/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ #include "common/debug.h" #include "common/debug-channels.h" #include "common/stack.h" #include "common/config-manager.h" #include "sci/sci.h" #include "sci/console.h" #include "sci/debug.h" // for g_debugState #include "sci/resource.h" #include "sci/engine/features.h" #include "sci/engine/state.h" #include "sci/engine/kernel.h" #include "sci/engine/seg_manager.h" #include "sci/engine/script.h" #include "sci/engine/gc.h" namespace Sci { const reg_t NULL_REG = {0, 0}; const reg_t SIGNAL_REG = {0, SIGNAL_OFFSET}; //#define VM_DEBUG_SEND #define SCI_XS_CALLEE_LOCALS ((SegmentId)-1) /** * Adds an entry to the top of the execution stack. * * @param[in] s The state with which to execute * @param[in] pc The initial program counter * @param[in] sp The initial stack pointer * @param[in] objp Pointer to the beginning of the current object * @param[in] argc Number of parameters to call with * @param[in] argp Heap pointer to the first parameter * @param[in] selector The selector by which it was called or * NULL_SELECTOR if n.a. For debugging. * @param[in] sendp Pointer to the object which the message was * sent to. Equal to objp for anything but super. * @param[in] origin Number of the execution stack element this * entry was created by (usually the current TOS * number, except for multiple sends). * @param[in] local_segment The segment to use for local variables, * or SCI_XS_CALLEE_LOCALS to use obj's segment. * @return A pointer to the new exec stack TOS entry */ static ExecStack *add_exec_stack_entry(Common::List &execStack, reg_t pc, StackPtr sp, reg_t objp, int argc, StackPtr argp, Selector selector, reg_t sendp, int origin, SegmentId local_segment); /** * Adds one varselector access to the execution stack. * This function is called from send_selector only. * @param[in] s The EngineState to use * @param[in] objp Pointer to the object owning the selector * @param[in] argc 1 for writing, 0 for reading * @param[in] argp Pointer to the address of the data to write -2 * @param[in] selector Selector name * @param[in] address Heap address of the selector * @param[in] origin Stack frame which the access originated from * @return Pointer to the new exec-TOS element */ static ExecStack *add_exec_stack_varselector(Common::List &execStack, reg_t objp, int argc, StackPtr argp, Selector selector, const ObjVarRef& address, int origin); // validation functionality #ifndef DISABLE_VALIDATIONS static reg_t &validate_property(Object *obj, int index) { // A static dummy reg_t, which we return if obj or index turn out to be // invalid. Note that we cannot just return NULL_REG, because client code // may modify the value of the returned reg_t. static reg_t dummyReg = NULL_REG; if (!obj) { debugC(2, kDebugLevelVM, "[VM] Sending to disposed object!"); return dummyReg; } if (index < 0 || (uint)index >= obj->getVarCount()) { debugC(2, kDebugLevelVM, "[VM] Invalid property #%d (out of [0..%d]) requested!", index, obj->getVarCount()); return dummyReg; } return obj->getVariableRef(index); } static StackPtr validate_stack_addr(EngineState *s, StackPtr sp) { if (sp >= s->stack_base && sp < s->stack_top) return sp; error("[VM] Stack index %d out of valid range [%d..%d]", (int)(sp - s->stack_base), 0, (int)(s->stack_top - s->stack_base - 1)); return 0; } static int validate_arithmetic(reg_t reg) { if (reg.segment) { warning("[VM] Attempt to read arithmetic value from non-zero segment [%04x]", reg.segment); return 0; } return reg.offset; } static int signed_validate_arithmetic(reg_t reg) { if (reg.segment) { warning("[VM] Attempt to read arithmetic value from non-zero segment [%04x]", reg.segment); return 0; } return (int16)reg.offset; } static bool validate_variable(reg_t *r, reg_t *stack_base, int type, int max, int index, int line) { const char *names[4] = {"global", "local", "temp", "param"}; if (index < 0 || index >= max) { Common::String txt = Common::String::printf( "[VM] Attempt to use invalid %s variable %04x ", names[type], index); if (max == 0) txt += "(variable type invalid)"; else txt += Common::String::printf("(out of range [%d..%d])", 0, max - 1); if (type == VAR_PARAM || type == VAR_TEMP) { int total_offset = r - stack_base; if (total_offset < 0 || total_offset >= VM_STACK_SIZE) { warning("%s", txt.c_str()); warning("[VM] Access would be outside even of the stack (%d); access denied", total_offset); return false; } else { debugC(2, kDebugLevelVM, "%s", txt.c_str()); debugC(2, kDebugLevelVM, "[VM] Access within stack boundaries; access granted."); return true; } } return false; } return true; } static reg_t validate_read_var(reg_t *r, reg_t *stack_base, int type, int max, int index, int line, reg_t default_value) { if (validate_variable(r, stack_base, type, max, index, line)) return r[index]; else return default_value; } static void validate_write_var(reg_t *r, reg_t *stack_base, int type, int max, int index, int line, reg_t value, SegManager *segMan, Kernel *kernel) { if (validate_variable(r, stack_base, type, max, index, line)) { // WORKAROUND: This code is needed to work around a probable script bug, or a // limitation of the original SCI engine, which can be observed in LSL5. // // In some games, ego walks via the "Grooper" object, in particular its "stopGroop" // child. In LSL5, during the game, ego is swapped from Larry to Patti. When this // happens in the original interpreter, the new actor is loaded in the same memory // location as the old one, therefore the client variable in the stopGroop object // points to the new actor. This is probably why the reference of the stopGroop // object is never updated (which is why I mentioned that this is either a script // bug or some kind of limitation). // // In our implementation, each new object is loaded in a different memory location, // and we can't overwrite the old one. This means that in our implementation, // whenever ego is changed, we need to update the "client" variable of the // stopGroop object, which points to ego, to the new ego object. If this is not // done, ego's movement will not be updated properly, so the result is // unpredictable (for example in LSL5, Patti spins around instead of walking). if (index == 0 && type == VAR_GLOBAL) { // global 0 is ego reg_t stopGroopPos = segMan->findObjectByName("stopGroop"); if (!stopGroopPos.isNull()) { // does