { return isValidEntry(offset); } bool isValidEntry(int idx) const { return idx >= 0 && (uint)idx < _table.size() && _table[idx].next_free == idx; } virtual void freeEntry(int idx) { if (idx < 0 || (uint)idx >= _table.size()) ::error("Table::freeEntry: Attempt to release invalid table index %d", idx); _table[idx].next_free = first_free; first_free = idx; entries_used--; } virtual Common::Array listAllDeallocatable(SegmentId segId) const { Common::Array tmp; for (uint i = 0; i < _table.size(); i++) if (isValidEntry(i)) tmp.push_back(make_reg(segId, i)); return tmp; } uint size() const { return _table.size(); } T &at(uint index) { return _table[index].data; } const T &at(uint index) const { return _table[index].data; } T &operator[](uint index) { return at(index); } const T &operator[](uint index) const { return at(index); } }; /* CloneTable */ struct CloneTable : public SegmentObjTable { CloneTable() : SegmentObjTable(SEG_TYPE_CLONES) {} virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr); virtual Common::Array listAllOutgoingReferences(reg_t object) const; virtual void saveLoadWithSerializer(Common::Serializer &ser); }; /* NodeTable */ struct NodeTable : public SegmentObjTable { NodeTable() : SegmentObjTable(SEG_TYPE_NODES) {} virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr) { freeEntry(sub_addr.getOffset()); } virtual Common::Array listAllOutgoingReferences(reg_t object) const; virtual void saveLoadWithSerializer(Common::Serializer &ser); }; /* ListTable */ struct ListTable : public SegmentObjTable { ListTable() : SegmentObjTable(SEG_TYPE_LISTS) {} virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr) { freeEntry(sub_addr.getOffset()); } virtual Common::Array listAllOutgoingReferences(reg_t object) const; virtual void saveLoadWithSerializer(Common::Serializer &ser); }; /* HunkTable */ struct HunkTable : public SegmentObjTable { HunkTable() : SegmentObjTable(SEG_TYPE_HUNK) {} virtual ~HunkTable() { for (uint i = 0; i < _table.size(); i++) { if (isValidEntry(i)) freeEntryContents(i); } } void freeEntryContents(int idx) { free(at(idx).mem); at(idx).mem = 0; } virtual void freeEntry(int idx) { SegmentObjTable::freeEntry(idx); freeEntryContents(idx); } virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr) { freeEntry(sub_addr.getOffset()); } virtual void saveLoadWithSerializer(Common::Serializer &ser); }; // Free-style memory struct DynMem : public SegmentObj { int _size; Common::String _description; byte *_buf; public: DynMem() : SegmentObj(SEG_TYPE_DYNMEM), _size(0), _buf(0) {} ~DynMem() { free(_buf); _buf = NULL; } virtual bool isValidOffset(uint16 offset) const { return offset < _size; } virtual SegmentRef dereference(reg_t pointer); virtual reg_t findCanonicAddress(SegManager *segMan, reg_t addr) const { return make_reg(addr.getSegment(), 0); } virtual Common::Array listAllDeallocatable(SegmentId segId) const { const reg_t r = make_reg(segId, 0); return Common::Array(&r, 1); } virtual void saveLoadWithSerializer(Common::Serializer &ser); }; #ifdef ENABLE_SCI32 template class SciArray { public: SciArray() : _type(-1), _data(NULL), _size(0), _actualSize(0) { } SciArray(const SciArray &array) { _type = array._type; _size = array._size; _actualSize = array._actualSize; _data = new T[_actualSize]; assert(_data); memcpy(_data, array._data, _size * sizeof(T)); } SciArray& operator=(const SciArray &array) { if (this == &array) return *this; delete[] _data; _type = array._type; _size = array._size; _actualSize = array._actualSize; _data = new T[_actualSize]; assert(_data); memcpy(_data, array._data, _size * sizeof(T)); return *this; } virtual ~SciArray() { destroy(); } virtual void destroy() { delete[] _data; _data = NULL; _type = -1; _size = _actualSize = 0; } void setType(byte type) { if (_type >= 0) error("SciArray::setType(): Type already set"); _type = type; } void setSize(uint32 size) { if (_type < 0) error("SciArray::setSize(): No type set"); // Check if we don't have to do anything if (_size == size) return; // Check if we don't have to expand the array if (size <= _actualSize) { _size = size; return; } // So, we're going to have to create an array of some sort T *newArray = new T[size]; memset(newArray, 0, size * sizeof(T)); // Check if we never created an array before if (!