/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ #ifndef SCI_ENGINE_SEGMENT_H #define SCI_ENGINE_SEGMENT_H #include "common/serializer.h" #include "sci/engine/vm.h" #include "sci/engine/vm_types.h" // for reg_t #include "sci/util.h" namespace Sci { struct SegmentRef { bool isRaw; ///< true if data is raw, false if it is a reg_t sequence union { byte *raw; reg_t *reg; }; int maxSize; ///< number of available bytes // FIXME: Perhaps a generic 'offset' is more appropriate here bool skipByte; ///< true if referencing the 2nd data byte of *reg, false otherwise // TODO: Add this? //reg_t pointer; // Original pointer // TODO: Add this? //SegmentType type; SegmentRef() : isRaw(true), raw(0), maxSize(0), skipByte(false) {} bool isValid() const { return (isRaw ? raw != 0 : reg != 0); } }; enum SegmentType { SEG_TYPE_INVALID = 0, SEG_TYPE_SCRIPT = 1, SEG_TYPE_CLONES = 2, SEG_TYPE_LOCALS = 3, SEG_TYPE_STACK = 4, SEG_TYPE_SYS_STRINGS = 5, SEG_TYPE_LISTS = 6, SEG_TYPE_NODES = 7, SEG_TYPE_HUNK = 8, SEG_TYPE_DYNMEM = 9, SEG_TYPE_STRING_FRAG = 10, // obsolete, we keep it to be able to load old saves #ifdef ENABLE_SCI32 SEG_TYPE_ARRAY = 11, SEG_TYPE_STRING = 12, #endif SEG_TYPE_MAX // For sanity checking }; struct SegmentObj : public Common::Serializable { SegmentType _type; public: static SegmentObj *createSegmentObj(SegmentType type); static const char *getSegmentTypeName(SegmentType type); public: SegmentObj(SegmentType type) : _type(type) {} virtual ~SegmentObj() {} inline SegmentType getType() const { return _type; } /** * Check whether the given offset into this memory object is valid, * i.e., suitable for passing to dereference. */ virtual bool isValidOffset(uint16 offset) const = 0; /** * Dereferences a raw memory pointer. * @param reg reference to dereference * @return the data block referenced */ virtual SegmentRef dereference(reg_t pointer); /** * Finds the canonic address associated with sub_reg. * Used by the garbage collector. * * For each valid address a, there exists a canonic address c(a) such that c(a) = c(c(a)). * This address "governs" a in the sense that deallocating c(a) will deallocate a. * * @param sub_addr base address whose canonic address is to be found */ virtual reg_t findCanonicAddress(SegManager *segMan, reg_t sub_addr) const { return sub_addr; } /** * Deallocates all memory associated with the specified address. * Used by the garbage collector. * @param sub_addr address (within the given segment) to deallocate */ virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr) {} /** * Iterates over and reports all addresses within the segment. * Used by the garbage collector. * @return a list of addresses within the segment */ virtual Common::Array listAllDeallocatable(SegmentId segId) const { return Common::Array(); } /** * Iterates over all references reachable from the specified object. * Used by the garbage collector. * @param object object (within the current segment) to analyse * @return a list of outgoing references within the object * * @note This function may also choose to report numbers (segment 0) as adresses */ virtual Common::Array listAllOutgoingReferences(reg_t object) const { return Common::Array(); } }; struct IntMapper; enum { SYS_STRINGS_MAX = 4, SYS_STRING_SAVEDIR = 0, SYS_STRING_PARSER_BASE = 1, MAX_PARSER_BASE = 64 }; struct SystemString { Common::String _name; int _maxSize; char *_value; }; struct SystemStrings : public SegmentObj { SystemString _strings[SYS_STRINGS_MAX]; public: SystemStrings() : SegmentObj(SEG_TYPE_SYS_STRINGS) { for (int i = 0; i < SYS_STRINGS_MAX; i++) { _strings[i]._maxSize = 0; _strings[i]._value = 0; } } ~SystemStrings() { for (int i = 0; i < SYS_STRINGS_MAX; i++) { SystemString *str = &_strings[i]; if (!str->_name.empty()) { free(str->_value); str->_value = NULL; str->_maxSize = 0; } } } virtual bool isValidOffset(uint16 offset) const; virtual SegmentRef dereference(reg_t pointer); virtual