the game have a stopGroop object? // Find the "client" member variable of the stopGroop object, and update it ObjVarRef varp; if (lookupSelector(segMan, stopGroopPos, kernel->_selectorCache.client, &varp, NULL) == kSelectorVariable) { reg_t *clientVar = varp.getPointer(segMan); *clientVar = value; } } } r[index] = value; } } #else // Non-validating alternatives # define validate_stack_addr(s, sp) sp # define validate_arithmetic(r) ((r).offset) # define signed_validate_arithmetic(r) ((int16)(r).offset) # define validate_variable(r, sb, t, m, i, l) # define validate_read_var(r, sb, t, m, i, l, dv) ((r)[i]) # define validate_write_var(r, sb, t, m, i, l, v, sm, k) ((r)[i] = (v)) # define validate_property(o, p) ((o)->_variables[p]) #endif #define READ_VAR(type, index, def) validate_read_var(s->variables[type], s->stack_base, type, s->variables_max[type], index, __LINE__, def) #define WRITE_VAR(type, index, value) validate_write_var(s->variables[type], s->stack_base, type, s->variables_max[type], index, __LINE__, value, s->_segMan, g_sci->getKernel()) #define WRITE_VAR16(type, index, value) WRITE_VAR(type, index, make_reg(0, value)); #define ACC_ARITHMETIC_L(op) make_reg(0, (op validate_arithmetic(s->r_acc))) #define ACC_AUX_LOAD() aux_acc = signed_validate_arithmetic(s->r_acc) #define ACC_AUX_STORE() s->r_acc = make_reg(0, aux_acc) #define OBJ_PROPERTY(o, p) (validate_property(o, p)) // Operating on the stack // 16 bit: #define PUSH(v) PUSH32(make_reg(0, v)) #define POP() (validate_arithmetic(POP32())) // 32 bit: #define PUSH32(a) (*(validate_stack_addr(s, (s->xs->sp)++)) = (a)) #define POP32() (*(validate_stack_addr(s, --(s->xs->sp)))) ExecStack *execute_method(EngineState *s, uint16 script, uint16 pubfunct, StackPtr sp, reg_t calling_obj, uint16 argc, StackPtr argp) { int seg = s->_segMan->getScriptSegment(script); Script *scr = s->_segMan->getScriptIfLoaded(seg); if (!scr || scr->isMarkedAsDeleted()) { // Script not present yet? seg = script_instantiate(g_sci->getResMan(), s->_segMan, script); scr = s->_segMan->getScript(seg); } const int temp = scr->validateExportFunc(pubfunct); if (!temp) { #ifdef ENABLE_SCI32 // HACK: Temporarily switch to a warning in SCI32 games until we can figure out why Torin has // an invalid exported function. if (getSciVersion() >= SCI_VERSION_2) warning("Request for invalid exported function 0x%x of script 0x%x", pubfunct, script); else #endif error("Request for invalid exported function 0x%x of script 0x%x", pubfunct, script); return NULL; } // Check if a breakpoint is set on this method if (g_debugState._activeBreakpointTypes & BREAK_EXPORT) { uint32 bpaddress; bpaddress = (script << 16 | pubfunct); Common::List::const_iterator bp; for (bp = g_debugState._breakpoints.begin(); bp != g_debugState._breakpoints.end(); ++bp) { if (bp->type == BREAK_EXPORT && bp->address == bpaddress) { Console *con = g_sci->getSciDebugger(); con->DebugPrintf("Break on script %d, export %d\n", script, pubfunct); g_debugState.debugging = true; g_debugState.breakpointWasHit = true; break; } } } return add_exec_stack_entry(s->_executionStack, make_reg(seg, temp), sp, calling_obj, argc, argp, -1, calling_obj, s->_executionStack.size()-1, seg); } static void _exec_varselectors(EngineState *s) { // Executes all varselector read/write ops on the TOS while (!s->_executionStack.empty() && s->_executionStack.back().type == EXEC_STACK_TYPE_VARSELECTOR) { ExecStack &xs = s->_executionStack.back(); reg_t *var = xs.getVarPointer(s->_segMan); if (!var) { warning("Invalid varselector exec stack entry"); } else { // varselector access? if (xs.argc) { // write? *var = xs.variables_argp[1]; } else // No, read s->r_acc = *var; } s->_executionStack.pop_back(); } } /** This struct is used to buffer the list of send calls in send_selector() */ struct CallsStruct { reg_t addr_func; reg_t varp_objp; union { reg_t func; ObjVarRef var; } address; StackPtr argp; int argc; Selector selector; StackPtr sp; /**< Stack pointer */ int type; /**< Same as ExecStack.type */ }; ExecStack *send_selector(EngineState *s, reg_t send_obj, reg_t work_obj, StackPtr sp, int framesize, StackPtr argp) { // send_obj and work_obj are equal for anything but 'super' // Returns a pointer to the TOS exec_stack element assert(s); reg_t funcp; int selector; int argc; int origin = s->_executionStack.size()-1; // Origin: Used for debugging bool printSendActions = false; // We return a pointer to the new active ExecStack // The selector calls we catch are stored below: Common::Stack sendCalls; while (framesize > 0) { selector = validate_arithmetic(*argp++); argc = validate_arithmetic(*argp); if (argc > 0x800) { // More arguments than the stack could possibly accomodate for error("send_selector(): More than 0x800 arguments to function call"); } // Check if a breakpoint is set on this method if (g_debugState._activeBreakpointTypes & BREAK_SELECTOR) { char method_name[256]; sprintf(method_name, "%s::%s", s->_segMan->getObjectName(send_obj), g_sci->getKernel()->getSelectorName(selector).c_str()); Common::List::const_iterator bp; for (bp = g_debugState._breakpoints.begin(); bp != g_debugState._breakpoints.end(); ++bp) { int cmplen = bp->name.size(); if (bp->name.lastChar() != ':') cmplen = 256; if (bp->type == BREAK_SELECTOR && !strncmp(bp->name.c_str(), method_name, cmplen)) { Console *con = g_sci->getSciDebugger(); con->DebugPrintf("Break on %s (in [%04x:%04x])\n", method_name, PRINT_REG(send_obj)); printSendActions = true; g_debugState.debugging = true; g_debugState.breakpointWasHit = true; break; } } } #ifdef VM_DEBUG_SEND printf("Send to %04x:%04x, selector %04x (%s):", PRINT_REG(send_obj), selector, g_sci->getKernel()->getSelectorName(selector).c_str()); #endif // VM_DEBUG_SEND ObjVarRef varp; switch (lookupSelector(s->_segMan, send_obj, selector, &varp, &funcp)) { case kSelectorNone: error("Send to invalid selector 0x%x of object at %04x:%04x", 0xffff & selector, PRINT_REG(send_obj)); break; case kSelectorVariable: #ifdef VM_DEBUG_SEND if (argc) printf("Varselector: Write %04x:%04x\n", PRINT_REG(argp[1])); else printf("Varselector: Read\n"); #endif // VM_DEBUG_SEND // argc == 0: read selector // argc != 0: write selector if (printSendActions && !argc) { // read selector debug("[read selector]\n"); printSendActions = false; } if (printSendActions && argc) { reg_t oldReg = *varp.getPointer(s->_segMan); reg_t newReg = argp[1]; debug("[write to selector: change %04x:%04x to %04x:%04x]\n", PRINT_REG(oldReg), PRINT_REG(newReg)); printSendActions = false; } if (argc > 1) { // argc can indeed be bigger than 1 in some cases, and it seems correct // (i.e. we should skip that many bytes later on)... question is, why // does this occur? Could such calls be used to point to data after X // bytes in the heap? What are the skipped bytes in this case? // In SQ4CD, this occurs with the returnVal selector of object // Sq4GlobalNarrator when the game starts, and right after the narrator // is heard (e.g. after he talks when examining something) reg_t oldReg = *varp.getPointer(s->_segMan); reg_t newReg = argp[1]; warning("send_selector(): argc = %d while modifying variable selector " "%x (%s) of object %04x:%04x (%s) from %04x:%04x to %04x:%04x", argc, selector, g_sci->getKernel()->getSelectorName(selector).c_str(), PRINT_REG(send_obj), s->_segMan->getObjectName(send_obj), PRINT_REG(oldReg), PRINT_REG(newReg)); } { CallsStruct call; call.address.var = varp; // register the call call.argp = argp; call.argc = argc; call.selector = selector; call.type = EXEC_STACK_TYPE_VARSELECTOR; // Register as a varselector sendCalls.push(call); } break; case kSelectorMethod: #ifdef VM_DEBUG_SEND printf("Funcselector("); for (int i = 0; i < argc; i++) { printf("%04x:%04x", PRINT_REG(argp[i+1])); if (i + 1 < argc) printf(", "); } printf(") at %04x:%04x\n", PRINT_REG(funcp)); #endif // VM_DEBUG_SEND if (printSendActions) { debug("[invoke selector]\n"); printSendActions = false; } { CallsStruct call; call.address.func = funcp; // register call call.argp = argp; call.argc = argc; call.selector = selector; call.type = EXEC_STACK_TYPE_CALL; call.sp = sp; sp = CALL_SP_CARRY; // Destroy sp, as it will be carried over sendCalls.push(call); } break; } // switch (lookupSelector()) framesize -= (2 + argc); argp += argc + 1; } // Iterate over all registered calls in the reverse order. This way, the first call is // placed on the TOS; as soon as it returns, it will cause the second call to be executed. while (!sendCalls.empty()) { CallsStruct call = sendCalls.pop(); if (call.type == EXEC_STACK_TYPE_VARSELECTOR) // Write/read variable? add_exec_stack_varselector(s->_executionStack, work_obj, call.argc, call.argp, call.selector, call.address.var, origin); else add_exec_stack_entry(s->_executionStack, call.address.func, call.sp, work_obj, call.argc, call.argp, call.selector, send_obj, origin, SCI_XS_CALLEE_LOCALS); } _exec_varselectors(s); return s->_executionStack.empty() ? NULL : &(s->_executionStack.back()); } static ExecStack *add_exec_stack_varselector(Common::List &execStack, reg_t objp, int argc, StackPtr argp, Selector selector, const ObjVarRef& address, int origin) { ExecStack *xstack = add_exec_stack_entry(execStack, NULL_REG, 0, objp, argc, argp, selector, objp, origin, SCI_XS_CALLEE_LOCALS); // Store selector address in sp xstack->addr.varp = address; xstack->type = EXEC_STACK_TYPE_VARSELECTOR; return xstack; } static ExecStack *add_exec_stack_entry(Common::List &execStack, reg_t pc, StackPtr sp, reg_t objp, int argc, StackPtr argp, Selector selector, reg_t sendp, int origin, SegmentId _localsSegment) { // Returns new TOS element for the execution stack // _localsSegment may be -1 if derived from the called object //printf("Exec stack: [%d/%d], origin %d, at %p\n", s->execution_stack_pos, s->_executionStack.size(), origin, s->execution_stack); ExecStack xstack; xstack.objp = objp; if (_localsSegment != SCI_XS_CALLEE_LOCALS) xstack.local_segment = _localsSegment; else xstack.local_segment = pc.segment; xstack.sendp = sendp; xstack.addr.pc = pc; xstack.fp = xstack.sp = sp; xstack.argc = argc; xstack.variables_argp = argp; // Parameters *argp = make_reg(0, argc); // SCI code relies on the zeroeth argument to equal argc // Additional debug information xstack.selector = selector; xstack.origin = origin; xstack.type = EXEC_STACK_TYPE_CALL; // Normal call execStack.push_back(xstack); return &(execStack.back()); } #ifdef DISABLE_VALIDATIONS # define kernel_matches_signature(a, b, c, d) 1 #endif static reg_t pointer_add(EngineState *s, reg_t base, int offset) { SegmentObj *mobj = s->_segMan->getSegmentObj(base.segment); if (!mobj) { error("[VM] Error: Attempt to add %d to invalid pointer %04x:%04x", offset, PRINT_REG(base)); return NULL_REG; } switch (mobj->getType()) { case SEG_TYPE_LOCALS: case SEG_TYPE_SCRIPT: case SEG_TYPE_STACK: case SEG_TYPE_DYNMEM: base.offset += offset; return base; default: // FIXME: Changed this to warning, because iceman does this during dancing with girl. // Investigate why that is so and either fix the underlying issue or implement a more // specialized workaround! warning("[VM] Error: Attempt to add %d to pointer %04x:%04x, type %d: Pointer arithmetics of this type unsupported", offset, PRINT_REG(base), mobj->getType()); return NULL_REG; } } static void callKernelFunc(EngineState *s, int kernelFuncNum, int argc) { if (kernelFuncNum >= (int)g_sci->getKernel()->_kernelFuncs.size()) error("Invalid kernel function 0x%x requested", kernelFuncNum); const KernelFuncWithSignature &kernelFunc = g_sci->getKernel()->_kernelFuncs[kernelFuncNum]; if (kernelFunc.signature && !g_sci->getKernel()->signatureMatch(kernelFunc.signature, argc, s->xs->sp + 1)) { error("[VM] Invalid arguments to kernel call %x", kernelFuncNum); } reg_t *argv = s->xs->sp + 1; if (!kernelFunc.isDummy) { // Add stack frame to indicate we're executing a callk. // This is useful in debugger backtraces if this // kernel function calls a script itself. ExecStack *xstack; xstack = add_exec_stack_entry(s->_executionStack, NULL_REG, NULL, NULL_REG, argc, argv - 1, 0, NULL_REG, s->_executionStack.size()-1, SCI_XS_CALLEE_LOCALS); xstack->selector = kernelFuncNum; xstack->type = EXEC_STACK_TYPE_KERNEL; //warning("callk %s", kernelFunc.orig_name.c_str()); // TODO: SCI2.1 equivalent if (s->loadFromLauncher >= 0 && ( (kernelFuncNum == 0x8 && getSciVersion() <= SCI_VERSION_1_1) || // DrawPic (kernelFuncNum == 0x3d && getSciVersion() == SCI_VERSION_2) // GetSaveDir //(kernelFuncNum == 0x28 && getSciVersion() == SCI_VERSION_2_1) // AddPlane )) { // A game is being loaded from the launcher, and the game is about to draw something on // screen, hence all initialization has taken place (i.e. menus have been constructed etc). // Therefore, inject a kRestoreGame call here, instead of the requested function. // The restore call is injected here mainly for games which have a menu, as the menu is // constructed when the game starts and is not reconstructed when a saved game is loaded. int saveSlot = s->loadFromLauncher; s->loadFromLauncher = -1; // invalidate slot, so that we don't load again if (saveSlot < 0) error("Requested to load invalid save slot"); // should never happen, really reg_t restoreArgv[2] = { NULL_REG, make_reg(0, saveSlot) }; // special call (argv[0] is NULL) kRestoreGame(s, 2, restoreArgv); } else { // Call kernel function s->r_acc = kernelFunc.fun(s, argc, argv); } // Remove callk stack frame again s->_executionStack.pop_back(); } else { Common::String warningMsg = "Dummy function " + kernelFunc.orig_name + Common::String::printf("[0x%x]", kernelFuncNum) + " invoked - ignoring. Params: " + Common::String::printf("%d", argc) + " ("; for (int i = 0; i < argc; i++) { warningMsg += Common::String::printf("%04x:%04x", PRINT_REG(argv[i])); warningMsg += (i == argc - 1 ? ")" : ", "); } warning("%s", warningMsg.c_str()); } } static void gc_countdown(EngineState *s) { if (s->gc_countdown-- <= 0) { s->gc_countdown = s->script_gc_interval; run_gc(s); } } static const byte _fake_return_buffer[2] = {op_ret << 1, op_ret << 1}; int readPMachineInstruction(const byte *src, byte &extOpcode, int16 opparams[4]) { uint offset = 0; extOpcode = src[offset++]; // Get "extended" opcode (lower bit has special meaning) const byte opcode = extOpcode >> 1; // get the actual opcode memset(opparams, 0, sizeof(opparams)); for (int i = 0; g_opcode_formats[opcode][i]; ++i) { //printf("Opcode: 0x%x, Opnumber: 0x%x, temp: %d\n", opcode, opcode, temp); assert(i < 4); switch (g_opcode_formats[opcode][i]) { case Script_Byte: opparams[i] = src[offset++]; break; case Script_SByte: opparams[i] = (int8)src[offset++]; break; case Script_Word: opparams[i] = READ_SCI11ENDIAN_UINT16(src + offset); offset += 2; break; case Script_SWord: opparams[i] = (int16)READ_SCI11ENDIAN_UINT16(src + offset); offset += 2; break; case Script_Variable: case Script_Property: case Script_Local: case Script_Temp: case Script_Global: case Script_Param: case Script_Offset: if (extOpcode & 1) { opparams[i] = src[offset++]; } else { opparams[i] = READ_SCI11ENDIAN_UINT16(src + offset); offset += 2; } break; case Script_SVariable: case Script_SRelative: if (extOpcode & 1) { opparams[i] = (int8)src[offset++]; } else { opparams[i] = (int16)READ_SCI11ENDIAN_UINT16(src + offset); offset += 2; } break; case Script_None: case Script_End: break; case Script_Invalid: default: error("opcode %02x: Invalid", extOpcode); } } return offset; } void run_vm(EngineState *s, bool restoring) { assert(s); #ifndef DISABLE_VALIDATIONS unsigned int code_buf_size = 0 ; // (Avoid spurious warning) #endif int temp; int16 aux_acc; // Auxiliary 16 bit accumulator reg_t r_temp; // Temporary register StackPtr s_temp; // Temporary stack pointer int16 opparams[4]; // opcode parameters s->restAdjust = s->restAdjust; // &rest adjusts the parameter count by this value // Current execution data: s->xs = &(s->_executionStack.back()); ExecStack *xs_new = NULL; Object *obj = s->_segMan->getObject(s->xs->objp); Script *local_script = s->_segMan->getScriptIfLoaded(s->xs->local_segment); int old_execution_stack_base = s->execution_stack_base; // Used to detect the stack bottom, for "physical" returns const byte *code_buf = NULL; // (Avoid spurious warning) if (!local_script) { error("run_vm(): program counter gone astray (local_script pointer is null)"); } if (!restoring) s->execution_stack_base = s->_executionStack.size() - 1; #ifndef DISABLE_VALIDATIONS // Initialize maximum variable count if (s->script_000->_localsBlock) s->variables_max[VAR_GLOBAL] = s->script_000->_localsBlock->_locals.size(); else s->variables_max[VAR_GLOBAL] = 0; #endif s->variables_seg[VAR_GLOBAL] = s->script_000->_localsSegment; s->variables_seg[VAR_TEMP] = s->variables_seg[VAR_PARAM] = s->_segMan->findSegmentByType(SEG_TYPE_STACK); s->variables_base[VAR_TEMP] = s->variables_base[VAR_PARAM] = s->stack_base; // SCI code reads the zeroth argument to determine argc if (s->script_000->_localsBlock) s->variables_base[VAR_GLOBAL] = s->variables[VAR_GLOBAL] = s->script_000->_localsBlock->_locals.begin(); else s->variables_base[VAR_GLOBAL] = s->variables[VAR_GLOBAL] = NULL; s->_executionStackPosChanged = true; // Force initialization while (1) { int var_type; // See description below int var_number; g_debugState.old_pc_offset = s->xs->addr.pc.offset; g_debugState.old_sp = s->xs->sp; if (s->_executionStackPosChanged) { Script *scr; s->xs = &(s->_executionStack.back()); s->_executionStackPosChanged = false; scr = s->_segMan->getScriptIfLoaded(s->xs->addr.pc.segment); if (!scr) { // No script? Implicit return via fake instruction buffer warning("Running on non-existant script in segment %x", s->xs->addr.pc.segment); code_buf = _fake_return_buffer; #ifndef DISABLE_VALIDATIONS code_buf_size = 2; #endif s->xs->addr.pc.offset = 1; scr = NULL; obj = NULL; } else { obj = s->_segMan->getObject(s->xs->objp); code_buf = scr->_buf; #ifndef DISABLE_VALIDATIONS code_buf_size = scr->getBufSize(); #endif local_script = s->_segMan->getScriptIfLoaded(s->xs->local_segment); if (!local_script) { warning("Could not find local script from segment %x", s->xs->local_segment); local_script = NULL; s->variables_base[VAR_LOCAL] = s->variables[VAR_LOCAL] = NULL; #ifndef DISABLE_VALIDATIONS s->variables_max[VAR_LOCAL] = 0; #endif } else { s->variables_seg[VAR_LOCAL] = local_script->_localsSegment; if (local_script->_localsBlock) s->variables_base[VAR_LOCAL] = s->variables[VAR_LOCAL] = local_script->_localsBlock->_locals.begin(); else s->variables_base[VAR_LOCAL] = s->variables[VAR_LOCAL] = NULL; #ifndef DISABLE_VALIDATIONS if (local_script->_localsBlock) s->variables_max[VAR_LOCAL] = local_script->_localsBlock->_locals.size(); else s->variables_max[VAR_LOCAL] = 0; s->variables_max[VAR_TEMP] = s->xs->sp - s->xs->fp; s->variables_max[VAR_PARAM] = s->xs->argc + 1; #endif } s->variables[VAR_TEMP] = s->xs->fp; s->variables[VAR_PARAM] = s->xs->variables_argp; } } if (s->script_abort_flag || g_engine->shouldQuit()) return; // Emergency // Debug if this has been requested: // TODO: re-implement sci_debug_flags if (g_debugState.debugging /* sci_debug_flags*/) { script_debug(s); g_debugState.breakpointWasHit = false; } Console *con = g_sci->getSciDebugger(); if (con->isAttached()) { con->onFrame(); } #ifndef DISABLE_VALIDATIONS if (s->xs->sp < s->xs->fp) error("run_vm(): stack underflow, sp: %04x:%04x, fp: %04x:%04x", PRINT_REG(*s->xs->sp), PRINT_REG(*s->xs->fp)); s->variables_max[VAR_TEMP] = s->xs->sp - s->xs->fp; if (s->xs->addr.pc.offset >= code_buf_size) error("run_vm(): program counter gone astray, addr: %d, code buffer size: %d", s->xs->addr.pc.offset, code_buf_size); #endif // Get opcode byte extOpcode; s->xs->addr.pc.offset += readPMachineInstruction(code_buf + s->xs->addr.pc.offset, extOpcode, opparams); const byte opcode = extOpcode >> 1; switch (opcode) { case op_bnot: // 0x00 (00) s->r_acc = ACC_ARITHMETIC_L(0xffff ^ /*acc*/); break; case op_add: // 0x01 (01) r_temp = POP32(); if (r_temp.segment || s->r_acc.segment) { reg_t r_ptr = NULL_REG; int offset; // Pointer arithmetics! if (s->r_acc.segment) { if (r_temp.segment) { error("Attempt to add two pointers, stack=%04x:%04x and acc=%04x:%04x", PRINT_REG(r_temp), PRINT_REG(s->r_acc)); offset = 0; } else { r_ptr = s->r_acc; offset = r_temp.offset; } } else { r_ptr = r_temp; offset = s->r_acc.offset; } s->r_acc = pointer_add(s, r_ptr, offset); } else s->r_acc = make_reg(0, r_temp.offset + s->r_acc.offset); break; case op_sub: // 0x02 (02) r_temp = POP32(); if (r_temp.segment != s->r_acc.segment) { reg_t r_ptr = NULL_REG; int offset; // Pointer arithmetics! if (s->r_acc.segment) { if (r_temp.segment) { error("Attempt to subtract two pointers, stack=%04x:%04x and acc=%04x:%04x", PRINT_REG(r_temp), PRINT_REG(s->r_acc)); offset = 0; } else { r_ptr = s->r_acc; offset = r_temp.offset; } } else { r_ptr = r_temp; offset = s->r_acc.offset; } s->r_acc = pointer_add(s, r_ptr, -offset); } else { // We can subtract numbers, or pointers with the same segment, // an operation which will yield a number like in C s->r_acc = make_reg(0, r_temp.offset - s->r_acc.offset); } break; case op_mul: // 0x03 (03) s->r_acc = ACC_ARITHMETIC_L(((int16)POP()) * (int16)/*acc*/); break; case op_div: // 0x04 (04) ACC_AUX_LOAD(); aux_acc = aux_acc != 0 ? ((int16)POP()) / aux_acc : 0; ACC_AUX_STORE(); break; case op_mod: // 0x05 (05) ACC_AUX_LOAD(); aux_acc = aux_acc != 0 ? ((int16)POP()) % aux_acc : 0; ACC_AUX_STORE(); break; case op_shr: // 0x06 (06) s->r_acc = ACC_ARITHMETIC_L(((uint16)POP()) >> /*acc*/); break; case op_shl: // 0x07 (07) s->r_acc = ACC_ARITHMETIC_L(((uint16)POP()) << /*acc*/); break; case op_xor: // 0x08 (08) s->r_acc = ACC_ARITHMETIC_L(POP() ^ /*acc*/); break; case op_and: // 0x09 (09) s->r_acc = ACC_ARITHMETIC_L(POP() & /*acc*/); break; case op_or: // 0x0a (10) s->r_acc = ACC_ARITHMETIC_L(POP() | /*acc*/); break; case op_neg: // 0x0b (11) s->r_acc = ACC_ARITHMETIC_L(-/*acc*/); break; case op_not: // 0x0c (12) s->r_acc = make_reg(0, !(s->r_acc.offset || s->r_acc.segment)); // Must allow pointers to be negated, as this is used for checking whether objects exist break; case op_eq_: // 0x0d (13) s->r_prev = s->r_acc; r_temp = POP32(); s->r_acc = make_reg(0, r_temp == s->r_acc); // Explicitly allow pointers to be compared break; case op_ne_: // 0x0e (14) s->r_prev = s->r_acc; r_temp = POP32(); s->r_acc = make_reg(0, r_temp != s->r_acc); // Explicitly allow pointers to be compared break; case op_gt_: // 0x0f (15) s->r_prev = s->r_acc; r_temp = POP32(); if (r_temp.segment && s->r_acc.segment) { // Signed pointer comparison. We do unsigned comparison instead, as that is probably what was intended. if (r_temp.segment != s->r_acc.segment) warning("[VM] Comparing pointers in different segments (%04x:%04x vs. %04x:%04x)", PRINT_REG(r_temp), PRINT_REG(s->r_acc)); s->r_acc = make_reg(0, (r_temp.segment == s->r_acc.segment) && r_temp.offset > s->r_acc.offset); } else s->r_acc = ACC_ARITHMETIC_L(signed_validate_arithmetic(r_temp) > (int16)/*acc*/); break; case op_ge_: // 0x10 (16) s->r_prev = s->r_acc; r_temp = POP32(); if (r_temp.segment && s->r_acc.segment) { if (r_temp.segment != s->r_acc.segment) warning("[VM] Comparing pointers in different segments (%04x:%04x vs. %04x:%04x)", PRINT_REG(r_temp), PRINT_REG(s->r_acc)); s->r_acc = make_reg(0, (r_temp.segment == s->r_acc.segment) && r_temp.offset >= s->r_acc.offset); } else s->r_acc = ACC_ARITHMETIC_L(signed_validate_arithmetic(r_temp) >= (int16)/*acc*/); break; case op_lt_: // 0x11 (17) s->r_prev = s->r_acc; r_temp = POP32(); if (r_temp.segment && s->r_acc.segment) { if (r_temp.segment != s->r_acc.segment) warning("[VM] Comparing pointers in different segments (%04x:%04x vs. %04x:%04x)", PRINT_REG(r_temp), PRINT_REG(s->r_acc)); s->r_acc = make_reg(0, (r_temp.segment == s->r_acc.segment) && r_temp.offset < s->r_acc.offset); } else s->r_acc = ACC_ARITHMETIC_L(signed_validate_arithmetic(r_temp) < (int16)/*acc*/); break; case op_le_: // 0x12 (18) s->r_prev = s->r_acc; r_temp = POP32(); if (r_temp.segment && s->r_acc.segment) { if (r_temp.segment != s->r_acc.segment) warning("[VM] Comparing pointers in different segments (%04x:%04x vs. %04x:%04x)", PRINT_REG(r_temp), PRINT_REG(s->r_acc)); s->r_acc = make_reg(0, (r_temp.segment == s->r_acc.segment) && r_temp.offset <= s->r_acc.offset); } else s->r_acc = ACC_ARITHMETIC_L(signed_validate_arithmetic(r_temp) <= (int16)/*acc*/); break; case op_ugt_: // 0x13 (19) s->r_prev = s->r_acc; r_temp = POP32(); // SCI0/SCI1 scripts use this to check whether a // parameter is a pointer or a far text // reference. It is used e.g. by the standard library // Print function to distinguish two ways of calling it: // // (Print "foo") // Pointer to a string // (Print 420 5) // Reference to the fifth message in text resource 420 // It works because in those games, the maximum resource number is 999, // so any parameter value above that threshold must be a pointer. if (r_temp.segment && (s->r_acc == make_reg(0, 1000))) s->r_acc = make_reg(0, 1); else if (r_temp.segment && s->r_acc.segment) s->r_acc = make_reg(0, (r_temp.segment == s->r_acc.segment) && r_temp.offset > s->r_acc.offset); else s->r_acc = ACC_ARITHMETIC_L(validate_arithmetic(r_temp) > /*acc*/); break; case op_uge_: // 0x14 (20) s->r_prev = s->r_acc; r_temp = POP32(); // See above if (r_temp.segment && (s->r_acc == make_reg(0, 1000))) s->r_acc = make_reg(0, 