_data) { _size = _actualSize = size; _data = newArray; return; } // Copy data from the old array to the new memcpy(newArray, _data, _size * sizeof(T)); // Now set the new array to the old and set the sizes delete[] _data; _data = newArray; _size = _actualSize = size; } T getValue(uint16 index) const { if (index >= _size) error("SciArray::getValue(): %d is out of bounds (%d)", index, _size); return _data[index]; } void setValue(uint16 index, T value) { if (index >= _size) error("SciArray::setValue(): %d is out of bounds (%d)", index, _size); _data[index] = value; } byte getType() const { return _type; } uint32 getSize() const { return _size; } T *getRawData() { return _data; } const T *getRawData() const { return _data; } protected: int8 _type; T *_data; uint32 _size; // _size holds the number of entries that the scripts have requested uint32 _actualSize; // _actualSize is the actual numbers of entries allocated }; class SciString : public SciArray { public: SciString() : SciArray() { setType(3); } // We overload destroy to ensure the string type is 3 after destroying void destroy() { SciArray::destroy(); _type = 3; } Common::String toString() const; void fromString(const Common::String &string); }; struct ArrayTable : public SegmentObjTable > { ArrayTable() : SegmentObjTable >(SEG_TYPE_ARRAY) {} virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr); virtual Common::Array listAllOutgoingReferences(reg_t object) const; void saveLoadWithSerializer(Common::Serializer &ser); SegmentRef dereference(reg_t pointer); }; struct StringTable : public SegmentObjTable { StringTable() : SegmentObjTable(SEG_TYPE_STRING) {} virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr) { at(sub_addr.getOffset()).destroy(); freeEntry(sub_addr.getOffset()); } void saveLoadWithSerializer(Common::Serializer &ser); SegmentRef dereference(reg_t pointer); }; #pragma mark - #pragma mark Bitmaps enum { kDefaultSkipColor = 250 }; #define BITMAP_PROPERTY(size, property, offset)\ inline uint##size get##property() const {\ return READ_SCI11ENDIAN_UINT##size(_data + (offset));\ }\ inline void set##property(uint##size value) {\ WRITE_SCI11ENDIAN_UINT##size(_data + (offset), (value));\ } struct BitmapTable; /** * A convenience class for creating and modifying in-memory * bitmaps. */ class SciBitmap : public Common::Serializable { byte *_data; int _dataSize; Buffer _buffer; bool _gc; public: enum BitmapFlags { kBitmapRemap = 2 }; /** * Gets the size of the bitmap header for the current * engine version. */ static inline uint16 getBitmapHeaderSize() { // TODO: These values are accurate for each engine, but there may be no reason // to not simply just always use size 40, since SCI2.1mid does not seem to // actually store any data above byte 40, and SCI2 did not allow bitmaps with // scaling resolutions other than the default (320x200). Perhaps SCI3 used // the extra bytes, or there is some reason why they tried to align the header // size with other headers like pic headers? // uint32 bitmapHeaderSize; // if (getSciVersion() >= SCI_VERSION_2_1_MIDDLE) { // bitmapHeaderSize = 46; // } else if (getSciVersion() == SCI_VERSION_2_1_EARLY) { // bitmapHeaderSize = 40; // } else { // bitmapHeaderSize = 36; // } // return bitmapHeaderSize; return 46; } /** * Gets the byte size of a bitmap with the given width * and height. */ static inline uint32 getBitmapSize(const uint16 width, const uint16 height) { return width * height + getBitmapHeaderSize(); } inline SciBitmap() : _data(nullptr), _dataSize(0), _gc(true) {} inline SciBitmap(const SciBitmap &other) { _dataSize = other._dataSize; _data = (byte *)malloc(other._dataSize); memcpy(_data, other._data, other._dataSize); if (_dataSize) { _buffer = Buffer(getWidth(), getHeight(), getPixels()); } _gc = other._gc; } inline ~SciBitmap() { free(_data); _data = nullptr; _dataSize = 0; } inline SciBitmap &operator=(const SciBitmap &other) { if (this == &other) { return *this; } free(_data); _dataSize = other._dataSize; _data = (byte *)malloc(other._dataSize); memcpy(_data, other._data, _dataSize); if (_dataSize) { _buffer = Buffer(getWidth(), getHeight(), getPixels()); } _gc = other._gc; return *this; } /** * Allocates and initialises a new bitmap. */ inline void create(const int16 width, const int16 height, const uint8 skipColor, const int16 displaceX, const int16 displaceY, const int16 scaledWidth, const int16 