void saveLoadWithSerializer(Common::Serializer &ser); }; struct LocalVariables : public SegmentObj { int script_id; /**< Script ID this local variable block belongs to */ Common::Array _locals; public: LocalVariables(): SegmentObj(SEG_TYPE_LOCALS) { script_id = 0; } virtual bool isValidOffset(uint16 offset) const; virtual SegmentRef dereference(reg_t pointer); virtual reg_t findCanonicAddress(SegManager *segMan, reg_t sub_addr) const; virtual Common::Array listAllOutgoingReferences(reg_t object) const; virtual void saveLoadWithSerializer(Common::Serializer &ser); }; /** Clone has been marked as 'freed' */ enum { OBJECT_FLAG_FREED = (1 << 0) }; enum infoSelectorFlags { kInfoFlagClone = 0x0001, kInfoFlagClass = 0x8000 }; enum ObjectOffsets { kOffsetLocalVariables = -6, kOffsetFunctionArea = -4, kOffsetSelectorCounter = -2, kOffsetSelectorSegment = 0, kOffsetInfoSelectorSci0 = 4, kOffsetNamePointerSci0 = 6, kOffsetInfoSelectorSci11 = 14, kOffsetNamePointerSci11 = 16 }; class Object { public: Object() { _flags = 0; _offset = getSciVersion() < SCI_VERSION_1_1 ? 0 : 5; } ~Object() { } reg_t getSpeciesSelector() const { return _variables[_offset]; } void setSpeciesSelector(reg_t value) { _variables[_offset] = value; } reg_t getSuperClassSelector() const { return _variables[_offset + 1]; } void setSuperClassSelector(reg_t value) { _variables[_offset + 1] = value; } reg_t getInfoSelector() const { return _variables[_offset + 2]; } void setInfoSelector(reg_t value) { _variables[_offset + 2] = value; } reg_t getNameSelector() const { return _variables[_offset + 3]; } void setNameSelector(reg_t value) { _variables[_offset + 3] = value; } reg_t getPropDictSelector() const { return _variables[2]; } void setPropDictSelector(reg_t value) { _variables[2] = value; } reg_t getClassScriptSelector() const { return _variables[4]; } void setClassScriptSelector(reg_t value) { _variables[4] = value; } Selector getVarSelector(uint16 i) const { return READ_SCI11ENDIAN_UINT16(_baseVars + i); } reg_t getFunction(uint16 i) const { uint16 offset = (getSciVersion() < SCI_VERSION_1_1) ? _methodCount + 1 + i : i * 2 + 2; return make_reg(_pos.segment, READ_SCI11ENDIAN_UINT16(_baseMethod + offset)); } Selector getFuncSelector(uint16 i) const { uint16 offset = (getSciVersion() < SCI_VERSION_1_1) ? i : i * 2 + 1; return READ_SCI11ENDIAN_UINT16(_baseMethod + offset); } /** * Determines if this object is a class and explicitly defines the * selector as a funcselector. Does NOT say anything about the object's * superclasses, i.e. failure may be returned even if one of the * superclasses defines the funcselector */ int funcSelectorPosition(Selector sel) const { for (uint i = 0; i < _methodCount; i++) if (getFuncSelector(i) == sel) return i; return -1; } /** * Determines if the object explicitly defines slc as a varselector. * Returns -1 if not found. */ int locateVarSelector(SegManager *segMan, Selector slc) const; bool isClass() const { return (getInfoSelector().offset & kInfoFlagClass); } const Object *getClass(SegManager *segMan) const; void markAsClone() { setInfoSelector(make_reg(0, kInfoFlagClone)); } bool isClone() const { return (getInfoSelector().offset & kInfoFlagClone); } void markAsFreed() { _flags |= OBJECT_FLAG_FREED; } bool isFreed() const { return _flags & OBJECT_FLAG_FREED; } uint getVarCount() const { return _variables.size(); } void init(byte *buf, reg_t obj_pos, bool initVariables = true); reg_t getVariable(uint var) const { return _variables[var]; } reg_t &getVariableRef(uint var) { return _variables[var]; } uint16 getMethodCount() const { return _methodCount; } reg_t getPos() const { return _pos; } void saveLoadWithSerializer(Common::Serializer &ser); void cloneFromObject(const Object *obj) { _baseObj = obj ? obj->_baseObj : NULL; _baseMethod = obj ? obj->_baseMethod : NULL; _baseVars = obj ? obj->_baseVars : NULL; } bool relocate(SegmentId segment, int location, size_t