1); else if (r_temp.segment && s->r_acc.segment) s->r_acc = make_reg(0, (r_temp.segment == s->r_acc.segment) && r_temp.offset >= s->r_acc.offset); else s->r_acc = ACC_ARITHMETIC_L(validate_arithmetic(r_temp) >= /*acc*/); break; case op_ult_: // 0x15 (21) s->r_prev = s->r_acc; r_temp = POP32(); // See above if (r_temp.segment && (s->r_acc == make_reg(0, 1000))) s->r_acc = NULL_REG; else if (r_temp.segment && s->r_acc.segment) s->r_acc = make_reg(0, (r_temp.segment == s->r_acc.segment) && r_temp.offset < s->r_acc.offset); else s->r_acc = ACC_ARITHMETIC_L(validate_arithmetic(r_temp) < /*acc*/); break; case op_ule_: // 0x16 (22) s->r_prev = s->r_acc; r_temp = POP32(); // See above if (r_temp.segment && (s->r_acc == make_reg(0, 1000))) s->r_acc = NULL_REG; else if (r_temp.segment && s->r_acc.segment) s->r_acc = make_reg(0, (r_temp.segment == s->r_acc.segment) && r_temp.offset <= s->r_acc.offset); else s->r_acc = ACC_ARITHMETIC_L(validate_arithmetic(r_temp) <= /*acc*/); break; case op_bt: // 0x17 (23) if (s->r_acc.offset || s->r_acc.segment) s->xs->addr.pc.offset += opparams[0]; break; case op_bnt: // 0x18 (24) if (!(s->r_acc.offset || s->r_acc.segment)) s->xs->addr.pc.offset += opparams[0]; break; case op_jmp: // 0x19 (25) s->xs->addr.pc.offset += opparams[0]; break; case op_ldi: // 0x1a (26) s->r_acc = make_reg(0, opparams[0]); break; case op_push: // 0x1b (27) PUSH32(s->r_acc); break; case op_pushi: // 0x1c (28) PUSH(opparams[0]); break; case op_toss: // 0x1d (29) s->xs->sp--; break; case op_dup: // 0x1e (30) r_temp = s->xs->sp[-1]; PUSH32(r_temp); break; case op_link: // 0x1f (31) for (int i = 0; i < opparams[0]; i++) s->xs->sp[i] = NULL_REG; s->xs->sp += opparams[0]; break; case op_call: { // 0x20 (32) int argc = (opparams[1] >> 1) // Given as offset, but we need count + 1 + s->restAdjust; StackPtr call_base = s->xs->sp - argc; s->xs->sp[1].offset += s->restAdjust; xs_new = add_exec_stack_entry(s->_executionStack, make_reg(s->xs->addr.pc.segment, s->xs->addr.pc.offset + opparams[0]), s->xs->sp, s->xs->objp, (validate_arithmetic(*call_base)) + s->restAdjust, call_base, NULL_SELECTOR, s->xs->objp, s->_executionStack.size()-1, s->xs->local_segment); s->restAdjust = 0; // Used up the &rest adjustment s->xs->sp = call_base; s->_executionStackPosChanged = true; break; } case op_callk: { // 0x21 (33) gc_countdown(s); s->xs->sp -= (opparams[1] >> 1) + 1; bool oldScriptHeader = (getSciVersion() == SCI_VERSION_0_EARLY); if (!oldScriptHeader) { s->xs->sp -= s->restAdjust; s->restAdjust = 0; // We just used up the s->restAdjust, remember? } int argc = validate_arithmetic(s->xs->sp[0]); if (!oldScriptHeader) argc += s->restAdjust; callKernelFunc(s, opparams[0], argc); if (!oldScriptHeader) s->restAdjust = s->restAdjust; // Calculate xs again: The kernel function might // have spawned a new VM xs_new = &(s->_executionStack.back()); s->_executionStackPosChanged = true; break; } case op_callb: // 0x22 (34) temp = ((opparams[1] >> 1) + s->restAdjust + 1); s_temp = s->xs->sp; s->xs->sp -= temp; s->xs->sp[0].offset += s->restAdjust; xs_new = execute_method(s, 0, opparams[0], s_temp, s->xs->objp, s->xs->sp[0].offset, s->xs->sp); s->restAdjust = 0; // Used up the &rest adjustment if (xs_new) // in case of error, keep old stack s->_executionStackPosChanged = true; break; case op_calle: // 0x23 (35) temp = ((opparams[2] >> 1) + s->restAdjust + 1); s_temp = s->xs->sp; s->xs->sp -= temp; s->xs->sp[0].offset += s->restAdjust; xs_new = execute_method(s, opparams[0], opparams[1], s_temp, s->xs->objp, s->xs->sp[0].offset, s->xs->sp); s->restAdjust = 0; // Used up the &rest adjustment if (xs_new) // in case of error, keep old stack s->_executionStackPosChanged = true; break; case op_ret: // 0x24 (36) do { StackPtr old_sp2 = s->xs->sp; StackPtr old_fp = s->xs->fp; ExecStack *old_xs = &(s->_executionStack.back()); if ((int)s->_executionStack.size() - 1 == s->execution_stack_base) { // Have we reached the base? s->execution_stack_base = old_execution_stack_base; // Restore stack base s->_executionStack.pop_back(); s->_executionStackPosChanged = true; s->restAdjust = s->restAdjust; // Update &rest return; // "Hard" return } if (old_xs->type == EXEC_STACK_TYPE_VARSELECTOR) { // varselector access? reg_t *var = old_xs->getVarPointer(s->_segMan); if (old_xs->argc) // write? *var = old_xs->variables_argp[1]; else // No, read s->r_acc = *var; } // Not reached the base, so let's do a soft return s->_executionStack.pop_back(); s->_executionStackPosChanged = true; s->xs = &(s->_executionStack.back()); if (s->xs->sp == CALL_SP_CARRY // Used in sends to 'carry' the stack pointer || s->xs->type != EXEC_STACK_TYPE_CALL) { s->xs->sp = old_sp2; s->xs->fp = old_fp; } } while (s->xs->type == EXEC_STACK_TYPE_VARSELECTOR); // Iterate over all varselector accesses s->_executionStackPosChanged = true; xs_new = s->xs; break; case op_send: // 0x25 (37) s_temp = s->xs->sp; s->xs->sp -= ((opparams[0] >> 1) + s->restAdjust); // Adjust stack s->xs->sp[1].offset += s->restAdjust; xs_new = send_selector(s, s->r_acc, s->r_acc, s_temp, (int)(opparams[0] >> 1) + (uint16)s->restAdjust, s->xs->sp); if (xs_new && xs_new != s->xs) s->_executionStackPosChanged = true; s->restAdjust = 0; break; case 0x26: // (38) case 0x27: // (39) error("Dummy opcode 0x%x called", opcode); // should never happen break; case op_class: // 0x28 (40) s->r_acc = s->_segMan->getClassAddress((unsigned)opparams[0], SCRIPT_GET_LOCK, s->xs->addr.pc); break; case 0x29: // (41) error("Dummy opcode 0x%x called", opcode); // should never happen break; case op_self: // 0x2a (42) s_temp = s->xs->sp; s->xs->sp -= ((opparams[0] >> 1) + s->restAdjust); // Adjust stack s->xs->sp[1].offset += s->restAdjust; xs_new = send_selector(s, s->xs->objp, s->xs->objp, s_temp, (int)(opparams[0] >> 1) + (uint16)s->restAdjust, s->xs->sp); if (xs_new && xs_new != s->xs) s->_executionStackPosChanged = true; s->restAdjust = 0; break; case op_super: // 0x2b (43) r_temp = s->_segMan->getClassAddress(opparams[0], SCRIPT_GET_LOAD, s->xs->addr.pc); if (!r_temp.segment) error("[VM]: Invalid superclass in object"); else { s_temp = s->xs->sp; s->xs->sp -= ((opparams[1] >> 1) + s->restAdjust); // Adjust stack s->xs->sp[1].offset += s->restAdjust; xs_new = send_selector(s, r_temp, s->xs->objp, s_temp, (int)(opparams[1] >> 1) + (uint16)s->restAdjust, s->xs->sp); if (xs_new && xs_new != s->xs) s->_executionStackPosChanged = true; s->restAdjust = 0; } break; case op_rest: // 0x2c (44) temp = (uint16) opparams[0]; // First argument s->restAdjust = MAX(s->xs->argc - temp + 1, 0); // +1 because temp counts the paramcount while argc doesn't for (; temp <= s->xs->argc; temp++) PUSH32(s->xs->variables_argp[temp]); break; case op_lea: // 0x2d (45) temp = (uint16) opparams[0] >> 1; var_number = temp & 0x03; // Get variable type // Get variable block offset r_temp.segment = s->variables_seg[var_number]; r_temp.offset = s->variables[var_number] - s->variables_base[var_number]; if (temp & 0x08) // Add accumulator offset if requested r_temp.offset += signed_validate_arithmetic(s->r_acc); r_temp.offset += opparams[1]; // Add index r_temp.offset *= 2; // variables are 16 bit // That's the immediate address now s->r_acc = r_temp; break; case op_selfID: // 0x2e (46) s->r_acc = s->xs->objp; break; case 0x2f: // (47) error("Dummy opcode 0x%x called", opcode); // should never happen break; case op_pprev: // 0x30 (48) PUSH32(s->r_prev); break; case op_pToa: // 0x31 (49) s->r_acc = OBJ_PROPERTY(obj, (opparams[0] >> 1)); break; case op_aTop: // 0x32 (50) OBJ_PROPERTY(obj, (opparams[0] >> 1)) = s->r_acc; break; case op_pTos: // 0x33 (51) PUSH32(OBJ_PROPERTY(obj, opparams[0] >> 1)); break; case op_sTop: // 0x34 (52) OBJ_PROPERTY(obj, (opparams[0] >> 1)) = POP32(); break; case op_ipToa: // 0x35 (53) s->r_acc = OBJ_PROPERTY(obj, (opparams[0] >> 1)); s->r_acc = OBJ_PROPERTY(obj, (opparams[0] >> 1)) = ACC_ARITHMETIC_L(1 + /*acc*/); break; case op_dpToa: { // 0x36 (54) s->r_acc = OBJ_PROPERTY(obj, (opparams[0] >> 1)); #if 0 // Speed throttling is possible here as well // although this opens other issues like mud wrestling in lsl5 uses another local variable for delays Object *var_container = obj; if (!(obj->getInfoSelector().offset & SCRIPT_INFO_CLASS)) var_container = s->_segMan->getObject(obj->getSuperClassSelector()); uint16 varSelector = var_container->getVarSelector(opparams[0] >> 1); // printf("%X\n", varSelector); // printf("%s\n", g_sci->getKernel()->getSelectorName(varSelector).c_str()); if ((varSelector == 0x84) || (varSelector == 0x92))) { // selectors cycles, cycleCnt from lsl5 hardcoded uint32 curTime = g_system->getMillis(); if (s->_lastAnimateTime + 30 > curTime) break; s->_lastAnimateTime = curTime; } #endif s->r_acc = OBJ_PROPERTY(obj, (opparams[0] >> 1)) = ACC_ARITHMETIC_L(-1 + /*acc*/); break; } case op_ipTos: // 0x37 (55) validate_arithmetic(OBJ_PROPERTY(obj, (opparams[0] >> 1))); temp = ++OBJ_PROPERTY(obj, (opparams[0] >> 1)).offset; PUSH(temp); break; case op_dpTos: // 0x38 (56) validate_arithmetic(OBJ_PROPERTY(obj, (opparams[0] >> 1))); temp = --OBJ_PROPERTY(obj, (opparams[0] >> 1)).offset; PUSH(temp); break; case op_lofsa: // 0x39 (57) s->r_acc.segment = s->xs->addr.pc.segment; switch (g_sci->_features->detectLofsType()) { case SCI_VERSION_1_1: s->r_acc.offset = opparams[0] + local_script->getScriptSize(); break; case SCI_VERSION_1_MIDDLE: s->r_acc.offset = opparams[0]; break; default: s->r_acc.offset = s->xs->addr.pc.offset + opparams[0]; } #ifndef DISABLE_VALIDATIONS if (s->r_acc.offset >= code_buf_size) { error("VM: lofsa operation overflowed: %04x:%04x beyond end" " of script (at %04x)\n", PRINT_REG(s->r_acc), code_buf_size); } #endif break; case op_lofss: // 0x3a (58) r_temp.segment = s->xs->addr.pc.segment; switch (g_sci->_features->detectLofsType()) { case SCI_VERSION_1_1: r_temp.offset = opparams[0] + local_script->getScriptSize(); break; case SCI_VERSION_1_MIDDLE: r_temp.offset = opparams[0]; break; default: r_temp.offset = s->xs->addr.pc.offset + opparams[0]; } #ifndef DISABLE_VALIDATIONS if (r_temp.offset >= code_buf_size) { error("VM: lofss operation overflowed: %04x:%04x beyond end" " of script (at %04x)", PRINT_REG(r_temp), code_buf_size); } #endif PUSH32(r_temp); break; case op_push0: // 0x3b (59) PUSH(0); break; case op_push1: // 0x3c (60) PUSH(1); break; case op_push2: // 0x3d (61) PUSH(2); break; case op_pushSelf: // 0x3e (62) if (!(extOpcode & 1)) { PUSH32(s->xs->objp); } else { // Debug opcode op_file, skip null-terminated string (file name) while (code_buf[s->xs->addr.pc.offset++]) ; } break; case op_line: // 0x3f (63) // Debug opcode (line number) break; case op_lag: // 0x40 (64) case op_lal: // 0x41 (65) case op_lat: // 0x42 (66) case op_lap: // 0x43 (67) var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0]; s->r_acc = READ_VAR(var_type, var_number, s->r_acc); break; case op_lsg: // 0x44 (68) case op_lsl: // 0x45 (69) case op_lst: // 0x46 (70) case op_lsp: // 0x47 (71) var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0]; PUSH32(READ_VAR(var_type, var_number, s->r_acc)); break; case op_lagi: // 0x48 (72) case op_lali: // 0x49 (73) case op_lati: // 0x4a (74) case op_lapi: // 0x4b (75) var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0] + signed_validate_arithmetic(s->r_acc); s->r_acc = READ_VAR(var_type, var_number, s->r_acc); break; case op_lsgi: // 0x4c (76) case op_lsli: // 0x4d (77) case op_lsti: // 0x4e (78) case op_lspi: // 0x4f (79) var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0] + signed_validate_arithmetic(s->r_acc); PUSH32(READ_VAR(var_type, var_number, s->r_acc)); break; case op_sag: // 0x50 (80) case op_sal: // 0x51 (81) case op_sat: // 0x52 (82) case op_sap: // 0x53 (83) var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0]; WRITE_VAR(var_type, var_number, s->r_acc); break; case op_ssg: // 0x54 (84) case op_ssl: // 0x55 (85) case op_sst: // 0x56 (86) case op_ssp: // 0x57 (87) var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0]; WRITE_VAR(var_type, var_number, POP32()); break; case op_sagi: // 0x58 (88) case op_sali: // 0x59 (89) case op_sati: // 0x5a (90) case op_sapi: // 0x5b (91) // Special semantics because it wouldn't really make a whole lot // of sense otherwise, with acc being used for two things // simultaneously... var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0] + signed_validate_arithmetic(s->r_acc); s->r_acc = POP32(); WRITE_VAR(var_type, var_number, s->r_acc); break; case op_ssgi: // 0x5c (92) case op_ssli: // 0x5d (93) case op_ssti: // 0x5e (94) case op_sspi: // 0x5f (95) var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0] + signed_validate_arithmetic(s->r_acc); WRITE_VAR(var_type, var_number, POP32()); break; case