scaledHeight, const uint32 paletteSize, const bool remap, const bool gc) { _dataSize = getBitmapSize(width, height) + paletteSize; _data = (byte *)realloc(_data, _dataSize); _gc = gc; const uint16 bitmapHeaderSize = getBitmapHeaderSize(); setWidth(width); setHeight(height); setDisplace(Common::Point(displaceX, displaceY)); setSkipColor(skipColor); _data[9] = 0; WRITE_SCI11ENDIAN_UINT16(_data + 10, 0); setRemap(remap); setDataSize(width * height); WRITE_SCI11ENDIAN_UINT32(_data + 16, 0); setHunkPaletteOffset(paletteSize > 0 ? (width * height) : 0); setDataOffset(bitmapHeaderSize); setUncompressedDataOffset(bitmapHeaderSize); setControlOffset(0); setScaledWidth(scaledWidth); setScaledHeight(scaledHeight); _buffer = Buffer(getWidth(), getHeight(), getPixels()); } inline int getRawSize() const { return _dataSize; } inline byte *getRawData() const { return _data; } inline Buffer &getBuffer() { return _buffer; } inline bool getShouldGC() const { return _gc; } inline void enableGC() { _gc = true; } inline void disableGC() { _gc = false; } BITMAP_PROPERTY(16, Width, 0); BITMAP_PROPERTY(16, Height, 2); inline Common::Point getDisplace() const { return Common::Point( (int16)READ_SCI11ENDIAN_UINT16(_data + 4), (int16)READ_SCI11ENDIAN_UINT16(_data + 6) ); } inline void setDisplace(const Common::Point &displace) { WRITE_SCI11ENDIAN_UINT16(_data + 4, (uint16)displace.x); WRITE_SCI11ENDIAN_UINT16(_data + 6, (uint16)displace.y); } inline uint8 getSkipColor() const { return _data[8]; } inline void setSkipColor(const uint8 skipColor) { _data[8] = skipColor; } inline bool getRemap() const { return READ_SCI11ENDIAN_UINT16(_data + 10) & kBitmapRemap; } inline void setRemap(const bool remap) { uint16 flags = READ_SCI11ENDIAN_UINT16(_data + 10); if (remap) { flags |= kBitmapRemap; } else { flags &= ~kBitmapRemap; } WRITE_SCI11ENDIAN_UINT16(_data + 10, flags); } BITMAP_PROPERTY(32, DataSize, 12); inline uint32 getHunkPaletteOffset() const { return READ_SCI11ENDIAN_UINT32(_data + 20); } inline void setHunkPaletteOffset(uint32 hunkPaletteOffset) { if (hunkPaletteOffset) { hunkPaletteOffset += getBitmapHeaderSize(); } WRITE_SCI11ENDIAN_UINT32(_data + 20, hunkPaletteOffset); } BITMAP_PROPERTY(32, DataOffset, 24); // NOTE: This property is used as a "magic number" for // validating that a block of memory is a valid bitmap, // and so is always set to the size of the header. BITMAP_PROPERTY(32, UncompressedDataOffset, 28); // NOTE: This property always seems to be zero BITMAP_PROPERTY(32, ControlOffset, 32); inline uint16 getScaledWidth() const { if (getDataOffset() >= 40) { return READ_SCI11ENDIAN_UINT16(_data + 36); } // SCI2 bitmaps did not have scaling ability return 320; } inline void setScaledWidth(uint16 scaledWidth) { if (getDataOffset() >= 40) { WRITE_SCI11ENDIAN_UINT16(_data + 36, scaledWidth); } } inline uint16 getScaledHeight() const { if (getDataOffset() >= 40) { return READ_SCI11ENDIAN_UINT16(_data + 38); } // SCI2 bitmaps did not have scaling ability return 200; } inline void setScaledHeight(uint16 scaledHeight) { if (getDataOffset() >= 40) { WRITE_SCI11ENDIAN_UINT16(_data + 38, scaledHeight); } } inline byte *getPixels() { return _data + getUncompressedDataOffset(); } inline byte *getHunkPalette() { if (getHunkPaletteOffset() == 0) { return nullptr; } return _data + getHunkPaletteOffset(); } virtual void saveLoadWithSerializer(Common::Serializer &ser); }; struct BitmapTable : public SegmentObjTable { BitmapTable() : SegmentObjTable(SEG_TYPE_BITMAP) {} virtual ~BitmapTable() { for (uint i = 0; i < _table.size(); i++) { if (isValidEntry(i)) { freeEntryContents(i); } } } int allocEntry() { int offset = SegmentObjTable::allocEntry(); at(offset) = new SciBitmap; return offset; } void freeEntryContents(const int offset) { delete at(offset); at(offset) = nullptr; } virtual void freeEntry(const int offset) override { SegmentObjTable::freeEntry(offset); freeEntryContents(offset); } virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr) override { freeEntry(sub_addr.getOffset()); } SegmentRef dereference(reg_t pointer) { SegmentRef ret; ret.isRaw = true; ret.maxSize = at(pointer.getOffset())->getRawSize(); ret.raw = at(pointer.getOffset())->getRawData(); return ret; } void saveLoadWithSerializer(Common::Serializer &ser); }; #endif } // End of namespace Sci #endif // SCI_ENGINE_SEGMENT_H