scriptSize); int propertyOffsetToId(SegManager *segMan, int propertyOffset) const; void initSpecies(SegManager *segMan, reg_t addr); void initSuperClass(SegManager *segMan, reg_t addr); bool initBaseObject(SegManager *segMan, reg_t addr, bool doInitSuperClass = true); // TODO: make private // Only SegManager::reconstructScripts() is left needing direct access to these public: const byte *_baseObj; /**< base + object offset within base */ private: const uint16 *_baseVars; /**< Pointer to the varselector area for this object */ const uint16 *_baseMethod; /**< Pointer to the method selector area for this object */ Common::Array _variables; uint16 _methodCount; int _flags; uint16 _offset; reg_t _pos; /**< Object offset within its script; for clones, this is their base */ }; /** Data stack */ struct DataStack : SegmentObj { int _capacity; /**< Number of stack entries */ reg_t *_entries; public: DataStack() : SegmentObj(SEG_TYPE_STACK) { _capacity = 0; _entries = NULL; } ~DataStack() { free(_entries); _entries = NULL; } virtual bool isValidOffset(uint16 offset) const; virtual SegmentRef dereference(reg_t pointer); virtual reg_t findCanonicAddress(SegManager *segMan, reg_t sub_addr) const; virtual Common::Array listAllOutgoingReferences(reg_t object) const; virtual void saveLoadWithSerializer(Common::Serializer &ser); }; enum { CLONE_USED = -1, CLONE_NONE = -1 }; typedef Object Clone; struct Node { reg_t pred; /**< Predecessor node */ reg_t succ; /**< Successor node */ reg_t key; reg_t value; }; /* List nodes */ struct List { reg_t first; reg_t last; }; struct Hunk { void *mem; unsigned int size; const char *type; }; template struct Table : public SegmentObj { typedef T value_type; struct Entry : public T { int next_free; /* Only used for free entries */ }; enum { HEAPENTRY_INVALID = -1 }; int first_free; /**< Beginning of a singly linked list for entries */ int entries_used; /**< Statistical information */ Common::Array _table; public: Table(SegmentType type) : SegmentObj(type) { initTable(); } void initTable() { entries_used = 0; first_free = HEAPENTRY_INVALID; _table.clear(); } int allocEntry() { entries_used++; if (first_free != HEAPENTRY_INVALID) { int oldff = first_free; first_free = _table[oldff].next_free; _table[oldff].next_free = oldff; return oldff; } else { uint newIdx = _table.size(); _table.push_back(Entry()); _table[newIdx].next_free = newIdx; // Tag as 'valid' return newIdx; } } virtual bool isValidOffset(uint16 offset) const { return isValidEntry(offset); } bool isValidEntry(int idx) const { return idx >= 0 && (uint)idx < _table.size() && _table[idx].next_free == idx; } virtual void freeEntry(int idx) { if (idx < 0 || (uint)idx >= _table.size()) ::error("Table::freeEntry: Attempt to release invalid table index %d", idx); _table[idx].next_free = first_free; first_free = idx; entries_used--; } virtual Common::Array listAllDeallocatable(SegmentId segId) const { Common::Array tmp; for (uint i = 0; i < _table.size(); i++) if (isValidEntry(i)) tmp.push_back(make_reg(segId, i)); return tmp; } }; /* CloneTable */ struct CloneTable : public Table { CloneTable() : Table(SEG_TYPE_CLONES) {} virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr); virtual Common::Array listAllOutgoingReferences(reg_t object) const; virtual void saveLoadWithSerializer(Common::Serializer &ser); }; /* NodeTable */ struct NodeTable : public Table { NodeTable() : Table(SEG_TYPE_NODES) {} virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr); virtual Common::Array listAllOutgoingReferences(reg_t object) const; virtual void saveLoadWithSerializer(Common::Serializer &ser); }; /* ListTable */ struct ListTable : public Table { ListTable() : Table(SEG_TYPE_LISTS) {} virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr); virtual Common::Array listAllOutgoingReferences(reg_t object) const; virtual void saveLoadWithSerializer(Common::Serializer &ser); }; /* HunkTable */ struct HunkTable : public Table { HunkTable() : Table(SEG_TYPE_HUNK) {} virtual void freeEntry(int idx) { Table::freeEntry(idx); if (!