op_plusag: // 0x60 (96) case op_plusal: // 0x61 (97) case op_plusat: // 0x62 (98) case op_plusap: // 0x63 (99) var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0]; r_temp = READ_VAR(var_type, var_number, s->r_acc); if (r_temp.segment) { // Pointer arithmetics! s->r_acc = pointer_add(s, r_temp, 1); } else s->r_acc = make_reg(0, r_temp.offset + 1); WRITE_VAR(var_type, var_number, s->r_acc); break; case op_plussg: // 0x64 (100) case op_plussl: // 0x65 (101) case op_plusst: // 0x66 (102) case op_plussp: // 0x67 (103) var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0]; r_temp = READ_VAR(var_type, var_number, s->r_acc); if (r_temp.segment) { // Pointer arithmetics! r_temp = pointer_add(s, r_temp, 1); } else r_temp = make_reg(0, r_temp.offset + 1); PUSH32(r_temp); WRITE_VAR(var_type, var_number, r_temp); break; case op_plusagi: // 0x68 (104) case op_plusali: // 0x69 (105) case op_plusati: // 0x6a (106) case op_plusapi: // 0x6b (107) var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0] + signed_validate_arithmetic(s->r_acc); r_temp = READ_VAR(var_type, var_number, s->r_acc); if (r_temp.segment) { // Pointer arithmetics! s->r_acc = pointer_add(s, r_temp, 1); } else s->r_acc = make_reg(0, r_temp.offset + 1); WRITE_VAR(var_type, var_number, s->r_acc); break; case op_plussgi: // 0x6c (108) case op_plussli: // 0x6d (109) case op_plussti: // 0x6e (110) case op_plusspi: // 0x6f (111) var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0] + signed_validate_arithmetic(s->r_acc); r_temp = READ_VAR(var_type, var_number, s->r_acc); if (r_temp.segment) { // Pointer arithmetics! r_temp = pointer_add(s, r_temp, 1); } else r_temp = make_reg(0, r_temp.offset + 1); PUSH32(r_temp); WRITE_VAR(var_type, var_number, r_temp); break; case op_minusag: // 0x70 (112) case op_minusal: // 0x71 (113) case op_minusat: // 0x72 (114) case op_minusap: // 0x73 (115) var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0]; r_temp = READ_VAR(var_type, var_number, s->r_acc); if (r_temp.segment) { // Pointer arithmetics! s->r_acc = pointer_add(s, r_temp, -1); } else s->r_acc = make_reg(0, r_temp.offset - 1); WRITE_VAR(var_type, var_number, s->r_acc); break; case op_minussg: // 0x74 (116) case op_minussl: // 0x75 (117) case op_minusst: // 0x76 (118) case op_minussp: // 0x77 (119) var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0]; r_temp = READ_VAR(var_type, var_number, s->r_acc); if (r_temp.segment) { // Pointer arithmetics! r_temp = pointer_add(s, r_temp, -1); } else r_temp = make_reg(0, r_temp.offset - 1); PUSH32(r_temp); WRITE_VAR(var_type, var_number, r_temp); break; case op_minusagi: // 0x78 (120) case op_minusali: // 0x79 (121) case op_minusati: // 0x7a (122) case op_minusapi: // 0x7b (123) var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0] + signed_validate_arithmetic(s->r_acc); r_temp = READ_VAR(var_type, var_number, s->r_acc); if (r_temp.segment) { // Pointer arithmetics! s->r_acc = pointer_add(s, r_temp, -1); } else s->r_acc = make_reg(0, r_temp.offset - 1); WRITE_VAR(var_type, var_number, s->r_acc); break; case op_minussgi: // 0x7c (124) case op_minussli: // 0x7d (125) case op_minussti: // 0x7e (126) case op_minusspi: // 0x7f (127) var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0] + signed_validate_arithmetic(s->r_acc); r_temp = READ_VAR(var_type, var_number, s->r_acc); if (r_temp.segment) { // Pointer arithmetics! r_temp = pointer_add(s, r_temp, -1); } else r_temp = make_reg(0, r_temp.offset - 1); PUSH32(r_temp); WRITE_VAR(var_type, var_number, r_temp); break; default: error("run_vm(): illegal opcode %x", opcode); } // switch (opcode) if (s->_executionStackPosChanged) // Force initialization s->xs = xs_new; //#ifndef DISABLE_VALIDATIONS if (s->xs != &(s->_executionStack.back())) { warning("xs is stale (%p vs %p); last command was %02x", (void *)s->xs, (void *)&(s->_executionStack.back()), opcode); } //#endif ++s->script_step_counter; } } static void _init_stack_base_with_selector(EngineState *s, Selector selector) { s->stack_base[0] = make_reg(0, (uint16)selector); s->stack_base[1] = NULL_REG; } static EngineState *_game_run(EngineState *&s) { bool restoring = false; if (DebugMan.isDebugChannelEnabled(kDebugLevelOnStartup)) g_sci->getSciDebugger()->attach(); do { s->_executionStackPosChanged = false; run_vm(s, restoring); if (s->restarting_flags & SCI_GAME_IS_RESTARTING_NOW) { // Restart was requested? restoring = false; s->_executionStack.clear(); s->_executionStackPosChanged = false; game_exit(s); script_init_engine(s); game_init(s); #ifdef USE_OLD_MUSIC_FUNCTIONS s->_sound.sfx_reset_player(); #endif _init_stack_base_with_selector(s, g_sci->getKernel()->_selectorCache.play); send_selector(s, s->_gameObj, s->_gameObj, s->stack_base, 2, s->stack_base); s->script_abort_flag = 0; s->restarting_flags = SCI_GAME_WAS_RESTARTED; } else { restoring = s->restoring; if (restoring) { game_exit(s); s->restoring = false; if (s->script_abort_flag == 2) { debugC(2, kDebugLevelVM, "Restarting with replay()"); s->_executionStack.clear(); // Restart with replay _init_stack_base_with_selector(s, g_sci->getKernel()->_selectorCache.replay); send_selector(s, s->_gameObj, s->_gameObj, s->stack_base, 2, s->stack_base); } s->script_abort_flag = 0; } else break; // exit loop } } while (true); return s; } int game_run(EngineState **_s) { EngineState *s = *_s; debugC(2, kDebugLevelVM, "Calling %s::play()", g_sci->getGameID()); _init_stack_base_with_selector(s, g_sci->getKernel()->_selectorCache.play); // Call the play selector // Now: Register the first element on the execution stack- if (!send_selector(s, s->_gameObj, s->_gameObj, s->stack_base, 2, s->stack_base)) { Console *con = g_sci->getSciDebugger(); con->printObject(s->_gameObj); warning("Failed to run the game! Aborting..."); return 1; } // and ENGAGE! _game_run(*_s); debugC(2, kDebugLevelVM, "Game::play() finished."); return 0; } void quit_vm(EngineState *s) { s->script_abort_flag = 1; // Terminate VM g_debugState.seeking = kDebugSeekNothing; g_debugState.runningStep = 0; } reg_t *ObjVarRef::getPointer(SegManager *segMan) const { Object *o = segMan->getObject(obj); return o ? &o->getVariableRef(varindex) : 0; } reg_t *ExecStack::getVarPointer(SegManager *segMan) const { assert(type == EXEC_STACK_TYPE_VARSELECTOR); return addr.varp.getPointer(segMan); } } // End of namespace Sci