_table[idx].mem) warning("Attempt to free an already freed hunk"); free(_table[idx].mem); _table[idx].mem = 0; } virtual void saveLoadWithSerializer(Common::Serializer &ser); }; // Free-style memory struct DynMem : public SegmentObj { int _size; Common::String _description; byte *_buf; public: DynMem() : SegmentObj(SEG_TYPE_DYNMEM), _size(0), _buf(0) {} ~DynMem() { free(_buf); _buf = NULL; } virtual bool isValidOffset(uint16 offset) const; virtual SegmentRef dereference(reg_t pointer); virtual reg_t findCanonicAddress(SegManager *segMan, reg_t sub_addr) const; virtual Common::Array listAllDeallocatable(SegmentId segId) const; virtual void saveLoadWithSerializer(Common::Serializer &ser); }; #ifdef ENABLE_SCI32 template class SciArray { public: SciArray() { _type = -1; _data = NULL; _size = 0; _actualSize = 0; } SciArray(const SciArray &array) { _type = array._type; _size = array._size; _actualSize = array._actualSize; _data = new T[_actualSize]; assert(_data); memcpy(_data, array._data, _size * sizeof(T)); } SciArray& operator=(const SciArray &array) { if (this == &array) return *this; delete[] _data; _type = array._type; _size = array._size; _actualSize = array._actualSize; _data = new T[_actualSize]; assert(_data); memcpy(_data, array._data, _size * sizeof(T)); return *this; } virtual ~SciArray() { destroy(); } virtual void destroy() { delete[] _data; _data = NULL; _type = -1; _size = _actualSize = 0; } void setType(byte type) { if (_type >= 0) error("SciArray::setType(): Type already set"); _type = type; } void setSize(uint32 size) { if (_type < 0) error("SciArray::setSize(): No type set"); // Check if we don't have to do anything if (_size == size) return; // Check if we don't have to expand the array if (size <= _actualSize) { _size = size; return; } // So, we're going to have to create an array of some sort T *newArray = new T[size]; memset(newArray, 0, size * sizeof(T)); // Check if we never created an array before if (!_data) { _size = _actualSize = size; _data = newArray; return; } // Copy data from the old array to the new memcpy(newArray, _data, _size * sizeof(T)); // Now set the new array to the old and set the sizes delete[] _data; _data = newArray; _size = _actualSize = size; } T getValue(uint16 index) const { if (index >= _size) error("SciArray::getValue(): %d is out of bounds (%d)", index, _size); return _data[index]; } void setValue(uint16 index, T value) { if (index >= _size) error("SciArray::setValue(): %d is out of bounds (%d)", index, _size); _data[index] = value; } byte getType() const { return _type; } uint32 getSize() const { return _size; } T *getRawData() { return _data; } const T *getRawData() const { return _data; } protected: int8 _type; T *_data; uint32 _size; // _size holds the number of entries that the scripts have requested uint32 _actualSize; // _actualSize is the actual numbers of entries allocated }; class SciString : public SciArray { public: SciString() : SciArray() { setType(3); } // We overload destroy to ensure the string type is 3 after destroying void destroy() { SciArray::destroy(); _type = 3; } Common::String toString() const; void fromString(const Common::String &string); }; struct ArrayTable : public Table > { ArrayTable() : Table >(SEG_TYPE_ARRAY) {} virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr); virtual Common::Array listAllOutgoingReferences(reg_t object) const; void saveLoadWithSerializer(Common::Serializer &ser); SegmentRef dereference(reg_t pointer); }; struct StringTable : public Table { StringTable() : Table(SEG_TYPE_STRING) {} virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr); void saveLoadWithSerializer(Common::Serializer &ser); SegmentRef dereference(reg_t pointer); }; #endif } // End of namespace Sci #endif // SCI_ENGINE_SEGMENT_H